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prevention and treatment
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Department of Gastroenterology, The First People’s Hospital of Xiaoshan District, Hangzhou,
Zhejiang, China
Stroke represents a predominant cause of mortality and disability on a global

scale, impacting millions annually and exerting a considerable strain on

healthcare systems. The incidence of stroke exhibits regional variability, with

ischemic stroke accounting for the majority of occurrences. Post-stroke

complications, such as cognitive impairment, motor dysfunction, and recurrent

stroke, profoundly affect patients’ quality of life. Recent advancements have

elucidated the microbiota-gut-brain axis (MGBA), underscoring the complex

interplay between gut health and brain function. Dysbiosis, characterized by an

imbalance in gut microbiota, is significantly linked to an elevated risk of stroke

and unfavorable outcomes. The MGBA plays a crucial role in modulating immune

function, neurotransmitter levels, andmetabolic byproducts, whichmay intensify

neuroinflammation and impair cerebral health. This review elucidates the role of

MGBA in stroke pathophysiology and explores potential gut-targeted therapeutic

strategies to reduce stroke risk and promote recovery, including probiotics,

prebiotics, pharmacological interventions, and dietary modifications. However,

the current prevention and treatment strategies based on intestinal flora still face

many problems, such as the large difference of individual intestinal flora, the

stability of efficacy, and the long-term safety need to be considered. Further

research needs to be strengthened to promote its better application in

clinical practice.
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1 Introduction

The global prevalence of stroke is on the rise (1, 2). Annually, the worldwide incidence

of stroke is estimated to be between 15 and 20 million cases. The incidence rate varies

across different countries and regions, typically ranging from 120 to 180 per 100,000

individuals (3). Ischemic stroke is the most common type, comprising approximately 60%

to 70% of all stroke cases globally (4, 5). In contrast, hemorrhagic stroke, which includes

cerebral hemorrhage and subarachnoid hemorrhage, has a lower incidence rate, accounting
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for about 30% to 40% of all strokes (6, 7). Following the onset of a

stroke, a sequence of cascading reactions ensues, encompassing

disturbances in energy metabolism, inflammation, immune

responses, and cellular apoptosis (8, 9). Additionally, it may lead

to various complications such as pulmonary infections, pressure

ulcers, deep vein thrombosis, dysphagia, cognitive and

psychological disorders, disuse syndrome, and epilepsy, among

others (10–12). Numerous patients frequently experience

unfavorable prognoses, resulting in elevated mortality and

morbidity rates. Survivors may suffer from limb paralysis, speech

disorders, and various other disabilities. Furthermore, the

significant risk of recurrent stroke imposes considerable economic

and psychological burdens on both families and society (13, 14).

In recent years, the discovery and comprehensive investigation

of the MGBA has led to an increased understanding of the intricate

relationship between gut microbiota and stroke (15, 16). On the one

hand, stroke can significantly influence gut microbiota, as patients

often exhibit reduced gastrointestinal motility, dietary

modifications, and immune dysregulation post-stroke. These

changes can result in alterations in the composition and

functionality of the gut microbiota, including diminished

microbial diversity, a decline in beneficial bacterial populations,

and an increase in pathogenic bacteria (17, 18). On the other hand,

the gut microbiota plays a significant role in the incidence and

progression of stroke. Alterations in the gut microbiota can

potentially intensify cerebral inflammation, impede neural repair

mechanisms, and exacerbate brain injury by impairing the

endothelial function of blood vessels (19, 20). Researchers are

investigating the influence of the gut microbiota and its metabolic

byproducts on stroke pathogenesis, particularly through their effects

on the host’s immune response, inflammation levels, and neural

transmission (21). Certain beneficial bacteria within the gut

microbiota, including genera such as Bifidobacterium,

Lactobacillus, Enterobacter, and Lachnospira, are postulated to

confer protective effects against stroke. Conversely, specific gram-

negative bacteria, such as Clostridium and Escherichia coli, can

produce endotoxins or neurotoxins, which can induce systemic

inflammation and disrupt nervous system function, consequently

elevating the risk of stroke (22, 23). Metabolites produced by the gut

microbiota, such as short-chain fatty acids (SCFAs), bile acids

(BAs), tryptophan (Trp) metabolites, andtrimethylamine N-oxide

(TMAO) (24, 25), are implicated in modulating brain health

through their roles in neurotransmitter synthesis and metabolism,

suppression of neuroinflammation, and stimulation of

neurogenesis. Specifically, SCFAs have been shown to enhance

cognitive function and regulate neurotransmitter activity (26);

Trp metabolites are involved in mood and cognitive regulation

and possess anti-inflammatory properties (27); BAs contribute to

neurotransmitter regulation, inflammation inhibition, and

cognitive enhancement (28); TMAO may increase the risk of

stroke, exacerbate neuroinflammation, and affect cognitive

function (29). Moreover, the gut microbiota may affect the

incidence of strokes by modulating the integrity of the intestinal

barrier function. A compromised intestinal barrier allows harmful

substances, such as bacterial endotoxins, to translocate into the

bloodstream, thereby activating the immune system and eliciting
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inflammatory responses that can exacerbate the pathophysiological

processes associated with stroke (30, 31). Consequently, modulating

the composition of the gut microbiota through the adjustment of

intestinal immune and metabolic functions may facilitate the

restoration of equilibrium within the intestinal microenvironment

(16, 32), thereby offering a novel strategy for the comprehensive

management of stroke. The modulation of gut microbiota through

dietary adjustments (33), supplementation with probiotics and

prebiotics (34, 35), pharmacological interventions (36), and fecal

microbial transplantation (FMT) (37) aims to reduce stroke risk

and enhance patient prognosis. These approaches offer novel

strategies for stroke prevention and treatment. However, further

clinical validation is required to ascertain their efficacy and

safety (31).
2 MGBA

In recent years, there has been an increasing volume of research

examining the interaction between the MGBA and stroke. This

extensive investigation not only deepens our understanding of the

pathogenesis of stroke but also offers novel insights into its

prevention and treatment.
2.1 Definition and composition

The MGBA represents a multifaceted and significant

physiological concept essential for maintaining human health

(38). This axis denotes a bidirectional communication network

linking the gut microbiota, the gastrointestinal tract, and the brain,

mediated through neural, endocrine, and immune pathways (39).

The gut microbiota consists of a diverse array of microorganisms,

including bacteria, fungi, and viruses, which collectively establish a

complex ecosystem within the gastrointestinal tract. This ecosystem

exerts a profound influence on human digestion, metabolism, and

immune functions (40). The gastrointestinal tract serves as a crucial

organ linking the microbiota and the brain, playing a vital role not

only in the digestion and absorption of nutrients but also in

facilitating communication with the brain through the enteric

nervous system, the endocrine system, and the immune system

(41, 42). Conversely, the brain exerts regulatory control over the gut

via these same systems, simultaneously responding to gut-derived

signals that influence mood, cognition, and behavior (43–45).
2.2 Communication pathways

The MGBA primarily facilitates communication via neural,

endocrine, and immune pathways (46, 47) (Figure 1). Gut

microbes produce metabolites and neurotransmitters, among

others. On the one hand, it can stimulate the enteric nerve, which

regulates intestinal function through local reflexes and

communicates with the vagus nerve. On the other hand, direct or

indirect activation of the vagus afferent fibers, the brain receives

signals from the vagus efferent fibers to regulate the gut and
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microbes (48, 49). The metabolites generated by the gut microbiota

influence the endocrine cells within the gastrointestinal tract,

prompting the secretion of hormones, including serotonin (5-HT)

and various intestinal peptides. These hormones subsequently enter

the circulatory system and interact with neural receptors in the

brain, thereby modulating neural activity (50, 51). Furthermore, the

hypothalamus-pituitary-adrenal (HPA) axis is involved in the

regulation of gastric and intestinal functions. Neurons located in

the paraventricular nucleus of the hypothalamus release

corticotropin-releasing hormone (CRH), which subsequently

s t imula t e s the anter ior p i tu i t ary g land to produce

adrenocorticotropic hormone (ACTH). Once in the bloodstream,

ACTH prompts the adrenal cortex to synthesize and release

glucocorticoids, such as cortisol. These glucocorticoids are

integral to a variety of physiological processes, including the

regulation of metabolism, the suppression of immune responses,

and the affection of nervous system function (52, 53). The intestinal

mucosa is densely populated with various immune cells, including

macrophages, dendritic cells, and lymphocytes. Microbial

components, such as peptidoglycan found in bacterial cell walls,
Frontiers in Immunology 03
are detectable by pattern recognition receptors, such as Toll-like

receptors. Upon detection, these immune cells become activated

and subsequently secrete cytokines and chemokines (54, 55). These

molecules possess the capacity to modulate local immune responses

within the intestine and augment the function of the intestinal

barrier. Conversely, they are also capable of transmitting signals to

the brain via the circulatory system or neural pathways. Upon

receiving these signals, the brain orchestrates a regulatory response

through the HPA axis, among other pathways (52).
2.3 Effect on health

Alterations in the gut microbiota may be associated with the

onset and progression of various neurological disorders, including

stroke, depression, anxiety, autism, Parkinson’s disease, and

Alzheimer’s disease (56, 57). Such changes in the gut microbiota

can influence the enteric nervous system, central nervous system,

and immune system, potentially compromising barrier function

(58, 59). Concurrently, the gut microbiota can modulate brain
FIGURE 1

The microbial-gut-brain axis communicates primarily through neural, endocrine, and immune pathways. The abnormality of gut microbiota may be
related to the occurrence and development of nervous system diseases and some immune system diseases. At the same time, the abnormal
function of the brain may also affect the function of the digestive system.
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function by impacting the synthesis, metabolism, and signal

transmission of neurotransmitters (60, 61). For instance, the gut

microbiota has the capacity to synthesize serotonin, a

neurotransmitter that can influence mood, cognition, and

behavior (62, 63). Furthermore, an imbalance in the gut

microbiota, known as dysbiosis, may contribute to the

development of gastrointestinal disorders such as inflammatory

bowel disease and irritable bowel syndrome (64, 65). These

disorders have the potential to impact brain function via the

MGBA, thereby inducing alterations in mood, cognition, and

behavior (43). For instance, Cheng et al. have provided

pioneering evidence that irritable bowel syndrome (IBS) is

associated with neurological health issues, encompassing anxiety,

depression, and cognitive deficits, as evidenced through

neuroimaging, behavioral assessments, biochemical analyses, and

genetic investigations (66). Furthermore, aberrations in cerebral

function may influence gastrointestinal operations, exemplified by

stress-induced gastric and intestinal dysfunction (67). Moreover, an

imbalance in gut microbiota may contribute to immune-related

disorders, including autoimmune and allergic diseases (68,

69) (Figure 1).

In summary, the MGBA constitutes a sophisticated and vital

physiological system integral to human health. Achieving a

thorough understanding of the mechanisms and functions of the

MGBA holds the potential to provide significant insights into the

development of innovative therapeutic interventions and

pharmaceuticals, while also offering new perspectives and

strategies for improving overall health.
3 The impact of gut microbiota on the
pathophysiological process of stroke

The MGBA constitutes a bidirectional communication network

linking the gastrointestinal tract and the brain, encompassing

neural, endocrine, and immune pathways. Through the MGBA,

the gut microbiota can influence brain function and behavior (70).
3.1 Neural regulation

3.1.1 Vagus nerve regulation
The vagus nerve plays a crucial role in the MGBA, facilitating

bidirectional communication between the enteric nervous system (ENS)

and the brain (60, 71, 72). The ENS, an autonomous nervous system

embedded within the gastrointestinal wall, comprises a substantial

network of neurons and glial cells. It is responsible for regulating

intestinal motility, secretion, and immune functions (73, 74).

Simultaneously, the ENS is capable of detecting a range of stimuli

within the gastrointestinal tract, including chemical substances,

mechanical stimuli, and temperature variations, subsequently

transducing this information into neural signals (38, 73, 75) (Figure

2). Furthermore, the gut microbiota can modulate brain activity and

emotional states by stimulating the ENS and the vagus nerve (76, 77).

Following a stroke, alterations in the gut microbiota may

activate nerve endings within the intestinal wall, thereby
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transmitting signals to the brain via the vagus nerve (78).

Concurrently, vagus nerve stimulation (VNS) exerts beneficial

effects through multiple mechanisms. For instance, VNS

modulates the gut microbiota, attenuates inflammatory responses,

regulates the permeability of the blood-brain barrier, promotes

angiogenesis, and facilitates axon regeneration, among other

effects (79–82) (Figure 2). Jiang et al. demonstrated that VNS

effectively modulates mast cell degranulation, mitigates damage to

both the blood-brain barrier and colonic barrier post-stroke,

ameliorates dysbiosis of the rat gut microbiota, and attenuates

inflammatory responses (83). Similarly, Laureys et al. reported in

their rat studies that VNS influences the regulation of microglial

and astrocytic activity, enhances the oligodendrocytes’ clearance

capacity following the initial injury, and significantly facilitates

myelination and synaptic regeneration (84). Park et al.

demonstrated that VNS-regulated MGBA altered intestinal

morphology and the composition of gut microbiota, notably

increasing the abundance of Bifidobacterium, which facilitated

neuroprotection following a stroke (85). Araujo et al. also found

that the Brunner’s gland in the duodenum could mediate the

enrichment of Lactobacillus in the intestine after VNS, promoting

neural recovery (86). Currently, numerous clinical trials suggest

that the integration of VNS with rehabilitation training positively

influences the enhancement of motor function recovery in stroke

patients. Following the administration of VNS in conjunction with

synchronized rehabilitation training, there is a marked

improvement in the patient’s limb motor function (79, 87).

Investigating the mechanisms through which VNS modulates gut

microbiota and enhances stroke prognosis is anticipated to offer

novel strategies for stroke treatment.

3.1.2 Neurotransmitter regulation
The gut microbiota is capable of producing a variety of

neurotransmitters and neuroregulatory compounds, such as 5-

hydroxytryptamine (5-HT), dopamine (DA), gamma-aminobutyric

acid (GABA), and glutamic acid (GLU), among others (88, 89)

(Figure 2). These compounds can traverse the bloodstream to reach

the brain, where they influence neural transmission and brain

function (90, 91). Following a stroke, changes in the gut microbiota

may affect the balance of neurotransmitters, modulate the excitatory

and inhibitory functions of the nervous system, and facilitate the

recovery of neural functionality (15, 16). FMT from stroke animals

can also affect the neurobehavior, neurotransmitter levels and other

aspects of recipient animals by changing the gut microbiota

environment (92, 93).

Trp is the only precursor of 5-HT, and the dysregulation of Trp

metabolite products plays a central role in the pathogenesis of many

neurological and psychiatric disorders (94). In mouse experiments,

Gao et al. discovered that enhancing Trp hydroxylase expression

and boosting 5-HT levels in the brain and colon led to enhanced

synapse formation and astrocyte maintenance (95). Branco et al.

found in mice exposed to endotoxin that injection of dibutyl

phthalate (DIZE) could promote intestinal microbiota regulation

and increase central 5-HT levels, activate the efferent sympathetic

nerve arm of the inflammatory reflex, and alleviate the

inflammatory response in mice (96). Furthermore, GABA can
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1533343
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1533343
enhance intestinal barrier function by regulating intestinal mucin

and tight junction proteins (97). Sukhraj Kaur et al. found that L18,

a promising GABA-secreting bacterium, could increase the

concentration of connexin proteins and regulate the intestinal

microbiota (98). In another animal experiment, Wu et al. found

that Lactobacillus plantarum L5, a high GABA-producing strain,

reshaped the intestinal microbiota composition and increased

GABA levels in mice, thereby alleviating central nervous system

inflammation (99). Nonetheless, this field continues to face certain

limitations, including ambiguous mechanisms of action and the

absence of standardized clinical protocols. Ongoing research

endeavors to elucidate the interactions between the gut

microbiota and neurotransmitters in the post-stroke condition,

potentially yielding novel insights and strategies for the

development of enhanced stroke treatments.
3.2 Metabolic regulation

The gut microbiota plays a significant role in the host’s

metabolic processes, influencing the digestion, absorption, and

metabolism of various nutrients (100, 101) (Figure 2).
Frontiers in Immunology 05
3.2.1 SCFAs metabolism regulation
The gut microbiota significantly influences the synthesis and

degradation of fatty acids. It possesses the capability to decompose

dietary fiber via fermentation processes, leading to the generation of

SCFAs such as acetic acid, propionic acid, and butyric acid (102).

SCFAs play a multifaceted role in physiological processes, including

the regulation of epithelial barrier function and the immune system.

They contribute to the maintenance of intestinal mucosal integrity

and possess the ability to traverse the blood-brain barrier (BBB),

thereby influencing neurotransmitter synthesis and release (91).

Additionally, SCFAs are involved in the regulation of nervous

system function and provide an energy source for neurons, which

enhances neuronal survival and facilitates functional recovery

(103). Furthermore, SCFAs exhibit neuroprotective properties and

modulate inflammatory cytokines by inhibiting the activation of

microglia and astrocytes (104). They also influence the regulation of

the occludin protein by stimulating microglia, thereby impacting

the integrity of the BBB (104). Ning et al. identified a significant

enrichment of Escherichia coli, Ruminococcaceae, Enterobacter

cloacae, Streptococcus, and Lactobacillus in the intestinal

microbiota of rats with cerebral infarction. This enrichment of

opportunistic pathogens was frequently associated with a poor
FIGURE 2

Gut microbiota can affect the brain through neural, endocrine, immune and other pathways. Gut microbiota can stimulate gut neurons, which
transmit signals to the brain through the vagus nerve. Meanwhile, vagus nerve stimulation can not only promote nerve repair, but also promote the
regulation of gut microbiota. In addition, we can affect brain health by regulating the metabolites of gut microbiota and the synthesis and
metabolism of neurotransmitters, and stimulate the immune system to release cytokines to affect the functions of the gut and brain through
immune pathways. The brain affects the physiological function of the gut through the hypothalamic-pituitary-adrenal axis, and indirectly regulates
the microbial community.
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prognosis. Conversely, an increased presence of SCFAs-producing

bacteria, including Fusicatenibacter, Ruminococcaceae,

Eisenbergiella, and Faecalibacterium, was often correlated with

more favorable prognostic outcomes (105). Gu et al .

demonstrated that the intestinal microbiota has the potential to

inhibit hippocampal neuron apoptosis in rats experiencing cerebral

ischemia by elevating systemic levels of SCFAs. Furthermore,

prolonged supplementation with SCFAs was shown to mitigate

the inflammatory response and enhance neuroprotective effects

following cerebral ischemia (106). Furthermore, Zhao et al.

demonstrated that the intervention in cerebral ischemia through

the transplantation of SCFAs-rich bacteria and the supplementation

of butyrate constitutes an effective approach by modulating the

intestinal microbiota (107). Butyrate is highly valued for its ability

to maintain the integrity of the intestinal barrier function, thereby

promoting intestinal health and epithelial integrity. This is achieved

through the stimulation of tight junction protein expression and the

production of mucin by goblet cells (108). Moreover, butyrate

demonstrates significant potential in lowering blood lipid levels,

modulating hemorheology, inhibiting histone deacetylase activity,

reducing inflammation, promoting angiogenesis, and maintaining

the integrity of the BBB (109–111). To summarize, the gut

microbiota and SCFAs contribute to neurological recovery

following a stroke through a variety of mechanisms.
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3.2.2 Regulation of BAs metabolism
After a stroke, the regulation of intestinal microbiota and BAs

plays a crucial role in facilitating neural recovery. The gut

microbiota and BAs have a mutual relationship, where the gut

microbiota processes BAs and controls their makeup, while BAs can

impact the structure and operation of the microbial community.

Both have crucial functions in the digestive system and metabolic

disorders (112–114). The metabolic capabilities of intestinal

bacteria with respect to BAs vary, leading to alterations in the

BAs spectrum composition as the intestinal microbiota changes

(115). Certain BAs compositions may positively influence neural

recovery following a stroke (116). For example, some BAs

metabolites may possess anti-inflammatory, antioxidant, or

neuroprotective properties (117). Additionally, BAs are crucial in

the digestion and absorption of fats and in the regulation of glucose,

steroid levels, and energy homeostasis (118–120). Collectively, these

functions contribute to neurological recovery.

BAs are capable of activating a range of receptors, including the

farnesoid X receptor (FXR) and the G protein-coupled BAs receptor

1 (TGR5). These receptors are extensively expressed within the

nervous system and play a crucial role in modulating neuronal

function and survival (121). Activation of FXR and TGR5

influences neuroinflammatory responses, neurogenesis, and

neuroplasticity, thereby facilitating neural recovery following
FIGURE 3

The regulation of gut microbiota can be achieved in many ways. Supplementation of probiotics and prebiotics, fecal microbiota transplantation,
dietary intervention, rational use of antibiotics and traditional Chinese medicine can increase the abundance of beneficial bacteria, reduce the
abundance of opportunistic bacteria, maintain the balance of intestinal flora and promote health.
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stroke (122). Gao et al. found that in hyperlipidemic mice, BAs

synthesis increased concomitantly with elevated levels of fecal

alkaline phosphatase and Ruminococcaceae UCG-010, and was

facilitated via the intestinal FXR-fibroblast growth factor 19

(FXR-FGF19) axis, thereby enhancing lipid absorption (123). In a

separate study, He et al. reported a decrease in intestinal

microbiota-mediated BAs, particularly ursodeoxycholic acid

(UDCA), in patients with brain stroke. In murine models, the

restoration of UDCA was achieved by inhibiting NLRP3-related

pro-inflammatory cytokines through the TGR5/PKA signaling

pathway, which reduced the mouse infarction area, and improved

neurological function and cognitive function (124). The regulation

of BAs by the gut microbiota is mediated through various

mechanisms, which interact with each other to promote neural

recovery after stroke.

3.2.3 Trp metabolic regulation
Initially, Trp can be metabolized into 5-hydroxyTrp (5-HTP)

within the central nervous system and enteric chromaffin cells,

subsequently leading to the production of 5-HT (125). Serotonin

plays a crucial role in modulating adaptive responses and reactions

to environmental changes, and is significantly involved in mood

regulation, sleep modulation, cognitive function, and

gastrointestinal motility (126). In animal models of cerebral

infarction, 5-HT receptors have been identified as promising

targets for neuroprotective strategies (127). Agonists targeting the

5-HT1A receptor have shown potential in preventing neuronal

damage resulting from transient focal or global cerebral ischemia

(128). Secondly, the majority of Trp is metabolized via the canine

uric acid pathway. In this process, Trp is initially converted into N-

formylkynurenine through the action of either indoleamine 2,3-

dioxygenase (IDO) or Trp 2,3-dioxygenase (TDO). Subsequently, it

undergoes a series of enzymatic reactions to produce canine uric

acid, 3-hydroxycanine uric acid, and 3-hydroxyorthoaminobenzoic

acid (129). The metabolic products of this pathway possess

functions related to immune regulation, antioxidation,

neurotransmission, neuroprotection, and modulation of neural

plasticity, all of which play significant roles in the pathogenesis of

neuroinflammatory diseases (130–132). Moreover, intestinal

microorganisms possess the capability to directly metabolize Trp

into indole and its derivatives. These compounds can modulate the

expression of both pro-inflammatory and anti-inflammatory

cytokines, thereby contributing to the maintenance of intestinal

homeostasis. The preservation of intestinal homeostasis is crucial

for mitigating inflammatory responses and safeguarding the

function of the intestinal mucosal barrier (133, 134). Improving

the functionality of the intestinal mucosal barrier can reduce the

translocation of harmful substances, such as endotoxins, into the

circulatory system. This reduction subsequently diminishes

systemic inflammatory responses and indirectly supports recovery

post-stroke. Shin’s research, utilizing clinical trials and

metabolomics analysis, demonstrated that indole-3-propionic acid

(IPA), synthesized by gut microbiota, exerts a protective effect on

microglia against inflammatory damage. This protective role

enhances neuronal function, thereby establishing IPA as a crucial
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mediator in the gut-brain axis interaction (135). Giovanni et al. also

found that the intestinal microbiota and the serum metabolite IPA

derived from intestinal bacteria can promote axon regeneration and

functional recovery through immune-mediated mechanisms (136).

3.2.4 Regulation of metabolism of TMAO
TMAO primarily originates from choline, phosphatidylcholine,

and L-carnitine found in food. The intestinal microbiota metabolizes

these compounds into trimethylamine (TMA), which is subsequently

absorbed into the liver and oxidized by flavinmonooxygenase (FMO)

to form TMAO (137–139). Elevated levels of TMAO are regarded as

a risk factor for cardiovascular disease, which in turn is a significant

risk factor for stroke (140, 141). TMAO may contribute to an

increased risk of stroke by promoting atherosclerosis, enhancing

platelet activity, and elevating the risk of thrombosis (142–144).

TMAO is closely related to the risk of stroke, the severity of the

stroke, and the prognosis (145, 146).

Following a stroke, both the inflammatory response and

oxidative stress are pivotal in contributing to neurological damage

and dysfunction (29). TMAO can penetrate the central nervous

system, thereby inducing neuroinflammation and immune

responses, compromising the integrity of the BBB, and elevating

the expression of amyloid-beta (Ab) and hyperphosphorylated tau.

This process involves the regulation of several signaling pathways,

including NLRP3/ASC/caspase-1, PERK/eIF2a/ER-stress, SIRT3/
SOD2-mtROS, SIRT1/p53/p21/Rb, TXNIP-NLRP3, and PERK/

Akt/mTOR. These pathways collectively stimulate inflammation,

apoptosis, endoplasmic reticulum stress, and the production of

reactive oxygen species (ROS) (147). Sun et al. identified that

TMAO facilitates the activation of the NLRP3 inflammasome in

microglia via the FTO/IGF2BP2 pathway, thereby exacerbating

neurological damage resulting from ischemic stroke (148).

Furthermore, TMAO initiates pro-inflammatory pathways, such

as NF-kB signaling, leading to the activation of inflammatory cells

and an increase in the secretion of inflammatory mediators. These

processes collectively enhance inflammation and oxidative stress,

further impair neurological function, and elevate the risk of stroke

recurrence (29, 149). Moreover, TMAO plays a role in modulating

the expression of various microRNAs (miRNAs) that are involved

in neuroinflammation, oxidative stress, and neuronal apoptosis.

The gut microbiota-miRNA-brain axis has emerged as a novel

mechanism linking gut dysbiosis to neurological disorders (150).

The regulation of TMAO levels by the gut microbiota may confer

neuroprotection by mitigating inflammation and oxidative stress,

thereby facilitating neurological recovery post-stroke (151, 152).

Consequently, maintaining optimal TMAO levels and a balanced

gut microbiota may represent a promising therapeutic strategy for

the treatment and recovery of stroke complications.
3.3 Immune regulation

Gut microbiota and immune regulation are closely related and

jointly affect stroke. Microbiota plays a role in the pathogenesis of

stroke through metabolites and balance, and immune regulation
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imbalance affects inflammation and immune cells. They interact

with each other in the whole process of stroke, and in-depth

exploration of their relationship is conducive to the prevention

and treatment of stroke (153) (Figure 2).

3.3.1 Regulate intestinal immunity and maintain
intestinal barrier integrity

The intestinal microbiota engages in interactions with both

innate immune cells, including macrophages and dendritic cells,

and adaptive immune cells, such as T cells and B cells, within the

intestinal environment. These interactions play a crucial role in

modulating the activity and function of these immune cells, thereby

maintaining a balanced state of intestinal immunity (154, 155).

Mahajan et al. provided evidence through murine studies that

Lactobacillus strains 3630 and 3632 possess the capability to

sustain intestinal immune homeostasis (156). In addition, the

transcription factor GATA4 is related to and interacts with

intestinal flora. Intestinal flora can affect the expression and

function of GATA4 through metabolites, immune regulation,

intestinal barrier maintenance and other ways, and GATA4 is

also closely related to intestinal flora in the regulation of

intestinal related physiological processes. Natalia Shulzhenko

et al. found in mouse experiments that transcription factor

GATA4 controlled intestinal bacterial colonization and

inflammatory tissue immunity by regulating retinol metabolism

and luminal IgA. In mice without GATA4 expression, commensal

segmental filamentous bacteria promote a pathogenic inflammatory

immune response that disrupts barrier function (157). Sandra

Morais Cardoso et al. further revealed that the microbial toxin b-
n-methylamino-L-alanine (BMAA) can lead to the depletion of

segmented filamentous bacteria (SFB), which play a crucial role in

regulating intestinal immunity. This depletion results in dysbiosis,

the migration of immune cells, heightened intestinal inflammation,

and impaired barrier integrity. Furthermore, BMAA has been

shown to induce mitochondrial dysfunction, thereby activating

neuronal innate immunity (158).

Additionally, various immune cell types, including regulatory T

cells (Treg), regulatory B cells (Breg), and innate lymphoid cells (ILCs),

as well as immune-suppressive cells like tolerogenic macrophages

(tMacs), tolerogenic dendritic cells (tDCs), myeloid-derived

suppressor cells (MDSCs), and inflammatory cells such as

inflammatory macrophages (iMacs), CD4+ T helper cells (Th1, Th2,

Th17), natural killer T cells (NKT), and neutrophils, are capable of

expressing diverse receptors for microbial metabolites, including

SCFAs, BAs, and TMAO (159, 160). The activation of these

receptors not only promotes the differentiation and function of

immune-suppressive cells but also inhibits inflammatory cells,

leading to the reprogramming of the local and systemic immune

system to maintain the individual’s internal environment balance

(54, 160). For example, SCFAs influence the function of the

intestinal barrier and systemic immunity through direct interactions

with intestinal epithelial cells, phagocytes, B cells, plasma cells, and

regulatory Tregs (161). Concurrently, BAs perform their

immunomodulatory functions by binding to BAs receptors (BARRs)

present on monocytes, tissue-resident macrophages, Th17 cells, Tregs,

dendritic cells, and NKT cells (162).
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3.3.2 Reduce neuroinflammation
After a stroke, a neuroinflammatory response is triggered,

leading to neuronal damage and neurological dysfunction. The

gut microbiota plays a crucial role in modulating the immune

system by inhibiting the activation of inflammatory cells and

reducing the secretion of pro-inflammatory mediators, such as

tumor necrosis factor-a and interleukin-1b, thereby mitigating

neuroinflammation (163, 164). Additionally, specific gut

microbiota can promote the proliferation of regulatory T cells

and suppress excessive immune responses, thereby safeguarding

the nervous system (32). Wang et al. demonstrated that Th17 cells,

specific to the intestinal environment, possess immune regulatory

functions capable of inhibiting effector T cell activity both in vitro

and in vivo, mediated by interleukin-10 (IL-10) and the

transcription factor c-Maf (165). Additionally, microglia, as the

innate immune cells of the central nervous system, become

activated post-stroke, subsequently releasing inflammatory

mediators that exacerbate neuronal damage (166). Lu et al. found

that tofacit inib (TOF) can regulate the activation of

neuroinflammatory microglia after neurological injury through

the JAK/STAT pathway, which has important implications for

immunotherapy of neurological injury (167). Jeffrey L et al.

demonstrated that the equilibrium between neurotoxic and

neuroprotective astrocytes is modulated by a specific pool of

cyclic adenosine monophosphate (cAMP) originating from

soluble adenylate cyclase. Furthermore, they found that the

proliferation of neuroprotective astrocytes suppresses microglial

activation and the subsequent differentiation into neurotoxic

astrocytes, thereby enhancing neuronal survival (168).

In summary, MGBA promotes recovery after stroke through

various mechanisms, including neural regulation, metabolic

regulation, and immune regulation. By further studying these

mechanisms, it is hoped that new strategies and methods for the

prevention and treatment of stroke can be provided.
4 Therapeutic strategies based on
gut microbiota

Emerging targeted therapeutic strategies centered on the

modulation of gut microbiota present promising avenues for the

prevention and treatment of stroke. These strategies encompass the

administration of probiotics to restore gut equilibrium, the use of

prebiotics to promote the growth of beneficial bacteria, the

implementation of FMT to re-establish a healthy microbiome, and

dietary interventions such as the Mediterranean diet, which is

recognized for its anti-inflammatory and neuroprotective properties.

Probiotics, especially strains like Bifidobacterium and Lactobacillus,

have been demonstrated to improve gut barrier integrity, mitigate

systemic inflammation, and promote neural health. FMT offers a novel

technique for restoring beneficial gut microbiota, whereas the

consumption of prebiotics cultivates a conducive gut environment.

When integrated with dietary modifications, these strategies have the

potential to enhance stroke outcomes by optimizing gut health and

minimizing risk factors (Figure 3).
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In the investigation of therapeutic and preventive strategies for

stroke, the significance of gut microbiota is gaining increasing

recognition. This section seeks to elucidate treatment strategies by

conducting an in-depth analysis of the interaction between gut

microbiota and stroke, with a focus on modulating the balance of

the gut microbiota.
4.1 Application of probiotics and prebiotics

Probiotics, as active microorganisms, play a crucial role in

regulating the balance of gut microbiota, enhancing intestinal

barrier function, inhibiting the proliferation of pathogenic

bacteria, and mitigating inflammatory responses (56, 169).

Numerous studies have indicated that specific probiotic strains,

such as Bifidobacterium and Lactobacillus, can improve intestinal

function, modulate immune responses, and optimize metabolic

health in individuals recovering from stroke through various

mechanisms (170–172). These findings underscore the potential

therapeutic benefits of probiotics in the management and recovery

of stroke. Bifidobacterium inhibits the growth of harmful bacteria to

maintain the balance of intestinal flora, strengthen the intestinal

barrier function, reduce the inflow of harmful substances into the

blood, and reduce systemic inflammatory response to protect the

nervous system (173). It is also involved in the metabolism of

neurotransmitters and affects the neural activity of the brain

through the transmission of signals by MGBA. In animal

experiments and some human studies, it has shown potential

neuroprotective value in the prevention of neurodegenerative

diseases and delay of cognitive decline (174, 175). Lactobacillus

colonize the intestinal mucosa, inhibit harmful bacteria, optimize

the structure of bacterial flora, enhance the integrity of the intestinal

barrier, reduce inflammatory factors into the blood and avoid brain

neuroinflammation. It regulates the immune function of the body,

inhibits excessive inflammation, communicates with the brain

through MGBA, and plays a positive role in improving the

emotional problems associated with intestinal tract, relieving

neuroinflammation related to neurological diseases, and

promoting the recovery of nerve function, reflecting the

neuroprotective effect (176, 177). In animal models of stroke,

probiotic supplementation can inhibit neuronal apoptosis and

improve neurological dysfunction, showing anti-inflammatory

and antioxidant properties (171). In a study by Deng et al., it was

confirmed that the treatment effect of probiotics combined with

enteral nutrition group was better than that of enteral nutrition

alone group, and probiotics combined with enteral nutrition

significantly reduced the occurrence of complications such as

esophageal reflux, abdominal distension, constipation, diarrhea,

gastric retention and gastrointestinal bleeding (178). In addition,

the results of Huang et al. show that supplementing rats with

Lactobacillus MH-022 can significantly improve motor function

deficits, preserve dopaminergic neurons, enhance antioxidant

capacity, and alleviate neuroinflammation by restoring

mitochondrial function (179). In addition, Lu et al. improved the

efficacy of Lactiplantibacillus plantarum (LP) in the intestine by

using a layer-by-layer encapsulation technology, restoring the
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disordered intestinal microbial composition in mice, significantly

increasing the level of SCFAs, and al leviat ing brain

neuroinflammation and neuron damage in mice (180).

Prebiotics are non-digestible compounds that selectively enhance

the growth and activity of beneficial intestinal microbiota, as they are

not absorbed by the human body. Common examples of prebiotics

include fructooligosaccharides, inulin, and galactooligosaccharides,

among others (181). Prebiotics can modulate the composition of the

gut microbiota by fostering the proliferation of beneficial bacterial

species and enhancing the intestinal microecological environment.

For instance, Zhao et al. found that Puerariae Lobatae Radix-resistant

starch(PLR-RS) can improve intestinal flora imbalance, enrich

Akkermansia and Bifidobacterium, and reduce brain damage and

intestinal barrier dysfunction caused by ischemic stroke (182).

Research conducted by Zhu et al. demonstrated that a-d-1, 3-
glucan effectively augmented the abundance of intestinal bacterial

taxa such as Fltibacter, Butyricicoccus, and Oscillibacter, as well as

their metabolites, including lipopolysaccharides (LPS), BAs, and

SCFAs. These changes resulted in improvements in inflammatory

responses, lipid metabolism, and energy metabolism signaling

pathways (183). Additionally, Li et al. demonstrated that inbred

rats could be protected by inulin through the MGBA pathway in

the medial ganglionic eminence neurons. Inulin significantly

upregulated the mitogen-activated protein kinase signaling pathway

in the hippocampus of rats and altered the composition of the gut

microbiota, leading to an increase in the abundance of Lactobacillus

and Clostridium_sensu_stricto_1 in the gut of rats, while reducing the

abundance of Ruminococcus UCG_005, Prevotella_9, Oscillospiraceae,

and Clostridia UCG_014 (184). In the future, with further research, it

is expected that more precise and effective combinations of probiotics

and prebiotics will be developed, providing new treatment strategies

for stroke patients.

Both probiotics and prebiotics focus on the regulation of

intestinal flora, and play a positive role in reducing the risk of

stroke and promoting the rehabilitation of stroke patients by

affecting the intestinal barrier function, metabolic function, and

interacting with the central nervous system with the help of MGBA

(34, 185). However, their specific effects are restricted by many

factors, such as type, dose, duration of use, and the initial state of

individual intestinal flora and overall health status. More in-depth

research is still needed to clarify the best application method and

exact effect in clinical practice (186). In conclusion, probiotics and

prebiotics have shown potential positive effects on the prevention

and rehabilitation of stroke. Reasonable intake of foods rich in them

or the use of related supplements can be used as a beneficial means

to assist the prevention and treatment of stroke, but should not

replace regular medical treatment.
4.2 Fecal microbiota transplantation

FMT involves transferring the fecal microbiota of a healthy

donor to the gut of a patient, which is expected to regulate the

patient’s gut microbiota balance and subsequently affect the

immune, nervous, and other physiological systems (37).

Currently, FMT has shown good effects in treating some
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intestinal diseases such as Clostridium difficile infection and

inflammatory bowel disease (187, 188). In stroke treatment, FMT

also shows potential (32, 189). Some studies suggest that FMT may

bring new hope for stroke patients’ recovery by regulating

inflammation, promoting nerve regeneration, etc (92, 190). For

example, FMT can improve inflammation by restoring microbial

composition and function, and it can promote neuroprotection by

lowering IL-17, IFN-g, and Bax, and increasing Bcl-2 expression

(189). Additionally, the gut microbiota and urate metabolism have

significant protective effects on stroke, Zhang et al. further verified

that blueberry extracts, through interactions with Prevotella,

resulted in significant changes in urate levels, Trp, and

indoleamine 2,3-dioxygenase levels, and played a neuroprotective

role (191). Guo et al. proved that SCFAs mediated by MGBA

improved brain stroke through DZSM. DZSM can significantly

change the composition of the gut microbiota and significantly

increase the production of SCFAs, thereby regulating the PI3K/

AKT/caspase-3 pathway to inhibit neuronal cell apoptosis. FMT

can reproduce the beneficial effects of DZSM on brain stroke and

SCFAs (192).

However, research in this field is still in its early stage, and FMT

has many points worth paying attention to for stroke patients. In

safety, since stroke patients’ intestinal function may be affected by

diseases, they are prone to intestinal flora imbalance after FMT,

causing gastrointestinal discomfort such as diarrhea and abdominal

distension. In addition, despite strict screening of donors, there is

still a risk of transmission of unknown pathogens. At the same time,

the body may also produce immune responses due to foreign

bacteria, such as fever and rash. Threat to patient health (193). In

terms of ethical considerations, fully informed consent of donors

should be guaranteed, their privacy should be strictly protected, the

principle, effects and risks of treatment should be fully informed to

patients and their families, and their independent choice should be

respected. Strict ethical review procedures should be followed

especially for exploratory applications (194). In terms of clinical

success rate, it is still in the exploratory stage in the treatment of

stroke. Although some studies have shown that it has a certain

positive effect on improving neurological function and promoting

rehabilitation, it is affected by many factors such as the intestinal

flora of the donor, the selection of transplantation method and

timing, and individual differences (such as stroke type, basic health

status, initial intestinal state, etc.). It is still difficult to define an

exact success rate data, and the overall application needs to be

carefully evaluated and weighed against the pros and cons (92).
4.3 Dietary intervention

Dietary intervention is making significant progress in

promoting recovery from stroke.

First, the Mediterranean diet has received considerable

attention. This dietary pattern is rich in fruits, vegetables, whole

grains, legumes, nuts, and olive oil, with a moderate intake of fish

and poultry, and a limited intake of red meat and sweets (195, 196).

Research has indicated that the Mediterranean diet can lower the
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chances of experiencing a stroke and aid in the recovery of stroke

survivors. The combination of its abundant antioxidants,

unsaturated fatty acids, and dietary fiber has been shown to

decrease inflammation, enhance vascular function, control lipid

and glucose levels, and create a beneficial physiological

environment for the recovery of neural function (197, 198).

Secondly, fermented foods are rich in probiotics, such as

Bifidobacterium and Lactobacillus acidophilus in yogurt and lactic

acid bacteria in pickles. These probiotics can regulate intestinal

flora, inhibit the growth of harmful bacteria, enhance intestinal

barrier function, reduce intestinal endotoxin and inflammatory

factors into the blood circulation, and thus reduce the body’s

inflammatory response (199, 200). At the same time, g-
aminobutyric acid and other components in fermented foods

have a regulatory effect on the nervous system. When

neuroinflammatory reaction occurs in the brain after stroke, it

helps to reduce the damage of inflammation to nerve cells, improve

the cognitive function and motor function of patients by affecting

the metabolism of neurotransmitters and promoting the

regeneration of nerve cells. Improve quality of life (201, 202). It

also helps to improve the problems of slow intestinal peristalsis,

weakened digestive function and constipation caused by limited

activity and neurological function changes in stroke patients, and

avoid the increase of abdominal pressure and blood pressure

fluctuation caused by forced defecation, which is conducive to the

stability and rehabilitation of the disease (199).

Dietary fiber also has many positive effects to cerebral apoplexy.

It can reduce blood pressure by increasing the concentration of

nitric oxide and reducing the absorption of sodium in the intestine.

Reduce the absorption and synthesis of cholesterol and triglyceride

to reduce blood lipids, reduce the level of inflammation, and reduce

the chronic inflammatory reaction in the whole body including the

brain (203); Fiber can provide substrates for the fermentation of

intestinal flora and regulate the structure of intestinal flora, which is

conducive to the production of SCFAs (204). Dietary fiber can

combine with some substances such as choline in the intestine to

reduce the formation of TMA and TMAO (205). In addition,

dietary fiber can promote intestinal peristalsis, improve intestinal

function, prevent constipation, and avoid blood pressure

fluctuations caused by forced defecation (206). These effects can

help to reduce the risk of stroke and promote the rehabilitation of

stroke patients.

Polyphenols as a natural compounds exist widely in plant foods,

have important influence on cerebral apoplexy. In terms of reducing

the risk of disease, polyphenols regulate the flora, directly affect

metabolism to promote the synthesis of SCFAs, and inhibit the

production of TMA by anti-oxidation, anti-inflammation, and

regulation of related metabolism, thereby reducing TMAO (31). It

cleans free radicals with strong antioxidant capacity, reduces

vascular endothelial damage, and maintains vascular health by

inhibiting the production of inflammatory factors with anti-

inflammatory properties. It can also regulate lipid metabolism,

improve vascular endothelial function, and reduce the hidden

dangers of stroke caused by atherosclerosis in many ways (207).

In the rehabilitation stage of stroke patients, polyphenols can cross
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the BBB, reduce neuroinflammation, protect nerve cells, and

promote the recovery of nerve function. At the same time, they

can continuously improve vascular conditions, reduce the risk of

thrombosis, regulate the immune and metabolic functions of the

body to maintain the stability of the internal environment, and help

patients recover better. It is a beneficial component to assist in the

prevention and treatment of stroke, but it cannot replace regular

medical treatment (208).

Omega-3 and omega-6 are essential polyunsaturated fatty acids

for human body, which have a non-negligible effect on stroke (209).

Omega-3 fatty acids (such as a-linolenic acid, EPA, DHA, etc.) can

regulate blood lipids, reduce triglycerides, optimize the proportion

of cholesterol, play an anti-inflammatory effect to reduce chronic

inflammation, improve vascular endothelial function to ensure

smooth blood flow, and reduce neuroinflammation, promote

nerve cell regeneration, and improve hemorheology to help

rehabilitation after stroke (210, 211). Omega-6 fatty acids (such as

linoleic acid, etc.) are involved in normal physiological metabolism

of human body and maintain cellular structure when they are

present in an appropriate amount, but excessive intake can easily

cause inflammatory response and increase the risk of stroke. In

general, the reasonable intake ratio and amount of the two are of

great significance for the prevention of stroke and the rehabilitation

of patients (212). In addition, increasing the intake of food rich in

omega-3 and omega-6 polyunsaturated fatty acids has shown

positive effects. Fish, flaxseeds, and walnuts are rich in omega-3

and omega-6 polyunsaturated fatty acids, which have anti-

inflammatory, anti-thrombotic, and neuroprotective effects.

Supplementing omega-3 and omega-6 polyunsaturated fatty acids

can improve cognitive and motor function recovery in stroke

patients (213, 214).Takeo Sato et al. have also shown that omega-

3 and omega-6 polyunsaturated fatty acids exhibit cardiovascular

protective effects as well (215). Additionally, individualized

nutritional support is also an important direction for dietary

intervention. Tailored dietary plans are created for each patient,

taking into account factors such as age, physical health, and any

coexisting medical conditions, in order to provide the necessary

nutrients for the body to recover effectively (216, 217).

Finally, we need to try to avoid diets high in salt, sugar, fat,

excessive alcohol consumption, and diets low in dietary fiber, all of

which may increase stroke risk. High-salt diet can increase the risk of

stroke by increasing blood pressure, high-sugar diet can easily cause

blood glucose metabolism disorders and accelerate vascular lesions,

resulting in increased risk, high-fat diet can promote the formation of

atherosclerotic plaques and induce the disease, excessive alcohol

consumption can affect metabolism and stimulate blood vessels,

and constipation and blood pressure fluctuations caused by lack of

dietary fiber may also cause stroke (218, 219).
4.4 Drug therapy

In recent years, significant research advancements have been

made in modulating the gut microbiota with pharmacological

interventions to enhance stroke recovery. Initially, antibiotics are
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employed in specific instances to modulate the gut microbiota

(220). While the administration of antibiotics necessitates careful

consideration to prevent detrimental effects on microbiota balance,

their judicious use in severely infected stroke patients can effectively

eliminate pathogenic bacteria, thereby facilitating conditions

conducive to subsequent gut microbiota reconstruction (221). For

instance, rifaximin modulates the composition of the gut

microbiota, enhancing the prevalence of Ruminococcaceae and

Lachnospiraceae, elevating brain butyrate levels, and boosting the

production of anti-inflammatory factors by microglia, thereby

fostering neuroprotection (222). Secondly, increasing attention is

being paid to developing small molecule compounds to regulate the

metabolic activity or growth of specific gut bacteria. Gao et al.

developed turmeric-derived nanovesicles (TNVs), and oral TNVs

can exert anti-inflammatory effects by regulating the gut

microbiota, repairing damaged intestinal barrier, and reshaping

the phenotype of macrophages (223). Moreover, there has been a

significant focus on utilizing traditional Chinese medicines(TCMs)

to modulate the gut microbiota to facilitate stroke recovery. Many

TCMs have the characteristics of multi-component and multi-

target, and can comprehensively regulate the gut microbiota,

immune system, and nervous system (224, 225). Certain TCMs

formulations have been identified to augment the presence of

beneficial microbiota, diminish the prevalence of pathogenic

bacteria, and exhibit antioxidant, anti-inflammatory, and

neuroprotective effects. For example, Ganluyin (GLY) has been

shown to stabilize gut microbiota by increasing the levels of

Firmicutes while decreasing the abundance of Proteobacteria and

Bacteroidetes. Additionally, it enhances the integrity of the intestinal

mucosal barrier in murine models and inhibits the LPS/TLR4/NF-

kB inflammatory pathway originating in the gut (226). Another

study found that Huanglian and Houpu have been shown to boost

the levels of beneficial bacteria like Akkermansia, Allobaculum,

Alloprevotella, and Blautia, while decreasing the levels of

pathogenic bacteria such as Shigella and Clostridium spore-

forming bacteria (227).

As technology advances and research deepens, adjusting the gut

microbiota through pharmaceutical treatment may become an

important component of the comprehensive treatment of stroke,

bringing better prospects for recovery for patients.
5 Challenges and prospects

5.1 Challenges

Despite the swift advancements in MGBA research related to

cerebral infarction, the field continues to encounter several

challenges. These include a limited understanding of the

underlying mechanisms, a paucity of clinical research, difficulties

in developing effective treatment strategies, and constraints in

detection technologies.

Initially, the intricate nature of signaling pathways is

noteworthy. The signaling within the MGBA is facilitated through

a multitude of pathways, encompassing the immune system,
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neurotransmitters, metabolic products, the enteric nervous system,

and the vagus nerve, among others (38). Nevertheless, the current

comprehension of the interactions among these pathways and their

collective influence on the onset and progression of stroke remains

insufficiently developed (228). For instance, while some studies

have explored the effects of metabolic products such as SCFAs, BAs,

and TMAO on the MGBA, the precise mechanisms of action and

the interrelationships among these factors require further

elucidation (41). Second, the impact of individual differences

must be considered. The gut microbiota composition of each

individual is distinct, influenced by a combination of genetic

factors, dietary habits, lifestyle choices, and a multitude of other

variables. This variability poses a significant challenge to the

generalizability of research outcomes, complicating the

development of standardized treatment protocols or preventive

strategies (228, 229). Third, large-scale clinical trials are absent.

Although certain studies have investigated the relationship between

the MGBA and stroke, as well as the feasibility of related therapeutic

approaches, no large-scale, multicenter clinical trials have been

conducted to validate these findings (23, 230). This lack of robust

clinical evidence hinders the widespread recognition and

application of potential treatment strategies, such as FMT, whose

safety and efficacy necessitate further clinical validation (92).

Fourth, the uncertainty of probiotics and prebiotics. Probiotics

and prebiotics are currently the focus of MGBA-based treatments,

but their effects are uncertain. The role of different probiotic strains

in stroke may be different, and the survival ability, colonization

ability, and interaction with the host gut microbiota of probiotics

need further research (231, 232). Fifth, the safety and ethical issues

of FMT. FMT, as a relatively novel therapeutic approach, has shown

potential in some studies but also has safety and ethical concerns

(233). For example, the fecal matter transferred may contain

pathogens, leading to infections and other complications; at the

same time, strict standards and regulations are needed for the

selection of fecal sources and donor screening (194). Sixth, the

limitations of detection technologies. Currently, commonly used

methods for gut microbiota detection include fecal sample analysis

and gene sequencing, but these methods have certain limitations

(234, 235). For example, fecal samples can only reflect part of the

gut microbiota information and the collection, preservation, and

processing of samples may affect the accuracy of detection results

(236); although gene sequencing technology can provide more

detailed microbial information, it is expensive and requires

professional knowledge and skills for data analysis and

interpretation (237, 238). Seventh, challenges in the detection of

the MGBA function. The MGBA represents a complex detection

methodology that explores the intricate interactions among gut

microbiota, neurotransmitters, metabolites, intestinal barrier

function, and immune indicators to investigate the relationship

between the gut microbiota and the brain. Presently, there is a lack

of direct and precise detection indicators and methodologies

capable of accurately reflecting the interaction between the gut

microbiota and the brain. This limitation hinders the investigation

of the MGBA mechanism in cerebrovascular diseases (239, 240).
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5.2 Prospects

The association between the MGBA and stroke is anticipated to

be further clarified through integrative multiomics approaches,

encompassing genomics, transcriptomics, proteomics, and

metabolomics, among others, alongside the utilization of advanced

neuroimaging modalities such as magnetic resonance imaging (MRI)

and positron emission tomography (PET). The interplay between gut

microbiota and the host, as well as the correlation between alterations

in gut microbiota and modifications in brain structure and function,

will be comprehensively examined to elucidate the underlying

mechanisms (241, 242). In clinical practice, individualized

treatment plans can be developed based on the composition and

function of the patient’s gut microbiota, such as selecting probiotic

strains or prebiotic interventions to address dysbiosis in the gut

microbiota (243); combining MGBA-based therapy with traditional

stroke treatment to achieve synergistic effects (178); developing drugs

that target gut microbiota metabolites or directly regulate MGBA

function; and improving prevention strategies by establishing early

screening methods based on gut microbiota detection, intervening in

high-risk populations promptly, and opening up new avenues for the

prevention and treatment of stroke to improve patient

outcomes (244).
6 Conclusion

In conclusion, the gut microbiota plays a vital role in the onset,

progression, and management of cerebral infarction. Dysbiosis

within the gut microbiota is significantly correlated with an

increased risk of cerebral infarction, suggesting that modulation

of the gut microbiota may provide innovative strategies for the

prevention and treatment of this condition. Gut microbiota

dysbiosis may elevate the risk of cerebral infarction through

multiple mechanisms, including alterations in metabolic products,

modulation of the immune system, and impacts on the

neuroendocrine system. Conversely, cerebral infarction can

exacerbate the imbalance of gut microbiota. Regarding prevention

and therapeutic strategies, the utilization of probiotics and

prebiotics, FMT, dietary interventions, and pharmacotherapy

have demonstrated potential efficacy. These methodologies have

enhanced the composition and functionality of the gut microbiota,

thereby mitigating inflammation in patients and facilitating partial

recovery of neural function. Nonetheless, these approaches remain

contentious and present several issues requiring further

investigation, particularly concerning the stability of therapeutic

effects and safety. Future research should aim to elucidate the

mechanisms underlying the interaction between the gut

microbiota and cerebral infarction, thereby establishing a

theoretical foundation for the development of more effective

therapeutic interventions. This includes the creation of novel

pharmacological agents that modulate the metabolic byproducts

of the gut microbiota or regulate the signaling pathways between the

gut microbiota and the brain. Additionally, it is essential to develop
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precise treatment plans tailored to the individual characteristics of

patients. To facilitate the clinical application of gut microbiota

regulation in the treatment of cerebral infarction, strengthening

interdisciplinary collaboration is imperative. In summary, a

complex relationship exists between the gut microbiota and

cerebral infarction. Investigating the mechanisms underlying

these interactions can advance our understanding of cerebral

infarction pathogenesis and facilitate the development of

innovative strategies for its prevention and treatment.
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