The final, formatted version of the article will be published soon.
ORIGINAL RESEARCH article
Front. Immunol.
Sec. Inflammation
Volume 16 - 2025 |
doi: 10.3389/fimmu.2025.1533407
Inhibition of EETosis with an anti-citrullinated histone antibody: A novel therapeutic approach for eosinophilic inflammatory disorders
Provisionally accepted- 1 Citryll, Oss, Netherlands
- 2 School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States
- 3 Graduate School of Medicine, Akita University, Akita, Akita, Japan
Eosinophils are a subset of granulocytes that protect the host against fungal and parasitic infection through secretion of their granular contents. In response to specific stimuli, eosinophils also undergo a type of lytic cell death, referred to as eosinophil extracellular trap (EET)-associated cell death (EETosis), where histone citrullination facilitates chromatin decondensation, cell rupture and release of pro-inflammatory, decondensed chromatin into the extracellular environment as EETs. In this study, we show the abundant presence of eosinophils and citrullinated histones in nasal polyp tissue of patients with eosinophilic chronic rhinosinusitis (ECRS). Using live imaging microscopy on purified human eosinophils, we demonstrate that physiologically relevant stimuli induce release of citrullinated EETs and the marker of eosinophil activation galectin-10. While the kinetics of release of EETs and galectin-10 are similar, inhibitors of citrullination block EETosis in a dose dependent manner but fail to inhibit galectin-10 release. The importance of citrullination is further exemplified with CIT-013, a monoclonal antibody specific for citrullinated histones H2A and H4. CIT-013 potently inhibits release of EETs (half-maximal inhibitory concentration (IC50) of 2.5 nM) without inhibiting other eosinophil functions such as degranulation, adhesion, superoxide production and induction of chemokine expression. Together, this study provides new insights into the requirement of protein arginine deiminase 4 (PAD4) for EETosis, differentiates requirements of EETosis from galectin-10 release, and identifies a novel therapeutic approach for EETosis inhibition by targeting citrullinated histones in eosinophil-driven diseases such as ECRS.
Keywords: Eosinophil extracellular traps, EETosis, pad4, citrullination, Galectin-10, Anticitrullinated histone antibody, Eosinophilic chronic rhinosinusitis
Received: 29 Nov 2024; Accepted: 04 Feb 2025.
Copyright: © 2025 Zwiers, Montizaan, Kip, Waaijenberg, Fichtinger, Mathur, Fujioka, Ueki, van Es, Chirivi, Meldrum and Van Der Linden. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Maarten Van Der Linden, Citryll, Oss, Netherlands
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.