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Respiratory viral infections are a major global public health concern, and current

antiviral therapies still have limitations. In recent years, research has revealed

significant similarities between the immune systems of the gut and lungs, which

interact through the complex physiological network known as the “gut-lung

axis.” As one of the largest immune organs, the gut, along with the lungs, forms

an inter-organ immune network, with strong parallels in innate immune

mechanisms, such as the activation of pattern recognition receptors (PRRs).

Furthermore, the gut microbiota influences antiviral immune responses in the

lungs throughmechanisms such as systemic transport of gut microbiota-derived

metabolites, immune cell migration, and cytokine regulation. Studies have shown

that gut dysbiosis can exacerbate the severity of respiratory infections and may

impact the efficacy of antiviral therapies. This review discusses the synergistic

role of the gut-lung axis in antiviral immunity against respiratory viruses and

explores potential strategies for modulating the gut microbiota to mitigate

respiratory viral infections. Future research should focus on the immune

mechanisms of the gut-lung axis to drive the development of novel clinical

treatment strategies.
KEYWORDS

respiratory viral infections, gut-lung immune axis, intestinal microbiota, systemic
transport of gut microbiota-derived metabolites, immune cell migration, immune
factor cycling
1 Introduction

Respiratory viruses primarily invade through the respiratory tract, where they can

proliferate extensively in the epithelial cells of the respiratory mucosa, causing localized

infections or leading to damage in other tissues and organs (1). Common viral families

include Orthomyxoviridae, Paramyxoviridae, and Coronaviridae, along with less common
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families like Togaviridae and Picornaviridae. Respiratory viral

infections have long posed a significant public health challenge.

In 2015 alone, respiratory syncytial virus (RSV) infections led to

approximately 3.2 million hospitalizations and 59,600 deaths in

children under five globally (2). Additionally, influenza viruses

continue to impose a substantial global health burden, affecting

approximately 8% of adults and 25% of children each year (3).

While the mortality rate of seasonal influenza is generally low,

severe infections caused by certain influenza strains, such as H5N1

and H7N9, can have mortality rates of 50% or higher (4). Although

existing antiviral drugs and immunomodulatory therapies have

demonstrated efficacy in combating respiratory viral infections,

many such infections still lack specific treatments (5, 6), and

approved therapies often rely on synthetic drugs that can be

limited by side effects and the development of viral resistance (7,

8). There is an urgent need to identify new strategies for better

controlling respiratory viral infections.

Traditional research on the immune response to respiratory

viruses has primarily focused on the immune defenses of the

respiratory system itself. The lungs have distinct immune defense

mechanisms, including mucosal barriers, immune cells, and

immune molecules (9, 10). However, recent studies have

increasingly demonstrated that immune signaling pathways

between the gut and respiratory system are interconnected. The

gut, the largest immune organ in the body, hosts a diverse

microbiota that interacts with the host’s immune system to

maintain immune homeostasis (11). Research has shown that

under certain pathological conditions, there is considerable

overlap in the types and functions of immune cells in the gut and

lungs, enabling coordinated responses to pathogen invasion

(12, 13). Specific members of the gut microbiota are associated

with resistance to respiratory viral infections (14), and changes in

gut microbiota composition may affect susceptibility to respiratory

viruses and the progression of disease (15). This complex

biological and immunological interaction between the gut and

lungs is referred to as the “gut-lung axis.” With an in-depth

understanding of the mechanism of action of the gut-lung axis in

the fight against respiratory viral infections, it is expected to

regulate the body’s immune function, enhance the resistance to

respiratory viral infections, and attenuate the inflammatory

response and pathological damage by intervening in the

interaction of the gut-lung axis, thus providing a new way of

thinking and a potential target for the prevention and treatment

of respiratory viral infections.
2 Definition of the gut-lung axis

The lungs and gut both belong to the common mucosal immune

system (CMIS), serving as critical defense organs that protect the

body from pathogen invasion through both innate and adaptive

immune mechanisms. Research indicates that stimulation of one

organ can affect the immune responses of another, forming what is

referred to as the gut-lung cross-talk pathway (16, 17), also known as

the gut-lung axis. Gut-Lung Axis refers to the complex network of
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interactions between the gut and lungs through the nervous,

endocrine, and immune systems. This concept emphasizes the close

connection between two organs, particularly in terms of their roles in

inflammatory response and immune regulation. This connection

spans anatomical, microbiological, and immunological dimensions.

From an anatomical perspective, although the lungs and gut are

distant from each other, there are potential anatomical links that

reinforce the existence of the gut-lung axis. Current studies suggest

that communication along this axis may occur through the

bloodstream (18, 19), lymphatic system (20), and neuroendocrine

pathways (21). Microbiologically, both the lungs and gut harbor

distinct microbial communities. The intestinal microbiota consists

mainly of Bacillota, Bacteroidota, Actinobacteria, etc., and is diverse

and abundant. The lung microbiota, on the other hand, is relatively

simple, consisting mainly of Pseudomonadota, Actinobacteria, etc.,

and its abundance is much lower than that of the intestinal tract

(22). The gut-lung axis encompasses interactions between host and

microbiota, as well as between different microbial communities,

playing a key role in maintaining host homeostasis and contributing

to disease progression. For instance, in patients with

bronchopulmonary dysplasia (BPD), the relative abundance of

Bacillota is significantly lower than the non-BPD group. At the

genus level, Clostridium sensu stricto 1was sig nificantly lower in the

BPD group. However, Veillonella, Roseburia, Micrococcus,

Xanthomarina were significantly enriched in the BPD group. Gut

dysbiosis may contribute to BPD progression by altering immune

function and metabolism (23). From an immunological standpoint,

the lungs and intestines share many common immune cells, such as

tissue-resident memory T cells (TRMs) (24), Invariant natural killer

T (iNKT) (25), Mucosal-associated invariant T (MAIT) (26–28). In

addition, the microbiota in both the lungs and gut can influence the

development, maturation, and function of immune cells, thereby

regulating both local and systemic immune responses. Studies have

shown that gut microbiota can modulate immune cell composition

and function through the production of short-chain fatty acids

(SCFAs) and other metabolites (29). Supplementing specific gut

microbiota may help reestablish and restore the host’s immune

response (30).
3 Physiological basis of the gut-
lung axis

The high degree of conservation of respiratory virus-

recognizing receptors in intestinal and lung tissues, as well as the

remarkable similarity in the mechanisms of antiviral immune

response in these two organs, together form the molecular and

immunological basis of the gut-lung axis.
3.1 Similarities between the gut and lungs
in respiratory virus recognition receptors

The innate immune system serves as the first line of defense

against pathogen invasion, with receptors that can specifically
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recognize pathogen-associated molecular patterns (PAMPs)

(31, 32). In mammals, the innate immune response is triggered

by host pattern recognition receptors (PRRs) that detect PAMPs.

When PRRs such as Toll-like receptors (TLRs) and RIG-I-like

receptors (RLRs) recognize PAMPs (33–35), they initiate signaling

pathways that activate the host cell’s defense mechanisms (36). This

recognition leads to cellular responses such as regulating

transcription factors essential for the production of interferons

(IFNs) and cytokines, increasing expression of MHC class II and

inducing expression of the costimulatory molecules CD40, CD80 and

CD86, aimed at neutralizing pathogens and activating other defense

mechanisms (37). Both the gut and lung immune systems harbor

similar virus recognition receptors, forming a critical component of

the host’s innate immune defense. Table 1 summarizes in detail the

pulmonary and intestinal shared viral recognition receptors in

common respiratory viral infections.

3.1.1 The role of SARS-CoV-2 and ACE-2
receptors in the lungs and gut

The COVID-19 pandemic, caused by SARS-CoV-2, has

demonstrated high transmissibility and infectivity. The angiotensin-

converting enzyme 2 (ACE-2) receptor plays a crucial role in this

process, serving as the entry point for SARS-CoV-2 into cells, while

also contributing to the maintenance of lung and gut health (38).

SARS-CoV-2 invades host cells by binding to the ACE-2

receptor. Studies have shown that ACE-2 receptors are widely

distributed in alveolar cells, explaining the virus’s ability to cause

severe respiratory disease (39). Additionally, biopsies of the

stomach, duodenum, and rectum from infected patients have

revealed the presence of both SARS-CoV-2 and ACE-2 receptors

in gastrointestinal tissues (40–43), indicating that the gut is also a

potential site of viral entry (44–46). Following infection,

gastrointestinal symptoms such as nausea, vomiting, and diarrhea

may occur in addition to the common respiratory symptoms of

cough, shortness of breath, and loss of smell. Research has found

that up to half of COVID-19 patients report gastrointestinal
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symptoms (47). SARS-CoV-2 invades host cells by binding its

spike glycoprotein (S protein) to ACE-2 receptors on the surface

of host cells (48–50). This invasion occurs not only in the lungs but

also in the gut. In vitro experiments have confirmed that SARS-

CoV-2 can efficiently enter and replicate in colonic epithelial cells

(51, 52),This study demonstrates that ACE-2 receptors consistent

with the lung can also be expressed in the gut, providing binding

sites for viral infections.

In summary, the high expression of ACE-2 receptors in both the

respiratory and gastrointestinal systems provides a biological

explanation for the elevated infection rates of SARS-CoV-2 in

these two systems, revealing a similarity in the virus recognition

mechanisms of the gut and lungs.

3.1.2 The role of influenza virus and RLRs in the
lungs and gut

Influenza viruses, belonging to the Orthomyxoviridae family,

are classified based on specific combinations of their surface

proteins, hemagglutinin (HA) and neuraminidase (NA), with 18

HA and 11 NA subtypes identified so far (53). During infection, the

HA on the viral surface binds to sialic acid receptors on host cells,

allowing the virus to attach to target cells. Subsequently, through a

process mediated by clathrin-mediated endocytosis (CME), the

virus enters host cells via specific N-linked glycoproteins (54, 55).

PRRs detect viral genetic material entering the cell, which in

turn initiates a series of signaling cascades to effectively inhibit viral

replication and remove the virus before the infection becomes

severe, protecting the organism from further aggression (56).

Among these PRRs, the RLR family—including RIG-I, MDA5,

and LGP2—plays a crucial role. Studies show that both RIG-I and

MDA5 are capable of recognizing RNA viruses in the epithelial cells

of the gut and lungs, detecting viral RNA in infected cells (57–59).

The activation of RIG-I is essential for the production of IFNs in

response to viruses such as paramyxoviruses, influenza viruses, and

Japanese encephalitis viruses (60, 61), while MDA5 is particularly

important for detecting small RNA viruses (62, 63).
TABLE 1 Generalization of viral recognition receptors shared by lung and intestine and similar immune mechanisms in common respiratory
viral infections.

Respiratory Viruses Shared Receptor Types
Similar Signaling

Pathways Activated
References

SARS-CoV-1
SARS-CoV-2

ACE-2 Angiotensin II → Ang (1-7) (80–82)

Flu Virus RLRs IFN ↑ (57–59)

RSV TLRs
MyD88↑ TRIF↑

IFN ↑
(76, 83)

Adenovirus
Coxsackievirus-Adenovirus

Receptor (CAR)
Leucocyte recruitment
tissue remodeling

(84–86)

Human Metapneumovirus (HMPV)
Acetylheparin Sulfate
Proteoglycan (HSPG)

Integrin avb 1↑ (87)

Human Parainfluenza Virus (HPIV) Sialic Acid
Virus attachment and entry into

host cells
(88)

Human Microvirus B19 (B19V) Globotetraosylceramide (Gb4Cer) nonstructural (NS)1 protein↑ (89, 90)
A→B: metabolizes A into B.
A↑: increased expression levels of A.
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RLRs, as RNA sensors localized in the cytoplasm, are

widespread in human cells, particularly in epithelial cells in direct

contact with the external environment, such as the gut and lungs.

Activation of RLR can stimulate an antiviral response by initiating

cellular autophagy, effectively inhibiting the process of viral

replication before it occurs (64). This early defense mechanism is

critical for halting viral spread and mitigating disease symptoms.

3.1.3 The role of RSV and TLRs in the lungs
and gut

RSV is a common virus, posing a significant health threat,

particularly to infants (65–67). TLRs, key components of the innate

immune system, recognize PAMPs and trigger immune responses

(68, 69). Recent studies have increasingly focused on the role of RSV

and TLRs in regulating immune responses in both the lungs and

gut. As vital organs in the body, the immune balance of the lungs

and gut is crucial for overall health. RSV infection not only affects

the lungs but may also impact gut immunity, with TLRs serving as

critical mediators in this process.

Once RSV infects the lungs, it can influence gut immune

function via the bloodstream or neuroendocrine pathways. RSV

induces inflammation and recruits immune cells. Viral infection

damages the respiratory epithelium, releasing cytokines and

chemokines that attract immune cells such as neutrophils,

macrophages, and lymphocytes to the site of infection (70, 71).

Furthermore, lung inflammation caused by RSV can lead to

systemic inflammatory response syndrome (72). This

inflammation may compromise the integrity of the gut barrier by

altering the expression of junction proteins in intestinal epithelial

cells (IECs) (73), allowing pathogens and toxins easier entry into the

body, which exacerbates inflammation and immune dysregulation

(74, 75), ultimately affecting lung immune function.

The connection between TLRs in lung and gut immune

regulation involves several key aspects: First, TLRs in both organs
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including TLR3, TLR4, TLR7/8 and TLR2/6 can recognize different

components of RSV and initiate immune responses (76). Second,

TLRs regulate the production of cytokines and chemokines (77, 78),

affecting the recruitment and activation of immune cells, thereby

facilitating immune crosstalk between the lungs and gut. Finally,

TLRs modulate gut barrier function, controlling the entry of

pathogens and toxins into the bloodstream, which in turn

influences lung immune function (79).
3.2 Similarities in antiviral immune
mechanisms between the gut and lungs

In addition to their similarities in viral recognition mechanisms,

the gut and lungs exhibit highly consistent immune strategies in

response to viral invasion. Both rely on the expression of interferon-

stimulated genes (ISGs) and the ubiquitination pathway mediated

by TRIM25 to mount antiviral immune responses, effectively

defending against viral infections. This coordinated immune

action further underscores the critical role of the “gut-lung axis”

in antiviral immunity. Table 1 summarizes in detail the similar

immune mechanisms exhibited by the lungs and intestines in

common respiratory viral infections. Figure 1 lists two similar

immune pathways exhibited by the gut and lungs under common

respiratory virus infections.

3.2.1 ISGs and antiviral immunity
IFNs, as the first line of defense in antiviral immunity, play a key

role in inhibiting viral replication, promoting apoptosis, and

enhancing the activity of immune cells by inducing the

expression of ISGs. During infections in both the gut and lungs,

ISGs such as Janus kinase signal transducer and activator of

transcription (JAK-STAT) are significantly upregulated,

demonstrating the widespread applicability of these genes in
FIGURE 1

Human antiviral immune mechanism shared by the lungs and intestines, taking ISGs and TRIM25 antiviral immune mechanism as examples. As
shown in section (a), during the infection process of SARS-CoV-2 and influenza virus, etc., ISGs such as Janus kinase signal transduction and
transcription activators (JAK-STAT) are significantly upregulated, initiating a broad range of antiviral effects by ISGs. In section (b), RNA from RSV and
MERS-CoV, etc., triggers a conformational change in RIG-I, which TRIM25 binds to and oligomerizes, activating the MAVS to initiate the expression
of a series of antiviral genes. PAMPs, Pathogen-associated molecular patterns; IFN, Interleukin; IFNAR, Interleukin receptor.
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antiviral immunity across these two organs. Such mechanisms have

been implicated in both the SARS-CoV-2 and influenza virus

pathways of human infection (91, 92).

Upon recognition of PAMPs, host cells rapidly produce and

secrete IFNs (93). IFNs, which regulate the host’s defense against

pathogens, are classified into Type I, II, and III, with Type I IFNs

(including IFN-a and IFN-b) being particularly critical in antiviral

responses (94). Type I IFNs bind to cell surface interferon receptors

(IFNAR), activating intracellular Janus kinases (JAKs) and signal

transducers and activators of transcription (STATs).

The activation of the JAK-STAT signaling pathway is a key step

in IFN signal transduction. When IFNs bind to IFNAR, JAKs are

recruited and phosphorylated, subsequently activating STATs.

Phosphorylated STATs form dimers that translocate to the

nucleus, binding to specific DNA sequences to initiate ISG

transcription (95). The expression of ISGs triggers broad antiviral

effects by inhibiting viral entry into cells and blocking viral

replication and assembly (96).

ISGs encode antiviral proteins such as Mx protein, protein

kinase R (PKR), and 2’,5’-oligoadenylate synthetase (OAS) (97–99),

which effectively suppress viral replication and transmission.

Additionally, ISGs participate in regulating the activation,

proliferation, and differentiation of immune cells, and they

promote inflammatory responses, thereby limiting pathogen

infection and spread on multiple fronts (100, 101). Therefore, ISG

expression is a core component of the host’s defense mechanism

against pathogens, playing a vital role in maintaining the balance

between host and pathogen.

3.2.2 TRIM25-mediated ubiquitination pathway
and RIG-I antiviral signaling

TRIM25, as an E3 ubiquitin ligase, is able to activate RIG-I via

K63-strand ubiquitination, triggering the synthesis and secretion of

type I interferon and thus initiating an antiviral immune response

(102, 103). Activation of this pathway significantly enhances host

antiviral immunity, which is one of the important mechanisms for

resisting the invasion of respiratory viruses such as RSV and Middle

East respiratory syndrome coronavirus (MERS-CoV) (102, 104).

In antiviral innate immunity, RIG-I acts as a key RNA

deconjugating enzyme and plays an important role in recognizing

viral RNA (105). When viruses invade host cells and release their

RNAs, RIG-I specifically recognizes these “non-self” RNAs,

triggering a series of complex signaling cascades. Recognition of

viral RNAs by RIG-I leads to a conformational change, exposing the

hidden CARD domains(CARDs) (106, 107), which provides a

binding site for TRIM25 recruitment. After TRIM25 recognizes

and binds to the CARDs of RIG-I (108), it acts as an E3 ubiquitin

ligase, which catalyzes the attachment of K63-linked ubiquitin

chains to specific lysine residues on RIG-I. This form of

ubiquitination does not target the protein for degradation but

instead modulates signal transduction (109), altering the

biochemica l propert ies o f RIG-I and promot ing i t s

oligomerization. This oligomerization is crucial for the full

activation of RIG-I, enabling it to interact with the downstream

mitochondrial antiviral signaling protein (MAVS) (110).
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MAVS serves as the central node in antiviral signal

transduction, activating several kinases, including TBK1 and

IKKe (111). These kinases, in turn, phosphorylate transcription

factors such as IRF3 (interferon regulatory factor 3) and NF-kB,
driving them into their active states (112). Once activated, these

transcription factors translocate into the nucleus and initiate the

expression of a suite of antiviral genes, including type I interferons

(IFN-a and IFN-b) and pro-inflammatory cytokines (113).

IFNs propagate between infected and neighboring cells in an

autocrine and paracrine manner, amplifying antiviral signals

through the JAK-STAT signaling pathway, inhibiting viral

replication, and inducing the expression of a range of antiviral

proteins in host cells. Thus, the TRIM25-mediated ubiquitination

pathway and the RIG-I antiviral pathway are a complex and

sophisticated regulatory network that ensures that the host is able

to rapidly and efficiently initiate an immune response against

viral infection.
4 Immunological linkage mechanisms
between the gut and the lungs

In recent years, a growing body of research has highlighted the

close relationship between the gut and the lungs in terms of

immune mechanisms and functions. Pulmonary diseases are often

accompanied by intestinal damage, and conversely, intestinal

diseases can also trigger pathological changes in the lungs. For

example, influenza virus infection can cause gastrointestinal

symptoms such as vomiting and diarrhea (114), HMPV can

modulate intestinal adaptive immunity despite the absence of

viral expression in the gut (115). Moreover, patients with

inflammatory bowel disease (IBD) frequently develop respiratory

diseases such as asthma and chronic obstructive pulmonary disease

(COPD) (116). This bidirectional relationship underscores the

significance of the “gut-lung axis.” This section further explores

these mechanisms in the context of the gut-lung axis and their

impact on respiratory viral infections.
4.1 Migration of intestinal microbiota

It is well known that the human body harbors a vast array of

microorganisms, including bacteria, fungi, viruses, and archaea.

Among these, the gut microbiota is the most densely populated,

primarily consisting of species such as Bifidobacterium,

Lactobacillus, and Escherichia coli (117). As a crucial component

of the intestinal barrier, the gut microbiota plays an essential role in

digesting food, synthesizing vitamins, regulating the immune

system, and defending against pathogens (118).

Although the microbiota of the gut and lungs are distributed in

different anatomical locations, they are closely linked through the

“gut-lung axis.” The translocation of microbiota is one of the key

mechanisms underlying this connection. In 2023, a study by

Jayanth Kumar Narayana et al . found that in stable

bronchiectasis, the microbiota community exhibited significant
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gut-lung interactions. The translocation of bacteria between the gut

and lungs may be associated with increased overall severity of

bronchiectasis, suggesting that microbial migration between these

organs is related to the disease (119). Studies have shown that some

microbiota can migrate to other organs and tissues, such as the

brain (120), muscles (121), and lungs. This migration can influence

local tissues and may even trigger systemic inflammatory responses,

further exacerbating disease progression. Acute respiratory distress

syndrome (ARDS) is an acute and diffuse pulmonary inflammation

and a common cause of respiratory failure, often secondary to

various respiratory viral infections, such as influenza A virus (IAV).

In 2016, Robert P. Dickson and colleagues conducted sequencing

of bacterial communities in bronchoalveolar lavage (BAL)

specimens from ARDS patients and found that certain

Bacteroides operational taxonomic units (OTUs) absent in

healthy lungs were highly consistent with those found in four

anaerobic genera from the gut, and these were associated with the

severity of acute systemic inflammation (122). Similarly, in 2023,

Dusanka Popovic et al. used the fungus A. fumigatus to induce

pulmonary inflammation and discovered that the disruption of

pulmonary homeostasis facilitated the migration of new bacterial

species to the lungs, with 41.8% of the bacteria also present in fecal

samples, indicating a degree of gut microbiota translocation to the

lungs (123). These findings support the existence of the “gut-lung

axis” and suggest a bidirectional relationship between lung

inflammation and gut microbiota dysbiosis.
4.2 Regulatory role of intestinal microbiota

More and more studies have proved that microbiota can not

only migrate directly to target organ to play an immune role, but

also regulate the immune function of the body through a variety of

ways, such as systemic transport of gut microbiota-derived

metabolites, immune cell migration, and cytokine cycling

(Figure 2). 2022, Xiaowu Baiet al. found that cigarette smoke can

directly lead to the disruption of the intestinal microbiota of the

mouse, which can lead to the impairment of the intestinal barrier

and enhance the expression of oncogenic signals and pro-

inflammatory genes (124). This suggests that the disruption of

intestinal microbiota may be the starting point for the regulation of

immune function by intestinal microbiota. Similarly, IAV, COVID-

19 and other respiratory viruses also showed disturbances in the

intestinal microbiota (114, 125), which provides a target for us to

further investigate the role of intestinal microbiota regulation in the

context of respiratory virus infection.

4.2.1 Systemic transport of gut microbiota-
derived metabolites

Metabolites produced by the gut microbiota, such as SCFAs and

secondary bile acids, can influence distant organs, including the

pulmonary immune environment, via the bloodstream, thereby

enhancing the efficiency of antiviral immune responses. This

systemic transport of gut microbiota-derived metabolites not only

alters the host’s energy metabolism but also regulates immune
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responses, bolstering the host’s resistance to respiratory viral

infections. The alterations may be associated with changes in the

host’s defense mechanisms driven by microbial metabolites. For

instance, a study by Michael C. Abt et al. in 2012 demonstrated that

the responsiveness of macrophages to type I and II IFNs was

impaired in ABX-treated mice, which consequently reduced their

ability to control viral replication. This finding indicates that

commensal bacteria influence the activation threshold of widely

utilized innate antiviral pathways, such as the IFN signaling

pathway (126). Similarly, a study published in 2023 by Junling

Niu et al. revealed that the acetate produced by Bifidobacterium

pseudolongum NjM1 promotes the interaction between NLRP3 and

the MAVS by binding to the GPR43 receptor on the host cell

surface. This interaction subsequently activates the TBK1/IRF3

pathway, driving the production of type I IFNs (127). Table 2

summarizes in detail the immune impact exerted by several

common microbial metabolites in the fight against respiratory

viral infections.

SCFAs, the primary metabolites generated by the fermentation

of dietary fiber by gut microbiota, play a pivotal role in maintaining

epithelial barriers and programming immune cells under

homeostatic conditions. Butyrate, in particular, inhibits histone

deacetylases (HDACs) through various pathways, thereby

enhancing the expression of anti-inflammatory genes (128).

Butyrate indirectly promotes the differentiation of effector T cells

(Teff) by increasing the acetylation levels of histone H3K9 in

chromatin. Additionally, by blocking the deacetylation of the

promoter regions of exhaustion-related genes (such as PD-1 and

TIM-3), butyrate inhibits the exhausted phenotype of CD8+ T cells

in chronic immune responses. At the metabolic level, butyrate can

reshape the energy metabolism of CD8+ T cells, supporting cell

survival in a low-glucose microenvironment and restricting the

excessive activation of Teff and inflammatory damage (129). Wei

Wang and colleagues found that butyrate induces transcriptional

changes via HDAC inhibition, ultimately reducing the expression of

cFLIP and IL-10, thereby activating the NLRP3 inflammasome to

trigger pro-inflammatory processes (130). Additionally, butyrate

regulates the number and function of effector cells such as

regulatory T cell (Treg), T helper cells 1 (Th1), and T helper cells

17 (Th17) (131), helping to maintain immune balance, reduce

inflammation, and preserve gut homeostasis. Propionate primarily

modulates immune responses via the GPR43 receptor, suppressing

IL-12 and TNF-a secretion in dendritic cells while promoting the

expansion of gut-homing Tregs, thereby reinforcing a localized

anti-inflammatory microenvironment (132). Additionally,

propionate induces macrophage polarization toward an M2 anti-

inflammatory phenotype through HDAC inhibition (133).Acetate,

acting as a ligand for GPR43/GPR41, enhances IgA secretion by

activating systemic transport of gut microbiota-derived metabolites

(e.g., upregulated glycolysis) in B cells, thereby strengthening

mucosallayer pathogen clearance (134). It also mitigates

inflammatory damage to the epithelial barrier by suppressing

neutrophil chemotactic factors (CXCL1/CXCL2) (135). SCFAs

bidirectionally regulate the efficiency of memory formation and

the persistence of immune responses in antigen-activated CD8+ T
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1534241
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhu et al. 10.3389/fimmu.2025.1534241
cells through G protein-coupled receptors (GPCRs) and

monocarboxylate transporters (MCTs/SMCTs). In the GPCR

pathway, SCFAs bind to GPR41/GPR43 to activate AMPK and

inhibit mTORC1, thereby promoting the shift of CD8+ T cells

toward a memory precursor phenotype driven by oxidative

phosphorylation (OXPHOS) and fatty acid oxidation (FAO),

which is accompanied by enhanced mitochondrial biogenesis and

fatty acid uptake. Meanwhile, the influx of SCFAs mediated by

MCTs/SMCTs reinforces metabolic adaptation by inhibiting

HDAC activity and synergistically amplifying OXPHOS metabolic

advantages through GPCR signaling (136). For instance, SCFAs in

renal cells reduce tumor necrosis factor-a (TNF-a)-induced MCP-

1 expression through a GPR41/43-dependent pathway, inhibiting

the phosphorylation of p38 and JNK, thereby indirectly suppressing
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the NF-kB pathway and mitigating inflammation (137). Although

the precise mechanisms of this inhibition vary across different cells

and tissues, they all involve regulating immune responses, reducing

inflammation, and improving disease states. Therefore, SCFAs

possess potent anti-inflammatory properties.

Secondary bile acids, which are metabolites of bile acids by the

gut microbiota, have been shown to play an essential role in

regulating immune responses in both the lungs and the gut.

Farnesoid X receptor (FXR) and G-protein-coupled bile acid

receptor 5 (TGR5) are two important bile acid receptors that are

key to regulating gut inflammation and suppressing the pro-

inflammatory responses of macrophages. FXR primarily

influences the gut environment by regulating bile acid

metabolism, with its high expression in the gut and liver making
FIGURE 2

Specific manifestations of lung and intestinal immune correlations. Lung and intestinal immune relevance is manifested in four main areas: Migration
of gut bacteria, immune cell migration,cytokine recycling and systemic transport of gut microbiota-derived metabolites. HDAC, histone
deacetylases; GPCRS, G protein-coupled receptors;SCFAS, short-chain fatty acids; TGRS, traditional gender roles; FXR, Farnesoid X receptor ;SABs,
Secondary bile acids.
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it crucial for maintaining intestinal homeostasis. Activation of FXR

can suppress inflammation, protect the intestinal barrier, fight

bacterial infections, and reduce oxidative stress (138). For

example, FXR activation stabilizes the binding of the corepressor

NCoR at the IL-1b promoter, thereby inhibiting NF-kB-dependent
gene expression. Additionally, it increases the expression of I-BABP

in the intestine while reducing mRNA levels of interleukin-1b(IL-
1b), interleukin-2 (IL-2), interleukin-6 (IL-6), TNF-a, and IFN-g,
thereby alleviating disease severity (139). TGR5, a cell surface

receptor, responds to stimulation by secondary bile acids and

plays a role by directly suppressing the pro-inflammatory

responses of macrophages. Specifically, TGR5 deficiency

exacerbates inflammation, whereas TGR5 activation inhibits

NLRP3 inflammatory vesicle activation and M1-type macrophage

polarization (140). It has been shown that activation of the bile acid-

TGR5 axis prevents influenza virus infection or inhibits the

inflammatory response following influenza virus infection (141).

Similar to the gut, microbial metabolites in the lung also exert

significant impacts on the host immune system. A study by Jingli Li

et al. in 2020 demonstrated that exposure to PM2.5 significantly

altered the richness, evenness, and composition of the lung

microbiota, and disrupted the levels of pulmonary metabolites

such as valine, acetate, and fumarate. These changes not only

affect normal energy metabolism in the host but also predispose

to inflammation in distant organs (142).

4.2.2 Immune cell migration
The gut contains 70-80% of the body’s immune cells, which play

critical roles in maintaining gut homeostasis, defending against

pathogens, and preserving mucosal barrier function. For example,

group 3 innate lymphoid cells (ILC3s) secrete cytokines such as IL-

22 to enhance intestinal barrier integrity and exert anti-

inflammatory effects (151). Macrophages, on the other hand,
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contribute to post-inflammatory recovery through key signaling

pathways such as NF-kB, JAK/STAT, and PI3K/AKT, as well as

specific microRNAs like miR-155 and miR-29 (152).

In the gut, there is a complex regulatory and supportive

relationship between the immune system and the gut microbiota.

Under the stimulation of gut microbes, immune cells can become

activated and exert immunosurveillance functions throughout the

body. A study by Seohyun Byun et al. in 2024 demonstrated that

colonic Tregs, induced by microbiota, exhibit strong suppressive

abilities and higher IL-10 levels, further supporting the wide-ranging

regulatory role of gut microbiota in immune function (153). Recent

studies have revealed that gut microbiota metabolites can migrate to

the lungs, interact with GPCRs on the surface of alveolar

macrophages (AMs), and activate the AMPK-mTOR signaling

axis, thereby enhancing the metabolic adaptability and antiviral

response capacity of AMs. Additionally, microbial signals can

strengthen the rapid recognition and phagocytic clearance of

influenza virus by AMs through the TLR-MyD88 pathway. These

findings indicate that the gut microbiota can enable AMs to control

viral replication and suppress excessive inflammation in the early

stages of infection (154). Moreover, SCFAs can inhibit the

differentiation of Ly6C+ monocytes into an inflammatory

phenotype and promote their differentiation into patrolling

monocytes with tissue repair functions, thereby maintaining the

local replenishment pool of AMs (155). As early as 1979, John

Bienenstock hypothesized based on experimental results that the

mucosal immune system might function as a system-wide “organ,”

with immune cells in various mucosal tissues interacting with one

another. Since the gut and lungs both belong to the CMIS, gut

microbiota can influence pulmonary immunity through the “gut-

lung axis” by promoting immune cell migration (156). Immune cell

migration mainly occurs via two pathways: the lymphatic system

and the bloodstream. First, immune cells activated by gut microbiota
TABLE 2 Immune effects of different microbial metabolites in the fight against respiratory viral infections.

Metabolite Primary Sources Impact References

Butyrate
Dietary fiber fermentation by

anaerobic bacteria
Enhances barrier via GPR109A/AMPK; induces Treg via HDAC inhibition. (129)

Propionate
Dietary fiber fermentation by

anaerobic bacteria
Suppresses DC inflammation; promotes M2 macrophage polarization. (132, 133)

Acetate
Dietary fiber fermentation by

anaerobic bacteria
Boosts IgA via B-cell glycolysis; inhibits neutrophil chemotaxis. (134, 135)

Bile Acids
Metabolism of bile acids by

gut microbes
Modulation of intestinal inflammation and reduction of macrophage pro-

inflammatory responses via FXR and TGR5 receptors
(138, 143)

Indoles Gut bacteria metabolize tryptophan
Reduction of pro-inflammatory cytokines through aromatic hydrocarbon receptor

(AhR) regulation of intestinal barrier integrity and immunomodulation
(144–146)

Lactic Acid Lactobacillus fermentation produces
Regulates the intestinal internal environment, reduces the inflammatory response

and promotes the expression of anti-inflammatory cytokines
(147)

LPS Gram-negative bacteria
Activation of TLR4 receptor triggers a strong pro-inflammatory response leading

to immunopathology
(148)

TMAO Enterobacteriaceae lead to inflammation (149)

Phenylacetyl
Glutamine (PAGln)

Christensenellaceae and
other microbiota

Significantly reduces inflammatory mediators (150)
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travel through the lymphatic system into the thoracic duct and then

enter the bloodstream, spreading throughout the body, including the

lungs (157). Second, gut microbiota can stimulate intestinal immune

cells to release specific chemokines (such as CCL20) (158), which

guide immune cells to migrate to the lungs, aiding in strengthening

pulmonary immune defense. In the lungs, these immune cells

enhance local immune responses, helping to fend off respiratory

viral infections.

Similar to the gut, immune cells in the lung also exhibit

migration to the intestine. For instance, a study by Ruane D et al.

found that pulmonary CD103+and CD24+CD11b+ dendritic cells

(DCs) induce IgA class-switch recombination (CSR) in B cells via T

cell-dependent or -independent pathways. This process promotes

the migration of B cells to the intestine, where they exert protective

effects (159).

4.2.3 Cytokine circulation
In response to infection, immune cells release cytokines, which

are crucial signaling molecules. For example, upon activation by

enteric pathogens such as Staphylococcus aureus and Toxoplasma

gondii, plasmacytoid dendritic cells (pDCs) can produce a variety of

cytokines, including IFNa and IFNb (160). The PAMPs expressed

by pathogens are recognized by PRRs expressed by IECs, which

trigger immune responses by inducing various pro-inflammatory

cytokines, chemokines, and type I interferons. This process further

activates B and T lymphocytes to initiate humoral immunity (161).

Meanwhile, the gut microbiota can influence the host’s cytokine

profile through various mechanisms, thereby regulating immune

responses in distant tissues (162). In particular, cytokine circulation

in the gut-lung axis is considered a key factor in maintaining

immune coordination between the two organs.

Gut microbiota can regulate immune function by influencing

cytokine production through several pathways. For example,

microbial metabolites, such as secondary bile acids, can guide the

differentiation of monocytes, reducing the secretion of IL-12 and

TNF-a (163). Additionally, microbe-associated molecular patterns

(MAMPs), which are conserved molecular structures in bacteria,

fungi, and viruses, can interact with PRRs, maintaining gut

homeostasis. For instance, TLR4 recognizes lipopolysaccharide

(LPS) from Gram-negative bacteria, triggering an inflammatory

response and inducing the production of cytokines such as TNF-a,
IL-1b, and IL-6 (164).

The effect of cytokines is not confined to the local area; they can

spread throughout the body via the bloodstream. For example, in

pulmonary diseases such as COPD and pulmonary fibrosis,

circulating cytokines induce systemic inflammatory responses and

immune regulation abnormalities (165, 166). Conversely, cytokine

circulation can help the body defend against invading pathogens. A

study by Chen Jiayi et al. in 2019 proposed that during influenza

virus infection, gut microbiota influence IL-22 production, which

enhances the integrity of the pulmonary mucosal barrier and

reduces viral invasion (167). In cases of lung infection, gut

microbiota can modulate the host’s cytokine profile, thereby

enhancing antiviral defenses in the lungs.
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Disruption of the gut microbiota can lead to increased levels of

pro-inflammatory cytokines such as IL-6 and TNF-a, while the

production of anti-inflammatory cytokines like IL-10 may decrease.

This imbalance, transmitted through the bloodstream, can affect the

lungs.During influenza virus infection, dysbiosis of the intestinal

microbiota leads to elevated levels of pro-inflammatory cytokines,

which exacerbate the inflammatory response in the lungs and affect

the host’s immune response to influenza virus (168). Therefore,

maintaining a healthy balance of gut microbiota is crucial for

preventing and managing respiratory viral infections. Similarly, a

study by Liu et al. demonstrated that pulmonary-derived IL-22 can

promote the expression of antimicrobial peptides (such as RegIIIg),
thereby altering the composition of the gut microbiota (169).

Following RSV infection, an imbalance of Th17/Treg cells occurs

in the lungs of mice, leading to excessive release of IL-22 in

pulmonary tissues. This IL-22 enters the systemic circulation,

stimulating the expression of RegIIIg in the gut. This process

impairs the development of Th17/Treg cells in the gut, ultimately

resulting in intestinal immune damage and disruption of the gut

microbiota. These findings highlight that the gut-lung axis is a

bidirectional pathway (169).
5 Regulatory role of the gut-lung axis
in different respiratory viral infections

In a healthy state, the gut-lung axis maintains immune balance

between the gut and lungs, ensuring normal function in both

organs. However, in pathological conditions such as gut

microbiota dysbiosis, viral infections, or heightened inflammatory

responses, the balance of the gut-lung axis can be disrupted. This

imbalance can lead to excessive or insufficient immune responses in

the lungs, increasing the risk of respiratory viral infections or

exacerbating their severity, potentially even affecting treatment

outcomes (170).

Research has shown that during the early stages of respiratory

viral infections, the gut microbiota and its metabolites can rapidly

activate the host’s innate immune system, providing initial antiviral

defense, regulating pulmonary inflammation, and influencing the

early course of infection (171). Additionally, if the gut barrier is

compromised early in infection, the translocation of endotoxins and

microbes may exacerbate pulmonary inflammation, worsening the

prognosis (172). In the later stages of infection, the gut microbiota

plays a continuous role in regulating the host’s chronic

inflammatory response. Dysbiosis in the gut-lung axis can lead to

long-term imbalances, resulting in chronic lung diseases or

aggravating pre-existing conditions. Late-stage infections are often

accompanied by multi-organ damage and systemic inflammation,

where microbial imbalance in the gut can further intensify this

systemic inflammatory response. This exacerbation, through the

transmission of inflammatory mediators and metabolites, can

impact other organs, including the lungs (173, 174). The immune

regulatory functions of the gut-lung axis vary across different

respiratory viral infections.
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5.1 Regulatory role of the gut-lung axis in
influenza virus infection

The World Health Organization estimates that approximately 1

billion people worldwide are infected with the influenza virus each

year, resulting in 3 to 5 million severe cases and 290,000 to 650,000

deaths. Among these, the IAV is highly transmissible, spreads

rapidly, and exhibits a high mutation rate, having caused multiple

global pandemics throughout history.

Research by Wang et al. demonstrated that H1N1 influenza

virus (PR8 strain) infection induces gut immune damage by altering

the composition of the intestinal microbiota. The CCL25-CCR9 axis

mediates the recruitment of lung-derived effector CD4+ T cells into

the small intestine and contributes to microbiota composition

changes during influenza infection. These lung-derived CD4+ T

cells, through the secretion of IFN-g, influence both the microbiota

and intestinal injury. Moreover, in conjunction with IL-15

produced by the microbiota, they promote the polarization of

resident Th17 cells. Notably, a deficiency in IL-17A mitigates the

immune damage induced by influenza in the small intestine (175).

During viral infection, the gut microbiota can influence

pulmonary inflammation by modulating the host’s immune

response. Certain probiotics, such as Lactobacillus, have been

shown to enhance the host’s antiviral immunity and reduce

influenza virus-induced lung inflammation. For instance,

Lactobacillus rhamnosus CRL1505 has been found to mitigate

lung inflammation caused by the influenza virus by modulating

TLR3-mediated inflammatory responses in the lungs. This

probiotic also lowers lung damage and mortality by inhibiting

virus-induced inflammation-coagulation interactions (176).

Additionally, Lactobacillus plantarum DK119, when administered

intranasally or orally, significantly reduced body weight loss and

viral load in H1N1 influenza A virus-infected mice (177), providing

scientific evidence for the potential of probiotics as natural

antiviral agents.

Influenza virus infection often triggers excessive activation of the

host’s immune system, leading to the release of large quantities of

pro-inflammatory cytokines, such as through sustained activation of

the NF-kB signaling pathway. This excessive inflammatory response

is a key feature of severe influenza pneumonia (178). Ichinohe et al.

found that the symbiotic microbiota regulates respiratory mucosal

immunity through appropriate activation of the inflammasome.

Local or distal injection of TLR ligands can rescue immune

deficiencies in antibiotic-treated mice. The products of the

symbiotic microbiota may trigger various PRRs, stimulating the

release of factors from local or systemic leukocytes, supporting the

steady-state production of pro–IL-1b, pro–IL-18, and NLR proteins,

thereby priming signal 1 for inflammasome-dependent cytokine

activation. After H1N1 influenza virus (PR8 strain) infection,

inflammasome activation leads to the migration of DCs from the

lungs to the draining lymph nodes and initiates T cell activation

(179). Moreover, metabolic interactions between the gut and lungs

may influence the progression of influenza virus infection by

regulating pathways like glycolysis (180).
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5.2 Regulatory role of the gut-lung axis in
RSV infection

RSV is a single-stranded, negative-sense RNA virus and a

significant pathogen of lower respiratory tract infections,

especially in infants and immunocompromised individuals. Severe

cases can lead to bronchiolitis or pneumonia. Studies have shown

that the gut microbiota plays a critical role in modulating immune

responses to RSV infection, and dysbiosis of the gut microbiome is

closely related to the pathogenesis of RSV infection.

Studies have demonstrated that RSV infection not only

significantly alters the diversity and abundance of the gut

microbiota but also induces intestinal immune damage (169). In

mouse models of RSV infection, research has found a decrease in

beneficial bacteria and an increase in opportunistic pathogens

(181–183). The populations of key bacterial groups in the gut

microbiota, such as Lactobacillus and Bifidobacterium, undergo

significant changes, which in turn affect pulmonary immune

responses and inflammation levels. RSV infection increases the

expression of specific immune-regulatory cells and cytokines in the

gut, which may help control viral replication and the inflammatory

response in the lungs. For example, RSV infection leads to an initial

increase, followed by a decline, in the mRNA levels of ROR-gt and
Foxp3 in both the lungs and gut (169). These genes are closely related

to the differentiation and function of Tregs and Th17 cells (184, 185),

which play crucial roles in maintaining immune balance and

regulating lung inflammatory responses (169, 186). During

infection, the expression of pro-inflammatory cytokines and

chemokines, such as TNF-a, IL-6, and IFN-g, increases in the gut,

which may help inhibit viral replication and alleviate lung

inflammation (187). Chemokine ligand 4 (CXCL4) inhibits RSV

replication by binding to heparan sulfate, the primary RSV

receptor, thereby blocking viral attachment (188). Additionally,

RSV infection activates the host IFN-I signaling pathway, inducing

the expression of ISGs such as MX1 and OAS1, which suppress viral

replication (189). Moreover, metabolites play a significant role in

immune regulation within the gut-lung axis. Acetate has been

demonstrated to protect mice from RSV infection in an IFNAR-

dependent manner. Through IFNAR mediation, the activation of

GPCRs such as GPR43 in alveolar epithelial cells reduces virus-

induced cytotoxicity and enhances antiviral effects via the IFN-b
response (190). Thus, by modulating the gut microbiota or targeting

specific immune pathways within the gut-lung axis, it may be possible

to improve airway inflammation and lung damage caused by RSV

infection, thereby influencing the prognosis (191–193).
5.3 Regulatory role of the gut-lung axis in
SARS-CoV-2 infection

SARS-CoV-2, a positive-sense single-stranded RNA virus, is a

novel respiratory pathogen that has caused the global COVID-19

pandemic, leading to a significant public health burden worldwide.

Recent studies have revealed the critical role of the gut-lung axis in
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regulating immune responses during SARS-CoV-2 infection,

primarily through its systemic immune modulation function.

Studies indicate that the gut microbiota can influence the

expression of ACE-2, the primary receptor that mediates SARS-

CoV-2 entry into host cells. ACE-2 plays a pivotal role in regulating

inflammation and viral entry (194), and its expression is closely

linked to the composition of the gut microbiota (195, 196). For

instance, Bacteroides spp. can downregulate ACE-2 expression in

the colonic epithelium, reducing viral binding efficiency (195).

Dysbiosis of the gut microbiota has been observed in COVID-19

patients, potentially increasing susceptibility to the virus by

upregulating ACE-2 expression (195–197).

The common reduction in gut microbiota diversity observed in

COVID-19 patients also includes a decrease in anti-inflammatory

bacterial genera, such as Faecalibacterium prausnitzii, and an

enrichment of opportunistic pathogens, such as Clostridium

ramosum and Enterococcus (194, 195). This dysbiosis can

exacerbate lung injury through various mechanisms, including a

decrease in SCFAs production, which impairs M2 polarization of

AMs and inhibits the secretion of anti-inflammatory cytokine IL-10

(195, 198); increased intestinal permeability, allowing PAMPs to

enter the circulation and trigger a systemic “cytokine storm” (194);

and dysregulation of hematopoietic function in the bone marrow,

promoting an increase in Ly6C+ inflammatory monocytes and

exacerbating lung tissue damage (195).

Moreover, further evidence from the newly developed humanized

ACE-2 knock-in (hACE2-KI) mouse model suggests that changes in

the gut microbiota during SARS-CoV-2 infection through the lung-
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gut axis may mitigate excessive inflammatory responses. An increase

in certain bacterial genera, such as Lachnospiraceae_NK4A136_group

and unclassified_f_Lachnospiraceae, may help alleviate the overactive

inflammation induced by SARS-CoV-2 infection. Conversely, an

increase in Staphylococcus species in fecal samples may indicate

bacterial migration from the gut to the lungs, potentially triggering

secondary infections in the lung-gut axis (199).
6 Potential applications of the gut-
lung axis in antiviral therapy

Numerous studies have shown that the gut-pulmonary axis can

be a potential target for anti-respiratory viral infection therapy, and

there are an increasing number of antiviral therapeutic regimens

with the primary goal of modulating the immune function of the

lungs and intestines, such as physician’s bacilli, dietary

modification, and antiviral drug interventions. Figure 3

summarizes several clinically used anti-respiratory viral infection

therapeutic regimens targeting the gut-lung axis and their main

roles, which are described in detail below.
6.1 The use of probiotics and prebiotics

Probiotics and prebiotics, as effective tools for modulating the gut

microbiota, have been extensively studied. By increasing the number of

beneficial bacteria or providing the nutrients required for their growth,
FIGURE 3

Anti-respiratory viral infection therapies targeting the gut-pulmonary axis. Probiotics can regulate intestinal immune cells, modulate cytokines,
improve intestinal microbiota balance, and regulate intestinal microbiota metabolites; fecal transplants can reprogram lung macrophages on one
hand, and restore intestinal microbiota balance on the other; pharmacological interventions (including TCM and western medicine) can regulate
antiviral immune functions in the lungs and intestines; and increased intake of dietary fibers can promote the production of SCFAs, enhance
intestinal antiviral immunity.
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they can regulate the intestinal immune environment, thereby

influencing the antiviral immune response in the lungs.

Bifidobacterium, Lactobacillus rhamnosus, and Lactobacillus

plantarum have shown significant effects in modulating excessive

inflammatory responses. In vitro studies have demonstrated that

probiotics can reduce the release of pro-inflammatory cytokines,

prevent excessive activation of the NLRP3 inflammasome, mitigate

inflammation, and reduce the risk of lung fibrosis caused by

COVID-19 (200). Bifidobacterium can also enhance neutrophil

phagocytic activity and (201), together with Lactobacillus

rhamnosus, modulate T cell responses, improve gut microbiota

balance, promote the production of antibodies such as IgA and IgG,

and boost immunity against influenza viruses (202). Lactobacillus

not only exerts its effects through antimicrobial mechanisms but

also by modulating immune responses along the gut-lung axis,

restoring the microbial balance between the gut and lungs, thereby

alleviating symptoms such as ARDS induced by SARS-CoV-2 (200).

Studies have also found that the intake of probiotics significantly

prevents and mitigates respiratory viral infections. For example, the

consumption of appropriate amounts of Lactobacillus plantarum and

Lactobacillus paracasei in adults has been shown to shorten the

duration of the common cold, relieve symptoms, and enhance the

immune response to influenza vaccination (203). Prebiotics, such as

inulin and fructo-oligosaccharides, improve lung health indirectly by

promoting the production of SCFAs, strengthening the gut barrier

function, and reducing inflammatory responses.
6.2 Dietary regulation and
microbiota transplantation

Dietary regulation, through the adjustment of fiber, fat,

polyphenols, and other components in the diet, directly influences

the composition and function of the gut microbiota, thereby enhancing

antiviral immune responses. For example, increasing dietary fiber

intake not only promotes the production of SCFAs but also

strengthens antiviral immunity. In traditional Chinese medicine

(TCM), the concept of “the gut and lungs sharing a common origin”

suggests a close connection between intestinal health and respiratory

diseases, implying that gut health has a potential link to respiratory

conditions, This aligns with the modern medical concept of the “gut-

lung axis” (204). Based on this foundation, certain Chinese medicines,

such as Qinbai Qingfei Concentrated Pill and Xuanfei Baidu Formula,

have been used to alleviate pulmonary inflammation and modulate

immune responses, exhibiting bidirectional regulatory effects on the

gut-lung axis. These treatments not only reduce lung inflammation but

also restore systemic immune balance by modulating the gut

microbiota (205).

Fecal microbiota transplantation (FMT), an emerging microbial

transplantation technology, has also shown preliminary potential in

treating respiratory viral infections through regulation of the gut-

lung axis. FMT can restore gut microbiota balance, reduce lung

inflammation, and enhance antiviral immunity. Research has

demonstrated that FMT can reprogram lung macrophages,

improving their efficacy in combating respiratory viruses (154).
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6.3 Drug intervention and regulation of gut
microbial metabolites

Certain antiviral drugs not only act directly on viruses but also

indirectly modulate the host immune response by affecting the gut

microbiota. Studies have shown that influenza virus infection can

lead to gut microbiota imbalance, while rifaximin, a non-absorbable

antibiotic, significantly increases the abundance of Lactobacillus

and Bifidobacterium, restoring gut microbial balance. It also reduces

tissue damage by strengthening lung and intestinal barrier

function (206).

Moreover, promoting the production of SCFAs or related

metabolites, such as indole-3-propionic acid (IPA), has shown

great potential in antiviral therapy. Research indicates that

specific probiotic mixtures can reverse gut dysbiosis caused by

RSV infection and significantly increase SCFA levels. The

elevation of SCFAs enhances the antiviral capabilities of immune

cells in the lungs via the gut-lung axis, thereby boosting antiviral

immune responses (191). In another study, mice infected with IAV

treated with probiotics exhibited a marked increase in butyrate

levels, a reduction in viral load, and an enhanced immune response

(207). This suggests that promoting SCFA production could be a

key therapeutic strategy in mitigating viral infections through the

gut-lung axis. Additionally, supplementation with metabolites such

as IPA has been shown to reduce influenza viral load and alleviate

both pulmonary and systemic inflammation. Therefore, therapies

aimed at boosting the production of SCFAs and IPA may represent

promising approaches for preventing and treating respiratory viral

infections in the future (208).
7 Conclusion and perspectives

Despite increasing research highlighting the critical role of the

gut-lung axis in various respiratory viral infections, there remain

several limitations. First, the precise molecular mechanisms and their

interactions are not yet fully understood, particularly concerning the

role of SCFAs in pulmonary immune regulation, where variability

persists (209). Second, in clinical diagnosis and treatment, it remains

challenging to accurately determine whether a disease is linked to

dysregulation of the gut-lung axis, and the effectiveness and

applicability of related interventions require further clinical

validation. Additionally, constructing experimental models that

accurately reflect human conditions poses technical challenges, and

existing models may diverge from real-world scenarios, potentially

affecting the accuracy of research findings (210, 211).

Looking ahead, future research should focus on elucidating how

the gut microbiota modulates pulmonary immune responses

through specific molecular pathways. The integration of multi-

omics technologies, such as single-cell sequencing, metabolomics,

and proteomics, will help uncover the key molecules and signaling

pathways within the gut-lung axis. Identifying functional microbial

strains related to pulmonary immune regulation, along with in-

depth studies using gene-editing technologies, will advance

personalized therapeutic strategies. As research progresses,
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personalized antiviral therapies based on the gut-lung axis are likely to

achieve breakthroughs. Moreover, the roles of other inter-organ axes,

such as the gut-brain, gut-liver, and lung-brain axes, in respiratory viral

infections also warrant further exploration. By integrating these complex

networks, future research will provide amore comprehensive theoretical

foundation for the prevention and treatment of viral infections.
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