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Introduction: Despite advances in breast cancer diagnosis and treatment of the

primary tumor, metastatic breast cancer tumors remain largely incurable, and

their growth is responsible for the majority of breast cancer-related deaths.

There is therefore a critical need to identify ways to reduce metastatic tumor

burden and increase breast cancer patient survival. While surgery and

pharmacological treatments are the cornerstones of breast cancer

intervention, epidemiological data suggests that physical activity can lower the

risk of breast cancer development, improve adjuvant treatment tolerance, reduce

the risk of disease recurrence and lower breast cancer-related death.

Methods: In this preclinical study, we set out to examine the impact of exercise

on metastatic development in triple negative breast cancer (TNBC), using

different 4T1 metastasis models, voluntary wheel running and surgical

interventions. Tumors were analyzed for hypoxia and immune cell infiltration.

Results: Voluntary wheel running was observed to significantly increase

metastasis-free survival, doubling the median survival time. However, these

improvements were only observed when a boost in physical exercise occurred

following surgery. To investigate this, we performed mock surgeries and

confirmed surgical stress was needed to enable the positive effects of the

boost in exercise on reducing metastatic tumor burden in mice with either

spontaneous metastasis or experimentally-induced metastasis. These changes

occurred in the absence of alterations in tumor growth, hypoxia and immune

cell infiltration.

Discussion: Taken together, our results suggest that having a boost of physical

activity following surgery may be beneficial to delay breast cancer

metastatic development.
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Introduction

Breast cancer has for the last three consecutive years been the

most studied disease clinically (1), and it is also the most common

cancer worldwide, despite mainly affecting women (99% vs.0.5-1%

in men) (World health Organization (WHO), 2022). In fact, in

2022, 2.3 million women were diagnosed with breast cancer and

670.000 died due to the disease (2). Breast cancer is a heterogenous

disease with at least four main subtypes, known as luminal A,

luminal B, HER2-positive, and triple-negative breast cancer. The

subtypes have different genetic, epigenetic, and clinical features and

are classified according to their expression of certain receptors:

estrogen receptor positive (ER+), progesterone receptor positive

(PR+), human epidermal growth factor receptor positive (HER2+),

and triple-negative (TNBC) that lacks all of the above-mentioned

receptors (3).

The majority of breast cancer-related deaths can be ascribed to

the development of metastatic disease (4, 5), which is notoriously

difficult to treat due to the lack of effective treatment options (6).

While there have been clear clinical advancements (7), metastatic

breast cancer is generally considered incurable, and patients are

thus only treated with the goal of prolonging survival and

maintaining quality of life (8). Statistical analyses have revealed

that approximately 1 out of 8 women will develop breast cancer (9)

during their lifetime, and 20-30% of these patients will progress to

develop incurable metastatic disease (10). Accordingly, there is a

clinically urgent need to further the understanding of the

development of metastasis and drive the development of better

and more effective treatment options that can block or

reduce metastasis.

While surgery and pharmacological treatments are the

cornerstones of breast cancer intervention, physical activity also

appears to have positive effects according to epidemiological data.

In fact, the effect of exercise interventions has been examined in

more than 292 breast cancer studies and in more than 20,808

patients (mainly with early-stage breast cancer) (11). Physical

activity has been linked to lowering the risk of breast cancer

development (12–14), improving quality of life after diagnosis

(15, 16), mitigating fatigue and improving treatment tolerance

during adjuvant treatment (16–18) and lowering the relative risk

of overall death and breast cancer-related death (19–22). Despite a

very large number of studies, only a few of these have examined the

effect of exercise in patients with metastatic breast cancer (23), and

of these the focus has mainly been on the impact of physical activity

on quality of life and reduction of symptoms. However, promising

clinical and observational studies have suggested that exercise can

reduce the risk of disease recurrences for breast cancer (20) and

increase survival in metastatic breast cancer (23).

In this preclinical study, we set out to examine the impact of

exercise on metastatic development in triple negative breast cancer

(TNBC) using a clinically relevant metastatic model with orthotopic

tumor transplantation of breast cancer cells and subsequent surgical

resection of the primary tumor to study the spontaneous

development of advanced metastatic disease.
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Materials and methods

Cell lines

The 4T1 murine breast cancer cell line was kindly gifted by Fred

Miller (Wayne State University) and cultured at 37°C and 5% C02 in

Dulbecco ’s modified Eagle medium glutaMAX (DMEM

GlutaMAX; Gibco, Thermo Fisher Scientific, cat. no. 10566016,

Grand Island, NY, USA) supplemented with 10% fetal bovine

serum (Gibco, Thermo Fisher Scientific) and 1% penicillin-

streptomycin (100 U/mL, Gibco, Thermo Fisher Scientific).
Animals

8-15 weeks-old female BALB/cAnNRj mice were purchased

from Janvier. All mouse experiments were conducted in compliance

with the ARRIVE guidelines and approved by the Danish Animal

Experiments Inspectorate (2015-15-0201-00656 and 2020-15-0201-

00596). Mice were housed 2 mice/cage in standard housing cages

with enrichment (nest materials, gnawing sticks, cardboard/plastic

tunnels) and ad libitum food and water in a temperature and

humidity-controlled room with a 12:12-h light-dark cycle. After

arrival, the mice were acclimatized for at least a week. For exercise

interventions, mice were giving access to running wheels (Starr Life

Science, diameter 12 cm or Mouse Mag Wheels, The Columbus

Instruments Starr Life Science, diameter 9.2 cm). The number of

wheel rotations was monitored, and the running distances (km/

mouse) calculated by converting wheel rotations to kilometers and

dividing the results by two, since each cage contained two mice to

prevent isolation-induced stress.
In vivo cancer studies

Prior to all mouse studies, the cells were tested negative

for mycoplasma.

For orthotopic tumor growth studies, mice were randomly

assigned to 3 groups (n=14, repeated twice) and either got access to

running wheels 5 weeks prior to a tumor induction (EX group), after

primary tumor removal (Post-sur EX group), or not at all (Control

group) (Figure 1A). Orthotopic tumors were induced by injecting

4x105 cells in volume of 50 µl phosphate buffer solution (PBS)/mouse

into the mammary fat pad and surgically resected once the primary

tumors reached a size of 8-10 mm. 2-2.5% isoflurane was used to

anesthetize the mice in both procedures, and prior to the tumor

resection the mice were administered 0.05-1 mg/kg Buprenorphine

subcutaneously and a mixture of lidocaine (5mg/kg) and bupivacaine

(1 mg/kg) around the tumor. Additionally, after the surgical

intervention mice receive analgesia via the drinking water (6 mg/L

Buprenorphine) for 48 hours. Tumor growth was determined by

measuring the length and width of tumor and calculating volume

using the following formula: volume (mm3) = (length (mm) * width
(mm)2 * p)/6. An hour prior to resection, mice received an
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intraperitoneal injection with pimonidazole (60 mg/kg dosage using

10 mg/ml dilution, Hypoxyprobe™ Kit, Hypoxyprobe, Inc., HPI

Catalog # HP1-XXX, Burlington, MA, USA).

The resected tumors were weighed, their volume determined and

divided into pieces for further examinations. In a blinded manner,

mice were assessed for clinical signs of metastasis and euthanized

once the humane endpoints were reached. The lungs of mice were

collected and weighed and processed for further examinations. Body

weight was measured at set-up, tumor inoculation, tumor resection,

2-3 times weekly while monitoring for metastatic disease, and when

euthanized. During the two studies, 20 mice had to be sacrificed due

to surgical complications, wounds, or regrowth of primary tumors

(n=6 (Control), n=10 (Post-sur EX group), and n=3 (EX group)).

These mice were as a result censored from the survival analysis.

For experimental lung metastasis studies mice were randomly

assigned to 4 groups (n=8, repeated twice) and either got access to

running wheels 5 weeks prior to metastasis induction (EX groups,

Pre EX group), after metastasis induction (Post EX group), or not at

all (Control group) (Figure 2A). Lung metastasis was induced by

injecting 3x105 cells in volume of 200 µl phosphate buffer solution

(PBS)/mouse into the tail vein. Mice were weighed and euthanized

after 12 days, where their lungs were collected and weighed.

For surgical stress studies, mice were randomly assigned to 3

groups (n=6, repeated three times). All groups were induced with

metastatic disease (3x105 cells in volume of 200 µl PBS/mouse
Frontiers in Immunology 03
injected into the tail vein), but while the Control and Post-sur EX

groups underwent surgical resection of the tissue around the 4th

mammary fat pad to mimic a tumor resection, the sham group was

only anaesthetized. The mice received the same anesthesia and

analgesia as previously described. A day after the surgery the EX

group got access to running wheels (Figure 2A). Mice were weighed

and euthanized 14 days after 4T1 inoculation, where their lungs

were also collected and weighed. All mice used for the manuscript

were euthanized by cervical dislocation or decapitation.
Histology and immunohistochemistry

Part of the tumor tissue and isolated lungs tissue were fixed in

10% neutral buffered formalin overnight at 4 °C and then processed

for standard paraffin embedment. Paraffin-embedded tissue was

sliced to 5 µM tissue slides and mounted on glass. All lung slides

were stained with hematoxylin and eosin, scanned on a Hamamatsu

NanoZoom slide scanner, and quantified for metastatic disease

using NDP.view2 software by determining the number and size of

the metastatic lung lesions.

Additionally, immunohistochemistry stainings were conducted

on tumor (n=12-13/group) and lung sections (n=6-7/group) from

the orthotopic tumor studies, where the tissue sections were de-

paraffinized, rehydrated, and heated with antigen retrieval buffer.
FIGURE 1

Exercise initiated after surgical tumor removal improves metastasis-free survival in an orthotopic model. (A) Visual representation of the experimental
design. (B) The survival of mice subjected to surgical removal of mammary fat pad tumors with or without access to running wheels were analyzed
with Kaplan-Meier analysis. The survival curves were compared using a Log-rank (Mantal-Cox) test. Pair-wise comparisons of the survival curves,
revealed that the survival of the mice in the Post-sur EX group was significant longer than the EX group (p=0.03), while the rest of the pair-wise
comparisons revealed no significant difference in survival between the groups (Control vs. Post-sur EX p= 019, Control vs. Ex p= 0.51). (C) The
median time it took for mice to develop clinical signs of metastatic disease that necessitated euthanasia was examined by performing a Kaplan-
Meier survival analysis combined with a Log-rank (Mantal-Cox) test on data from mice that developed metastatic disease. Pair-wise comparisons of
the survival curves revealed that the development of metastatic disease in the mice in the Post-sur EX group was significant delayed compared to
the Control group (p=0.02, dark blue *) and EX group (p=0.03, orange *).
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FIGURE 2

Analysis of lung metastases reveals no significant differences between the groups in orthotopic model. (A) Visual representation of the experimental
design and highlighting the focus of the data – i.e. examinations of collected lungs. (B) Representative images of the degree of lung metastasis.
(C) Number of metastatic lung lesions (Control= 21, Post-sur EX= 17, EX= 22). (D) Total area of metastatic lung lesions. (E) Representative images of
Ki-67 positive stained tumor cells in the lungs of mice (F) Percentage of Ki-67 positive stained tumor cells per cells in the lungs (Control= 7, Post-sur
EX= 6, EX= 7). (G) Flow cytometry analysis of the immune landscape in the collected lungs (Control= 12, Post-sur EX= 10, EX= 11). NK = natural killer
cells, CD4 = CD4 positive T cells, CD8 = CD8 positive T cells, DC= dendritic cells, MP= Macrophages, NP=Neutrophils. Parametric data was
analyzed by a one-way ANOVA paired with Holm-Šıd́ák’s multiple comparisons test (F, G: DC) and nonparametric data with a Kruskal-Wallis test with
Dunn’s multiple comparisons test (C, D, G: NK cells, CD4, CD8, MP, and NP). A two-way ANOVA was used to analyzed the difference in MP and NP
between mice with and without metastatic disease (G).
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After the antigen retrieval treatment, the tumor section was stained

to assess tumor hypoxia via the hypoxia marker pimonidazole

hydrochloride, which mice were injected with one hour prior to

having their tumor removed. The slides were washed in water,

incubated for 10 min with 3% H2O2, and washed in Tris-buffered

saline with tween (TBS-T). The tumor sections were encircled with a

waterproof pen, blocked for 60min, and incubated overnight with the

primary antibody, i.e. anti-pimonidazole mouse IgG1 monoclonal

antibody (H Hypoxyprobe™ Kit, Hypoxyprobe Inc.) at 4°C. The

tissue sections were then washed in TBS-T buffer, and incubated for

45 min at RT with the DAKO HRP Mouse antibody (Agilent

Technologies), followed by a washing step with TBS-T buffer and the

addition of DAB Chromogen (Peroxidase) (Vector Laboratories) as per

kit instructions. Lastly, the tissue sections were counterstained with

Mayer’s hematoxylin (Sigma-Aldrich), dehydrated,mountedwithDPX,

and scannedon theHamamatsuNanoZoomer-XR(Hamamatsu)whole

slide scanner (×40 magnification). Tumor hypoxia was quantified via

ImageJ (24) by manually measuring the total area of both tumor and

hypoxia and calculating the fraction of the tumor affected by hypoxia.

The lung sections were stained for Ki-67, as Ki-67 is a prognostic

marker associated with breast cancer cells’ proliferative potential and

an indicator of prognosis (25). Following antigen retrieval, the lung

sections were washed with PBS, encircled using a PAP pen (Dako,

Denmark), incubated with 5% donkey control serum (D9663, Sigma-

Aldrich, Merck Life Science A/S, Denmark) for 10 min at RT,

incubated with primary antibody against Ki-67 (1:1,000-1:2000,

ab15580; Abcam, San Diego, USA) at 4 °C overnight. The next day,

the sections were washed twice in PBS and incubated with secondary

antibody using fluorescence Donkey anti rabbit Alexa 546 for 1 hr at

RT (Invitrogen, Taastrup, Denmark, diluted in PBS 1:1000) and

counterstained with DAPI before being mounted. Images of the

slides was captured with a x40 magnification on a Zeiss Axiovert 220

Apotome system. The images were processed using the Axiovision

program (Carl Zeiss) and all images were imported, and the threshold

was set for all. The MetaMorph microscopy automation and the

ImageJ analysis software (24) were used for automatic nuclei

counting and for detection of Ki-67 stained tumor cells. The total

number ofDAPI stained tumor cellswas estimatedbyautomaticnuclei

counting. The number of Ki-67 stained cells were counted manually

and the fraction of tumor cells expressing the Ki-67 antigen

was determined.

The quantifications (metastatic lesions, hypoxia, Ki-67

stainings) were performed while blinded.
Flow cytometry

Frozen and digested tumor and lung tissue were washed once in

FACS buffer (PBS + 2% FBS) and incubated with FC-block and live-

dead staining for 15 minutes at RT. Afterwards, cells were washed

once, followed by antibody staining (Supplementary Table 1) for 30

minutes at 4°C and followed by fixation in 2% paraformaldehyde

for 10 minutes at RT. Cells were stored in FACS buffer until

acquisition within the next 3 hours.

Receptor surface expression was acquired using an LSRFortessa

equipped with 3 lasers (488nm, 640nm, 405nm) maintained by the
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flow cytometry core facility at Copenhagen University using FACSDiva

software v.8.01 (BD Biosciences, USA). Analyses of blinded samples

(gating strategy in Supplementary Figure 1) and compensation were

performed in FlowJo v.10.6.1 (BD Biosciences, USA). Gating was based

on Fluorescence minus one (FMO) controls for each parameter. Cells

were defined as follows: all cells (DAPI-, CD45+), T cells (CD3+), CD4

T cells (CD3+ CD4+), CD8 T cells (CD3+ CD8+), NK cells (CD3-

CD24- SSClow CD49dim/hi Nkp46dim/hi), Neutrophils (Ly6G+),

Macrophages (Ly6G- SSChi F4/80+) and Dendritic cells (Ly6G- F4/

80- MHC-II+ CD11c+ CD11b+/-).
Analysis and statistics

Statistical analyses were performed in Prism 10 (version 10.2.2).

Statistical significance was defined as a p-value < 0.05 throughout.

The survival of mice subjected to surgical removal of mammary fat

pad tumors with or without access to running wheels was analyzed

with Kaplan-Meier analysis. The survival curves were compared

using a Log-rank (Mantal-Cox) test. The median time it took for

mice to develop clinical signs of metastatic disease that necessitated

euthanasia was examined by performing a Kaplan-Meier survival

analysis combined with a Log-rank (Mantal-Cox) test on data from

mice that developed metastatic disease with “Pair-wise” comparisons

of the survival curves. To examine if the tumor growth of mice

without access to running wheels differed from mice with access, the

data was log transformed with a natural logarithm and analyzed by

fitting a nonlinear regression model using the exponential growth

with log(population) equation. The analysis revealed that one curve

fitted both data sets (i.e. sedentary and exercising mice). For analyses

of two groups, parametric data was analyzed with an unpaired t-test

orWelch's t test, while nonparametric data was analyzed with aMann

Whitney test. When analyzing the difference between multiple

groups, parametric data was analyzed with an ordinary one-way

ANOVA paired with Holm-Šıd́ák’s multiple comparisons test/Šıd́ák’s

multiple comparisons test and nonparametric data with a Kruskal-

Wallis test with Dunn’s multiple comparisons test. Furthermore, a

two-way ANOVA was used to analyze the difference in macrophages

and neutrophils between mice with and without metastatic disease.
Results

Physical exercise did not affect food intake
or body weight in an orthotopic model
of TNBC

We investigated the effect of voluntary exercise on tumor

development and metastasis in a group of immunocompetent mice

with induced TNBC. We used 4T1 murine breast cancer cells due to

the high clinical relevance of the experimental model, which includes

easy orthotopic transplantation in the tissue of origin (mammary fat

pad) and spontaneous development of metastatic disease with tumor

cell dissemination patterns similar to that of human mammary cancer

(26). Specifically, we combined an orthotopic tumor transplantation

with a subsequent surgical removal of the primary tumor to mimic the
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clinical setting, where primary tumors are surgically removed, while

potential metastatic lesions remain, and to allow the development of

metastatic disease to become the experimental endpoint (27).

Mice were given access to running wheels either 5 weeks prior

to tumor induction with syngeneic 4T1 breast cancer cells (EX

group), or after primary tumor removal (Post-sur EX group), or not

at all (Control group) (Figure 1A). We observed no differences in

the running distance between the different exercise groups

(Supplementary Figures 2A, B), nor differences in the food intake

or body weights across all groups as recorded throughout the

experiment (Supplementary Figures 2C, D, respectively).
Exercise-increased survival occurs in the
absence of changes in hypoxia and the
immune landscape at the primary tumor

Exercise did not significantly affect the primary tumor growth rate

(Supplementary Figure 3B). Furthermore, there was no significant

difference in the time it took for the tumors to reach a size that required

their removal (Supplementary Figure 3C), nor in the weight of the

resected primary tumors (Supplementary Figure 3D).

In contrast, we observed a striking difference in survival,

whereby the introduction of voluntary wheel running after

surgical removal of the primary tumor led to increased median

survival of the mice (Figure 1B), which was significantly different

from the mice with continuous access to running wheels (p= 0.03).

Furthermore, the median time it took for mice to develop clinical

signs of metastatic disease that necessitated euthanasia was

significantly delayed in the Post-sur EX group compared to both

the Control group (p=0.02) and the EX group (p= 0.03) (Figure 1C).

It is known that hypoxia at the primary tumor can influence

metastasis and survival (28) and could likely be reduced by exercise

(29). We, therefore, analyzed the resected tumors for hypoxia, but

observed no significant differences (Supplementary Figures 3E, F).

Wennerberg et al. and Garritson et al. previously indicated that

voluntary wheel running could lead to a more favorable immune

landscape in mice with 4T1 breast cancer by reducing (30) or delaying

(31) immune suppression and increasing the activation of NK cells and

CD8+ T cells (30). We therefore examined, if the differences in

metastasis-free survival could be explained by alterations in the

immune landscape of the primary tumors by flow cytometry

(Supplementary Figure 1A). However, we detected no significant

differences in immune cell infiltration between the EX group and the

Control/Post-sur EX group (Supplementary Figure 3G).
Exercise-increased survival occurs in the
absence of changes in metastatic tumor
burden and immune landscape at the time
of termination

Next, we examined the lungs of the mice at the time of

termination, as it is the first site of metastatic spread in both

human patients (22-77%) and mice transplanted with 4T1 cells

(95%) (26). We detected no differences between the groups
Frontiers in Immunology 06
with regards to the number (Figures 2B, C) or the total area of

metastatic lung lesions (Figure 2D). Therefore, once the mice

developed metastatic disease, the endpoint metastatic burden

appeared to be similar between the groups. Consistently, there was

no change in Ki-67 expression (Figures 2E, F), a proliferation marker

that is associated with worse disease-free survival and overall survival

in patients with resected TNBC (32, 33).

We performedflow cytometry analysis of the lungs (Supplementary

Figure 1B), and observed no significant differences in NK cells, CD4+

and CD8+ T cells, dendritic cells, macrophages, or neutrophils between

the groups (Figure 2G). However, when we compared the mice

with metastatic disease to mice without metastatic disease, we noted a

significant decrease in the frequency of lung macrophages and increase

in the frequency of lung neutrophils in the mice with metastatic

disease (Figure 2G).
Exercise alone does not affect metastatic
tumor burden in an experimental
metastasis model

We speculated that the lack of differences between the groups

could be explained by the fact that we only compared them at a

timepoint, where all the mice were deemed to have clinical signs of

metastatic disease that necessitated euthanasia. We, therefore,

performed a new experimental metastasis study with intravenous

(IV) injections of 4T1 cells, where mice either had access to a running

wheel throughout the experiment, prior to induction of metastasis,

after the induction of metastasis, or not at all (Figure 3A).

Furthermore, instead of having a continuous take down, the study

was concluded on day 14 and the degree of metastatic disease in the

lungs of all mice was evaluated by histological examinations of lungs

sections. We observed that mice who ran prior to metastasis

induction had a higher running distance (Supplementary

Figures 4A, B), that food intake was significantly increased in mice

that had access to running wheels compared to mice without

(Supplementary Figures 4C, D), and that body weights of the mice

increased throughout the experiment (Supplementary Figure 4E).

However, to our surprise, we again saw no differences in the number

of metastatic lung lesions between the groups (Figures 3B, C) or the

total area of metastatic lung lesions (Figure 3D). In this setup, exercise

alone did not abrogate metastatic development.
The antimetastatic effect of a boost in
exercise seems dependent on the presence
of surgical stress

Given that the orthotopic model also included a surgery, we

postulated that this could promote the exercise-mediated increase

in metastasis-free survival. Of note, surgical stress has been shown

to exacerbate metastatic disease in both animal models and cancer

patients (34, 35). We, therefore, performed another IV experimental

metastasis study, which included a mock-surgery to induce surgical

stress. Specifically, all mice were induced with metastatic disease,

and then either only anaesthetized or also subjected to a skin
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removal surgery similar to that of a primary breast tumor resection.

Half of the mice that underwent surgery were given access to

running wheels the day after surgery, while the rest were not.

After 14 days all mice were taken down and their lungs examined

for metastatic disease (Figure 4A). When we compared the number

of lung lesions in the group undergoing surgery to the group that

was only anaesthetized, we observed that the surgery alone group

had significantly more metastatic lung lesions (Figures 4B, C).

However, the number of metastatic lung lesions was significantly

reduced if the mice had access to a running wheel following

undergoing surgery (Figures 4B, C). A similar pattern was

observed when we assessed the total area of metastatic lung

lesions, such that surgery alone increased the affected lung area.

However, access to the running wheel after surgery significantly

reduced the total lung area affected by metastatic lesions
Frontiers in Immunology 07
(Figure 4D). These results suggest that the increase in metastasis-

free survival observed in the orthotopic model was due to a boost of

exercise occurring after but dependent on surgery.
Discussion

To our knowledge, our study is the first to preclinically examine

the effect of exercise onmetastatic development in a clinically relevant

setting, where the primary tumor was surgically removed, while

potential metastatic lesions remained (26). This allowed us to

examine how continuous voluntary wheel running affected the

development of metastatic disease, as well as the effect of only

initiating exercise after primary tumor resection. Our primary

finding was that initiating voluntary wheel running after removal
FIGURE 3

A boost of exercise alone does not affect the development of metastatic disease in an experimental metastasis model. (A) Visual representation of
the experimental design. (B) Representative images of the degree of lung metastasis. (C) Number of metastatic lung lesions. (D) Total area of
metastatic lung lesions. The data in C and D were analyzed by a one-way ANOVA paired with Šıd́ák’s multiple comparisons test (Sedentary= 12, Pre-
EX=10, Post-sur EX= 15, EX= 14).
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of the primary tumor significantly increased the metastasis-free

survival and doubled the median survival time. However,

interestingly, we found no beneficial effect of exercise (regardless of

when it was initiated) once mice exhibited clinical signs of

spontaneous metastatic disease. Specifically, once mice were

euthanized due to metastatic disease, we observed no differences

between the groups regarding the number of lung lesions, the total
Frontiers in Immunology 08
lung area affected by metastasis or the presence of Ki-67 positive

tumor cells in the lungs. Furthermore, exercise alone was not detected

to have a beneficial effect on metastatic development in an

experimental model for metastasis, where metastasis was induced

with IV injections. However, exercise did reduce the number of

metastatic lung lesions in this model, if the mice also underwent

surgical stress the day after inducing metastasis. Taken together, our
FIGURE 4

Initiating exercise following surgery significantly reduces development of metastatic disease. (A) Visual representation of the experimental design.
(B) Representative images of the degree of lung metastasis. (C) Number of metastatic lung lesions. (D) Total area of metastatic lung lesions. The data
were analyzed with an ordinary one-way ANOVA paired with Holm-Šıd́ák’s multiple comparisons test (Sham= 16, Control= 17, Post-sur EX= 16).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1533798
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Stagaard et al. 10.3389/fimmu.2025.1533798
results indicate that initiating a boost of physical activity (as mice are

naturally quite active) is beneficial following surgery and can delay

metastatic development in mice with either spontaneous or

experimentally-induced metastasis.

Epidemiological studies have highly suggested that exercise has

a beneficial effect on breast cancer. However, most studies have not

examined whether the effect was dependent on the molecular

subtype of cancer. To understand the effect of exercise in a breast

cancer setting this should be considered, as breast cancer is not one

uniform disease, but rather a heterogeneous group of diseases that

differ from one another regarding histology, genomic alterations,

gene expression, hormone status, metastatic behavior, and

treatment responses (36–38). In our study, we examined how

exercise affected both TNBC development and metastasis. From a

clinical perspective, the effect of exercise in this population is still

not clear. For instance, while Delrieu et al. found a beneficial impact

of physical activity on the overall survival of patients with metastatic

breast cancer, a subgroup analysis revealed that physical activity was

only associated with a statistically significant improved overall

survival in the HER2 positive subgroup, but not in luminal

metastatic breast cancer or TNBC (23). Furthermore, a meta-

analysis by Ibrahim et al. reported that while post-diagnosis

physical activity was shown to reduce breast cancer deaths by

34% and disease recurrence by 24%, this beneficial effect only

seemed to involve women with estrogen receptor (ER) -positive

breast cancer (39). In contrast, the Shanghai Breast Cancer Survival

Study, a prospective cohort study, showed that regular

postdiagnosis exercise was associated with a lower risk of all-

cause mortality and recurrence/disease-specific mortality in

women with ER and progesterone receptor-negative breast cancer

(40). In addition, data from the NIBBLE study, theWomen’s Health

Initiative, and the California Teachers Study indicated that physical

activity was associated with a reduced risk of developing TNBC

(41–43). Similarly, no clear consensus has been found regarding the

effect of exercise on metastatic disease in preclinical research,

potentially due to a wide methodological heterogeneity. In fact,

the published preclinical experimental data is conflicting (23, 24),

something we also observed, as we, despite using large group

numbers, still saw variation and even observed an opposite effect

in the pilot experiment for the mock surgery setup. This highlights

the need for further research to elucidate the underlying molecular

mechanisms for the potential positive effect of physical activity on

metastatic development and underlines the importance of

performing multiple repeats of experiments to elucidate the real

effect/trend. Especially, as experimental results are also

contradictory even when the same cancer model (4T1) and

exercise modality (voluntary running wheels) is used, as

subjecting 4T1 tumor-bearing mice to wheel running has been

found to both promote metastasis (44), not affect metastasis (45),

and non-significantly reduce metastasis (30, 31). However, no

studies as of yet included surgery as part of the setup.

Previous preclinical studies have suggested that exercise exerts

its beneficial anticancer effect by recruiting and activating different

immune cells (46). For instance, an exercise-mediated 4T1 tumor

growth suppression vanished when examined in T-cell deficient

mice (47), while NK-cells (but not T-cells) proved essential for the
Frontiers in Immunology 09
exercise-mediated tumor growth control in mice challenged with

B16F10 tumors (48). However, flow cytometry analysis in our study

presented here showed no difference in the immune landscape in

the lungs of mice with metastatic disease regardless of whether they

had access to running wheels or not. The lack of difference could

potentially be explained by the timing of the analysis. The lungs of

the mice were only examined once the mice had clinical signs of

metastatic disease and thus had reached the humane endpoint.

Perhaps a difference could have been seen, if lungs were collected at

an earlier timepoint of 1-2 weeks after the surgery and then assessed

for the composition of the immune cells.

Our results did not elucidate a clear mechanism of action that

could explain why initiating exercise after surgery limited metastatic

development or why the same effect was not seen in mice that had

continuous access to running wheels. The fact that the average

running distance of mice in the Post-sur EX group and the EX

group was similar, does however indicate that the groups had

similar exercise compliance, and thus that this did not contribute

significantly to the observed survival outcomes. However, because

of the lack of effect in mice that continuously exercise, we

hypothesize that the beneficial effect could be mediated by the

body’s adaptation to exercise during the critical perioperative

period. We expect this could be the case, because not only does

exercise have a multitude of effects on the body by initiating

interaction and crosstalk between multiple organs, tissues, and

regulatory systems, including the immune system and the

metabolism (49); the complex physiological response to exercise

also differs between untrained individuals adapting to exercise and

trained individuals (50, 51). It is therefore likely that the impact of

exercise adaptation in the critical postoperative period of a tumor

resection would differ between trained and untrained mice, and

thus that initiating voluntary wheel running in the two groups after

surgery could lead to different impacts on tissues, regulatory

systems, the immune system, and the metabolism. The immune

landscapes and systemic immune response could differ at an earlier

timepoint. Furthermore, if the adaptation to exercise in the

untrained mice post-surgery resulted in an altered metabolism,

that could also play a part, as it is well known that the metastatic

process and metabolic pathways a highly intertwined (52). For

instance, exercise has been suggested to reprogram the metabolic

needs of distant organs and thereby increase their resistance to

metastatic development (53).

Surgical resection of solid tumors is a necessary procedure for

most cancer patients and has undeniable prognostic benefits (54).

Still, the perioperative period is deemed critical, as a growing amount

of evidence suggest that surgeries elicit a surgical stress response and/

or surgical complications that promote postoperative metastatic

spread and/or disease recurrence by activating and increasing the

growth of pre-existing dormant micrometastases or residual cancer

cells at the surgical site (34, 55–60). This surgical stress response has

thus been linked to the development of metastatic disease in both

animal models and cancer patients and is believed to be caused by

postoperative dysfunction of NK cells, potential dissemination of

cancer cells from the primary tumor, induced local and/or systemic

inflammation, and immune suppression (34, 35, 58, 61–69). The

postoperative period is therefore an exceptionally vulnerable time for
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the development or growth of metastases (35). Therefore, it not only

represents an ideal moment to therapeutically target the metastatic

process, but also a window of opportunity, where exercise could have

an anti-metastatic effect, especially when considering that exercise

mobilizes key effector cells of the immune system and reduces

inflammation, including increasing the number of circulating NK

cells, their cytotoxicity, and activation (30, 46–48) (70). We therefore

believe that it is very plausible that the beneficial effect observed in the

Post-sur EX group, is mediated by an increased recruitment and

activation of NK cells compared to the EX group. Particularly when

considering that NK cells control micrometastatic disease (48, 71),

their cytotoxicity is an independent prognostic marker for overall

survival in patients with metastatic disease (72), and because an

association between low NK levels during the post-operative period

and a higher rate of cancer recurrence and mortality has been

observed (67, 68). Furthermore, the effect in the Post-sur EX

group could also perhaps be mediated by a dampening of the

local inflammatory wound response and systemic inflammation

caused by surgery, as exercise is known to have anti-inflammatory

effects (73, 74). This could be important, as several in vivo studies

have indicated that surgery induced inflammation and subsequent

increase in growth factors and proangiogenic compounds can

increase the risk of cancer recurrence by reactivating dormant

micrometastases (34). In fact, the degree of surgery-induced

inflammation seems to correlate with the number of lung

metastasis in a metastatic mouse model (75). Future studies will

examine the role of exercise in connection with surgical stress and

how exercise affects the postoperative NK cell dysfunction,

inflammation, the immune system, and metastasis.

In conclusion, we examined the effect of exercise on metastatic

development in different metastatic models for TNBC. Voluntary

wheel running was observed to reduce the number of metastatic

lung lesions or significantly increase the metastasis-free survival and

doubled the median survival time, but only in settings where the

mice underwent a surgery and initiated a boost of exercise after the

surgery. Taken together, our results therefore indicate that initiating

exercise and thus having a boost of physical activity is beneficial

following surgery and can delay metastatic development in mice

with either spontaneous or experimentally-induced metastasis.

Even though we only observed a beneficial anti-cancer effect of

exercise if it was initiated after a surgery, we are not advocating for

only initiating exercise there. Our wish is to focus attention to the

post-operative period and highlight it as a great window of

opportunity to counteract metastasis. Exercise could be one way

to do so, especially as exercise already has gained a prominent role

in clinical oncology due to its’ abundant supporting care and health

benefits, including improving quality of life, maintaining muscle

strength during therapy, reducing treatment-related complications

and improving survival outcomes of cancer patients (46, 76–79).
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SUPPLEMENTARY FIGURE 1

Gating strategies for flow cytometry. (A) Gating strategy for panel 1. Cells were
defined as T cells (CD3+), CD4 T cells (CD3+ CD4+), CD8 T cells (CD3+ CD8+),

NK cells (CD3- CD24- SSClow CD49dim/hi Nkp46dim/hi). (B) Gating strategy

for panel 2. Cells were defined as Neutrophils (Ly6G+), Macrophages (Ly6G-
SSChi F4/80+) and Dendritic cells (Ly6G- F4/80- MHC-II+ CD11c+ CD11b+/-).

SUPPLEMENTARY FIGURE 2

Health data from the orthotopic tumor growth studies reveals no significant
differences between the groups. (A) The collected running distance of the
Frontiers in Immunology 11
exercising mice, shown asmedian of the groups (solid lines) with indication of
the SD (transparent areas) (orange = EX, light blue = Post-sur EX). (B) Average
running distance of the exercising mice (C) Average food intake. (D) Body
weight of the mice a study start, tumor inoculation (Tumor), tumor resection
(Resection), and at study end/humane endpoints (Study end).

SUPPLEMENTARY FIGURE 3

Analysis of primary tumors reveals no significant differences between the
groups in orthotopic model. (A) Visual representation of the experimental

design and highlighting the focus of the data – i.e. examinations of resected

tumors. (B) The tumor growth of mice with or without access to running
wheels (Control/Post-sur EX= 58, EX=26). The solid line represents mean

tumor growth, while the shaded area between the stippled lines constitutes
the SD. Tumor growth data was analyzed with a nonlinear regression model

using the exponential growth with log(population) equation, but not
significant difference was detected. (C) Time from tumor inoculation to

resection. (D) Weight of resected tumors. (E) Representative images of the

degree of tumor hypoxia determined. (F) Percentage of tumor tissue affected
by hypoxia (Control/Post-sur EX= 24, EX=13). (G) Flow cytometry analysis of

the immune landscape in the resected tumors (Control/Post-sur EX= 28,
EX=13). Parametric data was analyzed with an unpaired t-test (Figure C, G: T

cells, MP) or a Welch's t test (Figure G: DC) and nonparametric data with a
MannWhitney test (Figure C, F, G: NK cells, CD8, NP). Tumor growth data was

analyzed with a nonlinear regression model using the exponential growth

with log(population) equation. (NK cells = natural killer cells, CD8 = CD8
positive T cells, DC= dendritic cells, MP= Macrophages, NP=Neutrophils).

SUPPLEMENTARY FIGURE 4

Collected health data from the experimental lung metastasis studies. (A) The
collected running distance of the exercising mice, shown as median of the

groups (solid lines) with indication of the SD (transparent areas). Orange= EX

group, light grey= Pre-EX group, light blue=Post-Ex group. (B) Average
running distance of the exercising mice (analyzed with a Kruskal-Wallis test

with Dunn’s multiple comparisons test). (C) Mean food intake prior to
metastasis induction. (D) Mean food intake after metastasis induction.

Parametric data was analyzed with a Welch's t test (Figure C, D). (E) Body
weight of the mice at study start, metastasis induction, and at study end

(Analyzed with a two-way ANOVA).
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