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Mitochondrial homeostasis (MH) refers to the dynamic balance of mitochondrial

number, function, and quality within cells. Maintaining MH is significant in the

occurrence, development, and clinical treatment of Gastrointestinal (GI) tumors.

Ubiquitination, as an important post-translational modification mechanism of

proteins, plays a central role in the regulation of MH. Over the past decade,

research on the regulation of MH by ubiquitination has focused onmitochondrial

biogenesis, mitochondrial dynamics, Mitophagy, and mitochondrial metabolism

during these processes. This review summarizes the mechanism and potential

therapeutic targets of ubiquitin (Ub)-regulated MH intervention in GI tumors.
KEYWORDS
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1 Introduction

Gastrointestinal (GI) tumors, including hepatocellular carcinoma (HCC), esophageal

cancer (ESCA), gastric cancer (GC), colorectal cancer (CRC), and pancreatic cancer (PAAD)

(1), are the leading causes of cancer-related deaths worldwide. Highlighting its severe public

health burden, there are an estimated 4.9 million new cases and 3.9 million deaths annually,

according to the latest data (2). Mitochondria (Mt) plays a crucial role in the occurrence and

development of GI tumors (3). As a key organelle in the metabolic reprogramming of cancer

cells, Mt dysfunction is one of the main drivers of cancer initiation and progression (4). Mt

stress releases Mitochondrial DNA (mtDNA) into the cytoplasm and extracellular space,

activating multiple innate immune signals (5). In GI tumors, the mtDNA mutation rate is

higher, mainly in the D-loop region, which is the hypervariable region of mtDNA and is

responsible for the regulation of mtDNA transcription and replication, which may be related

to the special physiological environment of gastrointestinal cells (such as acidic environment,
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frequent cell turnover, etc.) (6, 7). Concurrently, the increased

electron leakage from Mt stress generates a high concentration of

reactive oxygen species (ROS), which further aggravates

tissue damage and inflammation and suppresses the signal

presentation between dendritic cells and T cells, leading to

immune cell dysfunction and further promoting the infiltration of

tumor-associated macrophages and the formation of an

immunosuppressive tumor microenvironment (8, 9). Additionally,

DNA and ROS released by Mt can change the balance of intestinal

microbiota, leading to damage to the intestinal barrier and the

occurrence of inflammatory bowel disease (IBD) (10). IBD is one

of the risk factors for CRC (11). In the late GI tumors stage,

Mitochondrial metabolism (MM) may instead increase, promoting

cancer growth (10). This may be related to the B-cell lymphoma/

leukemia-2 (BCL-2) protein family promoting the increase

of mitochondrial permeability transition and mitochondrial

permeability transition resistance, affecting the release of

cytochrome C, thereby promoting the malignant transformation

and progression of tumors (12). Studies have shown that Mt can

also act as strategic molecular intermediaries or transport media for

targeted therapies involved in antitumor activities (13). In summary,

Mt dysfunction and structural damage further complicate

the mechanism of GI tumorigenesis and development.

Therefore, maintaining the normal function of Mt and regulating

Mitochondrial homeostasis (MH) is key to intervening in the

progression of GI tumors. MH refers to a state of balance in which

Mt maintains normal function and structure within cells, including

processes such as Mitochondrial biogenesis (MB), Mitochondrial

dynamics (MK), Mitophagy, and MM (14–16).

Ubiquitination is involved in regulating these processes to

maintain normal cellular functions. Ubiquitination is one of the

main post-translational modifications of proteins, involving the

addition of Ub molecules to target proteins, and plays a role in
Frontiers in Immunology 02
regulating protein degradation, signal transduction, DNA repair, cell

cycle, and apoptosis within organisms (17–19). The process of

ubiquitination is primarily catalyzed by E1 Ub-activating enzymes,

E2 Ub-conjugating enzymes, and E3 Ub ligases, which play roles at

different stages of the enzymatic ubiquitination cascade.

Deubiquitinating enzymes (DUBs) can reverse ubiquitination by

removing Ub. Under normal conditions, the ubiquitination process

balances MH through the action of ubiquitinating enzymes and

DUBs (20). However, when the ubiquitination process is disrupted,

and MH is imbalanced, the progression of GI tumors is affected

(Figure 1). This study to elucidate the molecular mechanisms and

therapeutic targets of ubiquitination-regulated MH in the

intervention of gastrointestinal tumors by reviewing the literature

on Mt, ubiquitination, and GI tumors published in the past decade

from databases such as PubMed and Web of Science, thereby

providing theoretical support for the clinical diagnosis and

treatment of GI tumors.
2 Ubiquitination regulates MH through
multiple pathways

2.1 Ubiquitination targeting MB

MB refers to the synthesis of new Mt within cells, a process

activated by various physiological and environmental signals such

as cellular stress, increased energy demands, exercise training, and

hormonal changes (21). This process primarily involves the

transcriptional activation of nuclear-encoded mitochondrial

genes, the translocation of corresponding proteins to Mt, the

replication of mtDNA, and the synthesis of mitochondrial

phospholipids (22). We found that ubiquitination targets

peroxisome proliferator-activated receptor gamma coactivator-1
FIGURE 1

Schematic representation of MH targeted by ubiquitination affecting GI tumors.
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alpha (PGC-1a) to participate in the transcriptional activation of

nuclear-encoded mitochondrial genes, Mitochondrial ubiquitin

ligase/the E3 ligase Membrane-associated ring-gh-type finger 5

(MITOL/MARCH5) ubiquitinates DNA polymerase gamma

catalytic subunit (PolgA) to mediate mtDNA replication, and the

tumor necrosis factor receptor-associated aactor 6 (TRAF6) E3

ligase restricts protein translocation, while mitochondrial

phospholipid synthesis and membrane changes also reciprocally

affect ubiquitination (23, 24).

2.1.1 Regulation of PGC-1a
PGC-1a is a primary regulatory factor in MB and energy

metabolism, controlling both the nuclear and mitochondrial

genomes (25, 26). PGC-1a regulates mtDNA replication,

transcription, and translation, as well as the assembly of oxidative

phosphorylation (OXPHOS), through co-activating nuclear

respiratory factors (NRFs) and estrogen-related receptor alpha, thus

maintaining mitochondrial quantity and function (27). Additionally,

as a cellular energy responder, PGC-1a is activated via the AMP-

activated protein kinase/silent information regulator 1 (SIRT1)

pathway, enhancing MB (28). The heme oxygenase 1/PGC-1a
pathway responds to oxidative stress by directly activating

antioxidant enzymes such as superoxide dismutase, catalase, and

glutathione peroxidase, thereby improving the cell’s antioxidant

capacity, reducing ROS production, maintaining mitochondrial

adenosine-triphosphate (ATP) levels and membrane potential

(MMP), and protecting Mt from oxidative stress-induced

damage (29).

The mechanisms of ubiquitination regulating PGC-1a mainly

include promoting PGC-1a degradation, modulating its stability,

and controlling its activity. Research has shown that radiation-

induced DNA-dependent protein kinase can phosphorylate serine

636 of PGC-1a, thereby enhancing the binding of the E3 Ub ligase

Ring finger protein 34 to PGC-1a and accelerating its

ubiquitination and degradation (25). However, this binding can

be competitively blocked by lysine methyltransferase 5C, which

reduces the ubiquitination level of PGC-1a and extends its half-life

(30). In addition, neural precursor cell expressed, developmentally

downregulated protein 4-1 (NEDD4-1) is also an E3 ligase that can

mediate the ubiquitination and degradation of PGC-1a by

enhancing the recognition of the “TPPTTPP” sequence in PGC-

1a through phosphorylation mediated by glycogen synthase kinase

3b (GSK-3b) (31).

2.1.2 MITOL ubiquitinates PolgA
The mitochondrial membrane-integrated Ub ligase MITOL is a

key regulator of mitochondrial membrane fission, fusion, and

mitophagy (32). PolgA is the only DNA polymerase in Mt, and it

replicates mtDNA through a process known as “D-loop

replication,” where the heavy strand is replicated first, followed by

the light strand (33). Recent studies have shown that MITOL

ubiquitinates PolgA, negatively regulating its interaction with the

translocase of the outer mitochondrial membrane 20 (Tom20),

thereby inhibiting its entry into Mt (34).
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2.1.3 TRAF6 restricts p53
TRAF6 limits the translocation of tumor protein 53(p53) toMt

by promoting the ubiquitination of p53 at lysine 24 (K24) in the

cytoplasm through K63-linked Ub chains. This modification

restricts the interaction of p53 with myeloid cell leukemia-1

(MCL-1)/BCL-2 Antagonist 1 (BAK), thereby inhibiting p53

mitochondrial translocation (35).

2.1.4 Ub ligases regulating mitochondrial
phospholipid synthesis

Cardiolipin (CL) is a characteristic phospholipid of the

mitochondrial inner membrane, playing a crucial role in cellular

energy metabolism, MK, and the initiation of apoptotic pathways

(36). The precursor for CL synthesis is phosphatidic acid (PA), which

is synthesized in the endoplasmic reticulum and then transported to

the outer mitochondrial membrane (OMM) (37). From there, it is

transferred to the inner membrane for CL synthesis by the

uncharacterized protein with a phosphatidic acid transfer protein-

like domain1-mitochondrial distribution and morphology Protein 35

(MDM35) protein complex in the intermembrane space (38). Studies

have shown that common lipids in the mitochondrial membrane

interact with MITOL and influence its activity and stability

depending on the in vitro lipid composition (39). Notably, the

binding of CL to purified MITOL significantly reduces its thermal

stability, whereas the presence of PA enhances its stability most

strongly (32), which further confirms that lipids can directly affect the

activity of Ub ligases and may control the ubiquitination-dependent

mechanisms regulating MK and turnover. Phosphatidylcholine is a

lipid essential for mitochondrial membrane construction, primarily

synthesized through the Kennedy pathway using choline as a

substrate. During phosphatidylcholine synthesis, choline kinase

accelerates mitochondrial damage. The mitochondrial kinase

PTEN-induced putative kinase 1 (PINK1) accumulates on the

membrane of damaged Mt, activates the Parkin rbr E3 ub protein

Ligase (Parkin), and promotes substrate ubiquitination to initiate

mitophagy (40).
2.2 Ubiquitination regulates MK

Mt are highly dynamic organelles capable of undergoing

continuous cycles of fusion and fission, thereby altering their

morphology, size, and spatial distribution (41). This physiological

process is referred to as MK. MK refers to the state in which Mt

maintains homeostasis through fusion and fission processes in cells.

This dynamic change causes Mt to assume a variety of morphologies

in the cytoplasm, such as punctate, fragmented, strip, or linear. MK is

closely related to the functions of Mt, such as cell proliferation, cell

metabolism, and cell migration (42). This balance is maintained by

various dynamin-related guanosine triphosphatase (GTPases), which

play critical roles in these processes (43). Key proteins involved

include dynamin-related protein 1 (Drp1), mitofusin 1 (MFN1),

mitofusin 2 (MFN2), and aptic atrophy 1 (OPA1), which mediate

membrane dynamics and structural changes (44).
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2.2.1 The recruitment of Drp1
Drp1 is an essential protein in the mitochondrial fission

process, containing a GTPase domain that enables it to bind and

hydrolyze GTP (45). Drp1 primarily resides in the cytoplasm and,

in response to mitochondrial fission signals, is recruited to the

mitochondrial surface. There, it assembles into ring-like structures

and utilizes the energy from GTP hydrolysis to divide Mt into two

separate units (46). Identified Drp1 receptors include mitochondrial

fission factor (Fis1), mitochondrial fission factor, and MK proteins

of 49 kDa and 51 kDa (47). These receptor proteins facilitate the

localization of Drp1 toMt through protein-protein interactions.

Recent studies have revealed that the clustered Mt homolog gene

and its drosophila homolog clueless promote the recruitment of

Drp1 to the mitochondrial surface via its receptors in both human

cell lines and Drosophila models, thereby enhancing mitochondrial

fission (48). Current studies have shown that Drp1 can be targeted

for ubiquitination and degradation by E3 Ub ligases, such as

MITOL and Parkin , thereby influencing the normal

mitochondrial fission-fusion process (49, 50). Knockout of either

enzyme results in increased Drp1 activity and uncontrolled

mitochondrial hyper-fragmentation (49). In cells lacking MITOL,

re-expression of MITOL reverses the suppression of stress-induced

apoptosis (51). Furthermore, emerging evidence indicates that Drp1

is not only a substrate of MITOL but also a regulatory factor of

MITOL activity. Drp1 may modulate MK by influencing the

functional activity of MITOL (52).

2.2.2 MFN1 and MFN2
The mitochondrial fusion proteins MFN1, MFN2, and OPA1

are essential GTPases responsible for the structural fusion of

mitochondrial membranes. MFN1 and MFN2 regulate the fusion

of the OMM, while OPA1 mediates the fusion of the inner

mitochondrial membrane (IMM) (53). Studies have shown that a

family with sequence similarity 73 member A/B promotes

mitochondrial fusion through the regulation of phospholipid

metabolism, particularly via mitochondrial phospholipase D, in

collaboration with MFN1/2 on the OMM (54). Additionally, the

active domain of G-protein b2 (Gb2) undergoes structural

remodeling with MFN1’s binding domain, regulating MFN1

migration on the mitochondrial membrane and facilitating

mitochondrial fusion. However, Gb2 does not interact with

MFN2 (55). Sudeshna Nag et al. (56) reported that under stress

conditions induced by carbonyl cyanide 3-chlorophenylhydrazone

(CCCP), the interaction between mitochondrial phosphatase

phosphoglycerate mutase 5 (PGAM5) and MFN2 is weakened.

Instead, PGAM5 shifts to interact with Drp1. Concurrently,

MFN2 undergoes phosphorylation and ubiquitination by kinases

and E3 Ub ligases, leading to proteasomal degradation. This results

in an increased proportion of Mt failing to undergo fusion, as well

as mitochondrial fragmentation and degradation. This process can

be reversed by deubiquitinating enzymes such as Ub-specific

protease 30 (USP30). USP30, a deubiquitinase, inhibits

mitochondrial fusion by reducing the non-degradative

ubiquitination levels of MFN1/2 (57). The SCFMdm30 complex,

an intracellular E3 Ub ligase complex composed of S phase kinase-
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associated protein 1, Cullin1 (CUL1), F-box protein (FBX), and

Ring-box 1, promotes the K48-linked ubiquitination of fusion of Mt

protein 1 (Fzo1) (the yeast homolog of MFN1/2), leading to its

degradation and subsequently impairing mitochondrial fusion (58).

In contrast, USP2 specifically binds to the ubiquitinated form of

Fzo1, removing the Ub modification to regulate Fzo1 stability and

enhance mitochondrial fusion efficiency (59).

2.2.3 OPA1
Compared to MFN1/2, OPA1 exhibits a broader range of

functions, including maintaining the respiratory chain, MMP,

cristae structure, regulation of apoptosis, and mitochondrial DNA

stability (60). OPA1 exists in multiple isoforms, primarily

categorized into long isoforms (L-OPA1, including a and b) and

short isoforms (S-OPA1, including c, d, and e). L-OPA1

predominantly regulates the fusion of IMM, while S-OPA1 is

involved in IMM fission (61). Studies have shown that treatment

of SH-SY5Y cells with 6-hydroxydopamine (6-OHDA) results in a

decrease in the protein levels of MFN2 and OPA1. Conversely, 6-

OHDA treatment increases the expression of Fis1 and Drp1, leading

to excessive mitochondrial fission, thereby affecting mitochondrial

morphology and function (62). Moreover, the study found that

carnosic acid, a rosemary extract, enhances the ubiquitination of

inhibitor of nuclear factor kappa-B kinase subunit gamma (IKKg),
activating the Parkin/IKKg/p65 signaling pathway to upregulate

OPA1 expression and maintain MK homeostasis (62). Optic

atrophy 1 (OMA1) is a metalloprotease located in the IMM, with

OPA1 being one of its primary substrates (63). Under physiological

conditions, OMA1 remains inactive but is rapidly activated during

mitochondrial stress, such as MMP loss or excessive ROS

production, negatively regulating OPA1 (64). It was demonstrated

that leptin increased OPA1 expression by promoting the ubiquitin-

mediated degradation of OMA1 via the GSK3 pathway, thereby

enhancing the anti-apoptotic capacity of these cells (65).
2.3 Ubiquitination-mediated mitophagy

Similar to MK and MB, Mitophagy is another key process in the

maintenance of line MH. Mitophagy is a cellular autophagic process

that involves the selective sequestration and degradation of

damaged or dysfunctional Mt, thereby maintaining the integrity

of the mitochondrial network and cellular homeostasis (66, 67).

Ubiquitination participates in mitophagy primarily through the

PINK1/Parkin pathway, the PINK1/SYNPHILIN1/SIAH1 complex,

as well as the interactions of Mitochondrial E3 Ub protein ligase 1

(MUL1) (68, 69).

2.3.1 PINK1/Parkin pathway
The PINK1/Parkin pathway is the most widely studied

mitophagy pathway and is a classic Ub-dependent pathway (70).

PINK1, as a sensor of mitochondrial health, accumulates on the

outer membrane of damaged Mt when they are compromised and

activates Parkin, which in turn promotes the recruitment of Parkin

to the Mt. PINK1 phosphorylates Ub on the Ser65 site of substrates
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on the mitochondrial outer membrane, a process that activates

Parkin, allowing it to ubiquitinate numerous substrates on the

mitochondrial outer membrane, thereby triggering selective

autophagy (71). In healthy Mt, PINK1 is imported into the inner

membrane, where its membrane-binding portion is cleaved by the

protease presenilin-associated rhomboid-like (PARL) (72). The

cleaved catalytic portion exposes unstable amino acid residues at

the N-terminus and is rapidly degraded by the Ub-proteasome

system (UPS) (72). This process is a crucial step in mitochondrial

quality control, ensuring that only functionally intact Mt remains in

the cell (73). When the function of PINK1 or Parkin is impaired, the

removal of damaged Mt is hindered, leading to mitochondrial

dysfunction and pathological changes in the organism (74). The

loss of DJ-1 inhibits the recruitment of the selective autophagy

receptor, synphilin, to depolarized Mt, further blocking PINK1/

Parkin-mediated mitophagy (75). In addition to removing damaged

mt, the PINK1/Parkin pathway also contributes to MB

development. It has been shown that loss of PINK1/Parkin in

nerve cells inhibits MB and ubiquitinates Parkin-interacting

substrate, thereby relieving the inhibitory effect on PGC-1a (76).

2.3.2 PINK1/SYNPHILIN1/SIAH1 complex
Similar to Parkin, seven in absentia homolog 1 (SIAH1) is also

an E3 Ub ligase (77). Through forming a complex with PINK1 and

synphiln1, SIAH1 promotes the recruitment of autophagic markers,

Microtubule-associated protein one light chain 3 (LC3), and the

lysosome-associated membrane protein 1 (Lamp1), thereby

facilitating mitochondrial autophagy (78). LC3 is a key marker in

the autophagy process. During autophagosome formation, the

cytosolic form of LC3-I participates in a Ub-like reaction

involving Autophagy-related (Atg) 7 and Atg3 (E1-like Ub-

activating enzyme and E2-like Ub-conjugating enzyme), binding

to phosphatidyl ethanolamine to form the lipidated form, LC3-II,

which attaches to the autophagosomal membrane and serves as a

structural protein of the autophagosome (79). LAMP1 is commonly

used as a marker for lysosomes, and LAMP1-positive organelles are

often referred to as lysosomal compartments. After the fusion of the

autophagosome with the lysosome, lysosomal hydrolases can

degrade the autophagosome’s contents, and LAMP1-labeled

organelles participate in this degradation process (80).

2.3.3 Involvement of MUL1
MUL1 participates in mitochondrial autophagy and mediates

MM and MK (81). MUL1 mediates sodium selenite-induced

mitochondrial autophagy and the stability of the autophagy-

related protein Unc-51, Like autophagy activating kinase 1

(ULK1), during this process (82). Interacting with the ULK1/

ATG13 complex, MUL1 promotes the formation of K48

polyubiquitin chains on ULK1, leading to its degradation via the

UPS. In muscle cells, MUL1 mediates the degradation of MFN2 via

the UPS while also inducing mitochondrial autophagy (82).

Additionally, by promoting the Small Ub-like modifier

conjugation (SUMOylation) of the highly dynamic protein Drp1,

which is recruited to Mt, MUL1 enhances the stability of Drp1 on

the mitochondrial surface, playing a critical role in the dynamic
Frontiers in Immunology 05
regulation of mitochondrial morphology (83). The regulatory effect

of MUL1 on mitochondrial energy metabolism has also been

observed. MUL1 regulates the protein levels of protein kinase Bb
and hypoxia-inducible factor 1-alpha (HIF-1a) through K48-

specific polyubiquitination, and the loss of MUL1 leads to the

accumulation and activation of these substrates, affecting

mitochondrial respiration and resulting in a shift to a new

metabolic and lipidomic state (84). This is evident in the fact

that, compared to wild-type cells, MUL1(-/-) cells show impaired

mitochondrial respiration and increased ATP production through

glycolysis, indicating a metabolic shift from oxidative

phosphorylation to glycolysis (84).
2.4 Ubiquitination in MM

Under physiological conditions, mitochondrial energy

metabolism includes the tricarboxylic acid cycle, OXPHOS, and

fatty acid oxidation (85). During these processes, ubiquitination

plays a key role in regulating mitochondrial homeostasis through

various metabolic products such as glucose, fatty acids, amino acids,

and the electron transport chain (ETC) (86, 87).

2.4.1 Glucose metabolism
Currently, the mechanisms by which ubiquitination participates

in mitochondrial glucose metabolism under physiological

conditions are not well understood. However, in certain

pathological states, ubiquitination may play a role in reshaping

mitochondrial glycolysis (88). In a study using a heart-specific

promoter cTnT, the deletion of NEDD8-Activating enzyme E1

impaired cardiac oxidative metabolism and mitochondrial

function, leading to the down-regulation of genes related to fatty

acid utilization, while genes associated with glucose utilization were

significantly up-regulated (89). Another study found that inhibition

of polycomb repressive complex 1 reduced histone H2A

ubiquitination (H2Aub) occupancy and, by suppressing

ubiquitination, promoted the expression of Hsp27 (heat shock

protein 27). Hsp27 enhances glycolysis during myocardial

ischemia by activating the NF-kB/PFKFB3 signaling pathway, and

it also reduces mitochondrial ROS production by interacting with

Coenzyme Q9, inhibiting ferroptosis during reperfusion (90).

Research progress shows that E3 ligases and deubiquitinating

enzymes influence the Warburg effect in tumors by regulating

glycolysis-related signaling pathways and transcription factors

(91, 92). Phosphofructokinase platelet (PFKP) is a gene encoding

a rate-limiting enzyme of glycolysis, and its role in mediating

glycolytic regulation of tumor progression has been well-

established in lung cancer and advanced prostate cancer (93, 94).

HMG-CoA Reductase Degradation 1 (HRD1), as a metabolic

enzyme, catalyzes the ubiquitination of PFKP and promotes its

degradation, thereby inhibiting the expression and activity of PFKP

in cancer cells and obstructing cell invasion and proliferation (95).

The gut microbiota and its derivative metabolite taurocholic acid

can epigenetically promote the glycolysis of Myeloid-derived

suppressor cells by enhancing the monomethylation of the target
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gene H3K4 and inhibiting C-terminus of Hsc70-interacting

protein-mediated PDL1 ubiquitination, which in turn suppresses

the proliferation and function of effector T cells (96).

2.4.2 Fatty acid metabolism
Under energy stress conditions, tumor cells mobilize lipids

stored in lipid droplets and generate energy through

mitochondrial fatty acid oxidation (b-oxidation) (97). The direct

contact between lipid droplets promotes the hydrolysis of

triglycerides in the lipid droplets into fatty acids and glycerol,

which are then transported into theMt (98). In this process,

nicotinamide adenine dinucleotide kinase (NADK) regulates fatty

acid synthesis by maintaining the intracellular coenzyme

nicotinamide adenine dinucleotide phosphate levels, thereby

controlling lipid storage and metabolic homeostasis in lipid

droplets (98). The knockdown of NADK affects the levels of

acetyl-CoA, thereby regulating the acetylation modification of the

key transcription factor PGC-1a and MB and influencing

mitochondrial function and number by affecting CL synthesis

(99). A Study found that mitochondrial Signal Transducer and

Activator of Transcription 3 (STAT3) could reduce the

ubiquitination and degradation of carnitine palmitoyltransferase

1a, thereby inhibiting fatty acid oxidation metabolism and reducing

oxidative stress formation (100). In stem cells, the fatty acid

synthesis regulated by the lipid synthesis enzyme Acetyl-CoA

Carboxylase 1 can influence acetylation-mediated Fis1 Ub-

proteasomal degradation by consuming Acetyl-Coenzyme A. At

the same time, it can produce lipid products that drive the shift of

Mt from a dynamic equilibrium to fission, thereby enhancing

mitochondrial fission (101).

2.4.3 Amino acid metabolism
Almost all amino acids are synthesized or degraded in the Mt

(102). Impaired amino acid metabolism is associated with primary

mitochondrial diseases and mitochondrial dysfunction disorders. For

example, abnormalities in branched-chain amino acid metabolism

are closely related to the progression of diseases such as diabetes

(103), atherosclerosis (104), and cancer (105). Wang T et al. (106)

conducted experiments on amino acid starvation in tumor cells,

assessing the levels of K48-polyubiquitinated proteins in cultured

cells after starvation. They found that short-term starvation

promoted protein ubiquitination, but after prolonged treatment,

there was a significant decrease. This suggests that early amino acid

depletion promotes protein ubiquitination, while later stages lead to

the degradation of these polyubiquitinated proteins. This

phenomenon may be related to the energy depletion induced by

amino acid starvation, which in turn triggers mitochondrial

autophagy. Current research generally considers the UPS and

autophagy-lysosome systems to have distinct functions, but the two

systems can interact and influence each other. Amino acid starvation

may simultaneously affect the UPS (107), protease activity in mTOR-

inhib i ted Human Embryonic Kidney 293 ce l l s , and

polyubiquitination of the 26S proteasome (108). These pathways

can all lead to autophagy to varying extents, with amino acid
Frontiers in Immunology 06
starvation being an important ubiquitination-mediated mechanism

for regulating mitochondrial homeostasis (109).

The mechanistic target of rapamycin complex 1 (mTORC1) is a

serine/threonine kinase that integrates various environmental signals to

regulate cell growth and metabolism. Activation of mTORC1 requires

binding to the lysosome through the Ragulator-Rag complex. One

essential component of Ragulator, mTOR Activator 1 (LAMTOR1),

undergoes dynamic ubiquitination modifications in response to the

abundance of amino acids. The E3 ligase TRAF4 directly interacts with

Late Endosomal/Lysosomal Adaptor and MAPK and LAMTOR1 and

catalyzes polyubiquitination at the K151 site with K63 linkages. This

ubiquitination promotes the binding of LAMTOR1 to Rag GTPases

and enhances the activation of mTORC1 (110).
2.4.4 ETC
ETC in Mt consists of a series of protein complexes (NADH

dehydrogenase, succinate dehydrogenase, cytochrome c reductase,

and cytochrome c oxidase) located on the IMM. These complexes

are responsible for transferring electrons from one complex to

another, ultimately transferring electrons to oxygen, resulting in

the formation of water (111). Ubiquitination plays a role in the ETC

mechanism, primarily through the targeting of specific proteins.

The epigenetic regulator Unfolded Protein Response Factor 1

modulates K27 ubiquitination through NLRP14, thereby

maintaining the stability of the mitochondrial Na+/Ca2+

exchanger protein Mitochondrial Sodium/Calcium/Lithium

Exchanger, which ensures the stability of mitochondrial

morphology and function (112). The contact sites between the

endoplasmic reticulum membrane and the mitochondrial

membrane, known as mut-associated membranes, represent

multifunctional microdomains involved in mitochondrial

homeostasis (113). Mt-associated membrane-specific E3 Ub

ligases can ubiquitinate nascent proteins, thereby activating

TANK binding kinase 1 on the Mt-associated membrane (114),

leading to the degradation of ribosomal proteins and disrupting the

overall mitochondrial homeostasis. Meanwhile, the Mt-associated

membrane is closely linked to Ca2+ homeostasis. Upon

ubiquitination of inositol 1,4,5-trisphosphate receptor type 2, the

mitochondrial outer membrane protein Fundc1 loses its binding

site, promoting increased mitochondrial Ca2+, mitochondrial

fragmentation, and apoptosis (112).

In addition, RNA molecules also have a significant association

with ETC. BDNF-AS is a natural antisense long non-coding RNA of

brain-derived neurotrophic factor (BDNF) (115). The expression of

BDNF-AS is significantly positively correlated with Voltage

dependent anion channel 3 (VDAC3) expression. Previous studies

have shown that VDAC3 influences cellular ferroptosis by

regulating mitochondrial iron ion flux (116), but the mechanism

by which BDNF-AS regulates VDAC3 expression is still unclear.

Circular RNA Microtubule crosslinking factor 1 can promote its

development by inhibiting the Ub-mediated degradation of the

mitochondrial protein complement C1q binding protein and

mediating b-catenin activation (117). Under various stress-

induced cellular senescence conditions, the expression of SIRT1
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protein is down-regulated through Ub-mediated proteasomal

degradation (118), a process typically involving Ub-dependent

proteasomal degradation. However, some studies suggest that

DNA damage-induced cellular senescence follows the

autophagosome-lysosome pathway, which may be linked to

mitochondrial homeostasis imbalance caused by DNA damage,

leading to a decline in the NAD+-dependent biological function

of SIRT1, affecting the ubiquitination binding process (119).

The mechanism of interaction between ubiquitination and

deubiquitination targeting MH is shown in Figure 2 and Table 1.
3 Ubiquitination targeting MH in the
progression of GI tumors

3.1 HCC

In HCC, In HCC, ubiquitination targeting the MH mechanism

with several therapeutic agents was found (Table 2). PINK1/Parkin-

mediated mitophagy plays a crucial role. Cyclin-dependent kinase 9

(CDK9) activates SIRT1 and promotes the stabilization of PINK1

protein through its mediated deacetylation, but this effect is blocked by

Wogonin (122). Matrine, a traditional Chinese medicine (TCM),

triggers mitochondrial dysfunction and induces the upregulation of

PINK1/Parkin through phosphatase and PTEN. The elevation of the

p62 and LC3-II/I ratio suggests that Matrine acts as both an inducer of

autophagy and an inhibitor of autophagosome-lysosome formation,

while the blockade of autophagy promotes Matrine-induced cell death

(124). The TCMQuercetin (123) upregulates the expression of PINK1/

Parkin in Huh7 and Hep3B cells, thereby exerting its anti-cancer effects

in HCC. The hepatitis B virus (HBV)-encoded X protein (HBx) plays a

key role in inducing HCC (129). Studies have found that thyroid

hormone (TH) induces the ubiquitination of mitochondrial-related

HBx through PINK1/Parkin and triggers selective mitophagy, thereby

inhibiting HBx-promoted ROS and carcinogenesis (125). Lipid

metabolism disorder is one of the important characteristics of HCC.

Ubiquitin conjugating enzyme E2 O (UBE2O), as an E2 enzyme, has

been found to promote HCC progression with high expression.

Meanwhile, UBE2O interacts with the mitochondrial b-oxidation
enzyme and mediates its ubiquitination and degradation, thereby

regulating lipid metabolism reprogramming under the action of E2

and E3 enzyme activities (126). Studies have shown that the VDAC1

inhibitor Novobiocin can reduce the mono-ubiquitination level of

VDAC1 K274, and subsequent mutation of this site weakens the

interaction between Hsp90a-VDAC1, increases the oligomerization

of VDAC1, and thus affects the progression of HCC (120). Crosstalk

between some forms of cell death has also been found in HCC. During

ferroptosis, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) is

primarily localized to the Mt, but after treatment with pyroptosis

inducers, HMGCR translocates to the endoplasmic reticulum. BRCA1/

BRCA2-containing complex subunit 36 deubiquitinates HMGCR

through DUB activity and inhibits ferroptosis while promoting

pyroptosis (127). Transarterial chemoembolization (TACE) is the
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main treatment method for advanced liver cancer, but postoperative

hypoxia can easily worsen the patient’s condition. The hypoxic

environment caused by TACE leads to overexpression of S100

calcium-binding protein A9, which forms trimers as a penta-glycine

motif protein, triggers mitochondrial fission and ROS production

through the deubiquitination and stabilization of PGAM5, and

ultimately promotes the growth and metastasis of HCC (121).
3.2 PAAD

In PAAD, the enhancement of ferroptosis or drug sensitivity

through ubiquitination has garnered attention (Table 3). Due to the

dense stroma of PAAD tumors, most tumor-targeting drugs are not

sensitive to PAAD treatment (136). As a first-line oncology drug,

gemcitabine exhibits a significant chemoresistance phenomenon in

pancreatic cancer (137). Stomatin like 2 (STOML2), also known as

SLP-2, is a protein located in the mitochondrial inner membrane

that participates in maintaining mitochondrial stability (138).

Studies have found (113) that increased expression levels of

STOML2 can stabilize PARL, thereby preventing PINK1-

dependent mitophagy induced by gemcitabine (131). In

mammals, ULK1 is a key component of the autophagy initiation

complex (139). In PAAD, the E3 ligase NEDD4 like E3 ubiquitin

protein ligase NEDD4L binds to ULK1 and is involved in its

ubiquitination regulation. In NEDD4L knockout cells, genetic or

pharmacological inhibition of ULK1 or Solute Carrier Family 1

Member 5 (SLC1A5/ASCT2) can sensitize PAAD cells, especially

under nutrient deprivation conditions (135). Ferroptosis activator

imidazole erastin (IKE) upregulates its E3 Ub ligase RANBP2-type

and C3HC4-type zinc finger containing 1 (RBCK1), and the

knockdown of RBCK1 enhances the cytotoxic effect of IKE on

PAAD cells (134). This is attributed to the interaction between

RBCK1 and MFN2, leading to polyubiquitination and promoting

proteasomal degradation under ferroptotic stress, which results in

reduced ROS and lipid peroxidation. Another study indicates that

the PINK1-PARK2 pathway-mediated degradation of SLC25A37

and SLC25A28 increases mitochondrial iron accumulation, leading

to HIF-1a dependent Warburg effect and AIM2 inflammasome

activation in tumor cells, promoting the release of high mobility

group box 1 and further inducing the expression of CD274/PD-L1

(133). Galactan RN0D, isolated from the TCM Sanqi, has been

identified as an activator of the PINK1/Parkin pathway, ultimately

activating cytotoxicity in tumor cells (132). Ubiquitination-

mediated Mt gene transcription has also been observed in PAAD.

As a core component of endoplasmic reticulum-associated protein

degradation, the HRD1-SEL1L complex, when increased, reduces

the stability of the mitochondrial protein AlkB homolog 1, leading

to impaired transcription of mitochondrial DNA-encoded genes

(140). The SIRT4 agonist entinostat reverses this process (130),

possibly by deacetylating lysine 547 of SEL1L and increasing the

protein levels of HRD1.
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3.3 CRC

In CRC, several ubiquitination mechanisms have also been

identified (Table 4). The p53 is one of the most important tumor

suppressors, which inhibits the formation and development of

tumors by regulating the expression of various genes, including

those that promote cell cycle arrest and apoptosis (151). In CRC,

p53 ubiquitination plays a significant role. A protein named UBX
Frontiers in Immunology 08
domain-containing protein 2A promotes the carboxy-terminal

ubiquitination of Mortalin-2 in an Hsp70 interaction-dependent

manner, reducing Mortalin-2 levels, which not only inactivates p53

but also directly promotes tumor cell invasion and migration (144).

The mitochondrial antiviral signaling (MAVS) protein promotes

p53-dependent cell death in response to DNA damage (143).

MAVS is underexpressed in CRC and inhibits p53 ubiquitination

by blocking the formation of the p53-MDM2 complex (143). Lipoic
TABLE 1 Ubiquitinating enzymes targeting MH.

Ub/DUB Full name Type

SIAH1 Siah E3 Ubiquitin Protein Ligase 1 E3 ubiquitin ligase

Parkin Parkin rbr E3 ub protein Ligase E3 ubiquitin ligase

MUL1 Mitochondrial Ubiquitin Ligase Activity Factor 1 E3 ubiquitin ligase

RNF34 Ring Finger Protein 34 E3 ubiquitin ligase

NEDD4-1 Neural Precursor Cell Expressed, Developmentally Down-regulated Protein 4-1 E3 ubiquitin ligase

MITOL/MARCH5 Mitochondrial ubiquitin ligase/Membrane-Associated RING-CH-type finger protein E3 ubiquitin ligase

TRAF6 TNF receptor-associated factor 6 E3 ubiquitin ligase

TRAF4 TNF receptor-associated factor 4 E3 ubiquitin ligase

USP30 Ubiquitin-specific Protease 30 DUBs
FIGURE 2

The regulatory mechanisms of ubiquitination enzymes and deubiquitination enzymes on MH.
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acid (LA) is a dithiol compound with redox activity and is an essential

cofactor for mitochondrial oxidative decarboxylation (152). The p53

is found to be ubiquitinated and degraded by the proteasome

mechanism after LA treatment, a process that does not involve the

MDM2. Interestingly, the combined application of LA and anticancer

drugs (doxorubicin, 5-fluorouracil) attenuates the stabilization of

p53-mediated p21 and exerts a synergistic cytotoxic effect on CRC

cells in a p53-dependent manner (153). Dihydroartemisinin

downregulates the expression of the mitochondrial inner

membrane scaffold protein anti-proliferative protein 2 in a Ub-

dependent manner and blocks the downregulation of p53 and p21,

thereby enhancing the cytotoxicity of oxaliplatin in CRC (154).

TRAF6 promotes the K63-linked ubiquitination of p53 at K24 in

the cytoplasm to limit the interaction between p53 and MCL-1/BAK,

thereby restricting the mitochondrial translocation of p53 and
Frontiers in Immunology 09
spontaneous apoptosis. Additionally, TRAF6 promotes the K63-

linked ubiquitination and transactivation of nuclear p53 by

recruiting p300 to acetylate p53 (35). The PINK1/Parkin pathway

has also been identified in CRC. SIRT3 is highly expressed in CRC

with mitochondrial dysfunction, leading to PINK1/Parkin-mediated

mitophagy. Targeting histone H2Aub ubiquitination at K119 reduces

it, thereby enhancing DNA damage repair induced by radiation

(147). Delta-valentine, as an emerging dietary metabolite, targets

SIRT3 to participate in the process (146), while Aloe Gel

Polysaccharides mediate the PINK1/parkin pathway in a ROS-

dependent manner (148). Non-coding RNA targeting

ubiquitination to regulate mitochondrial homeostasis mechanisms

in CRC has been discovered for the first time. Non-coding RNA piR-

823 interacts with PINK1, promoting its ubiquitination and

proteasome-dependent degradation, thereby alleviating mitophagy,
TABLE 2 Ubiquitination targeting the MH mechanism in HCC.

MH Medicine Targets Ubiquitination Deubiquitination Main findings References

MB / Hsp90 VDAC1(K274) /
Hsp90 promotes cell apoptosis associated with
VDAC1 oligomerization by reducing VDAC1
protein K274 monubiquitination

(120)

MK / S100A9 / PGAM5

As a scaffold, S100A9 recruits ubiquitin-specific
peptidase 10 and phosphoglycerate mutase family
member 5 (PGAM5) to form a trimer, causing
deubiquitination and stabilization of PGAM5,
leading to mitochondrial fission and reactive oxygen
species production, thereby promoting HCC growth
and metastasis

(121)

Mitophagy

/

CDK9
targets
SIRT1-
FOXO3-
BNIP3

PINK1-Parkin /

CDK9 inhibition blocks the initiation of PINK1-
PRK1-mediated mitophagy by regulating the
SIRT1-FOXO3-BNIP3 axis and enhances the
therapeutic efficacy of treatments involving
mitochondrial dysfunction in HCC

(122)

Quercetin SIRT1 PINK1-Parkin /

Quercetin up-regulates the expression of PINK1
and PARK2, which are the regulators of mitophagy,
and enhances the colocalization of mitochondria
and lysosomes to promote autophagy

(123)

Sanguinarine /
PTEN-
PINK1-Parkin

/
Sanguinarine promoted mitochondrial apoptosis by
blocking mitophagy through PINK1-Parkin

(124)

TH HBx
PTEN-
PINK1-Parkin

/

TH simultaneously induces mitochondrial
biogenesis and HBx-targeted mitochondrial
autophagy, thereby inhibiting HBx-promoted ROS
and carcinogenesis

(125)

MM

/ HADHA UBE2O /
UBE2O promotes lipid metabolism reprogramming
and liver cancer progression by mediating
HADHA ubiquitination

(126)

/ BRCC36 / HMGCR

BRCC36 deubiquitinates HMGCR through the
activity of deubiquitinating enzymes, as well as
inhibiting ferroptosis and promoting pyroptosis. In
addition, BRCC36 acts as an oncogene in HCC,
promoting cancer cell proliferation, migration,
invasion, and tumor growth

(127)

Ponicidin
Keap1-
PGAM5

PGAM5 /

ponicidin targets Keap1 and promotes the
formation of the Keap1-PGAM5 complex,
ubiquitinizes PGAM5, and activates the cysteine-
dependent mitochondrial pathway, leading to
mitochondrial damage and ROS production

(128)
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a mechanism reversed by Ant-823, which promotes Parkin activation

(145). Regulation of the ETC and MM has also been identified in

CRC. Receptor-interacting protein kinase 1 (RIPK1) interacts with

the mitochondrial calcium uniporter (MCU), promoting cell

proliferation by increasing mitochondrial calcium uptake and

energy metabolism. The ubiquitination site of RIPK1 (RIPK1-

K377) is a key site for interaction with MCU and the promotion of

cell proliferation (150). As a molecular chaperone of Hsp90, Tumor
Frontiers in Immunology 10
necrosis factor receptor-associated protein 1 regulates the glycolytic

enzyme phosphofructokinase-1 (PFK1) to maximize lactate

production, balancing low OXPHOS. This depends on the

interaction between TRAP1 and PFK1, which favors the glycolytic

activity of PFK1 and prevents its ubiquitination/degradation (155).

The interaction between membrane glycoprotein CD36 and glypican

4 (GPC4) induces proteasome-dependent ubiquitination and

degradation of GPC4 in CRC cells, reducing the high addiction of
TABLE 3 Ubiquitination targeting the MH mechanism in PAAD.

MH Medicine Targets Ubiquitination Deubiquitination Main findings References

MB Entinostat SIRT4
SEL1L-
HRD1-ALKBH1

/

SIRT4 deacetylates lysine 547 of SEL1L and
increases protein levels of the E3 ubiquitin ligase
HRD1. Increased SEL1L-HRD1 complex decreases
the stability of the mitochondrial protein ALKBH1.
Upon down-regulation of ALKBH1, transcription of
mitochondrial DNA-encoding genes is blocked,
leading to mitochondrial damage.

(130)

Mitophagy

Gemcitabine STOML2 PARL/PINK1 /

STOML2 regulates autophagy through the PARL/
PINK1 pathway, thereby reducing the
chemoresistance of pancreatic cancer.
Overexpression of STOML2 as a targeted therapy
may help sensitize gemcitabine in the future.

(131)

RN0D /
PTEN-
PINK1-Parkin

/

RN0D is identified as an activator of the PTEN-
induced kinase 1 (PINK1)/Parkin pathway,
ultimately activating cytotoxic mitophagy in
tumor cells.

(132)

MM

/
SLC25A37/
SLC25A28

PINK1-PARK2 /

The PINK1-PARK2 pathway mediates the
degradation of SLC25A37 and SLC25A28, increasing
mitochondrial iron accumulation, leading to HIF1A-
dependent Warburg effect and AIM2-dependent
inflammasome activation in tumor cells. AIM2-
mediated HMGB1 release further induces the
expression of CD274/PD-L1. Therefore, in PINK1-/-
and PARK2-/- mice, pharmacological administration
of mitochondrial iron chelators, anti-HMGB1
antibodies, or genetic knockout of Hif1a or Aim2
can protect against the development of pancreatic
tumors. Low expression of PARK2 and high
expression of SLC25A37 and AIM2 are associated
with poor prognosis in patients with
pancreatic cancer.

(133)

Erastin MFN2 RBCK1 /

The ferroptosis activator erastin (IKE) induces the
upregulation of E3 ubiquitin ligase RBCK1
expression in PDAC cells at the transcriptional or
translational level. In vitro, knockdown or absence
of RBCK1 makes PDAC cells more susceptible to
IKE-induced ferroptosis. In a mouse xenograft
model, RBCK1 gene knockout increases the killing
effect of ferroptosis inducers on PDAC cells.
Mechanistically, RBCK1 interacts with and
polyubiquitinates the key regulator of mitochondrial
dynamics, mitofusin 2 (MFN2), to promote its
proteasomal degradation under ferroptosis stress,
leading to reduced mitochondrial ROS generation
and lipid peroxidation.

(134)

/ ULK1 NEDD4L /

NEDD4L can ubiquitinate and degrade ULK1. After
knockdown of NEDD4L, the autophagy activity in
cells is enhanced, and the cellular oxygen
consumption rate and mitochondrial membrane
potential increase, maintaining the fusion state of
mitochondria to cope with metabolic stress.

(135)
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TABLE 4 Ubiquitination targeting the MH mechanism in CRC and IBD.

Cancer MH Medicine Targets Ubiquitination Deubiquitination Main findings References
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CRC cells to glucose or glycolytic inhibition through mitochondrial

reduction, i.e., reducing the expression of glycolytic target genes

GLUT1, HK2, PKM2, and LDHA, thereby inhibiting the energy

metabolism and growth of tumor cells (149). Deubiquitination is the

reverse process of ubiquitination (142). USP36 exerts its pro-

apoptotic function by targeting cIAP1 and survivin, and it has been

found that USP36 can be degraded through polyubiquitination,

although the E3 ligase responsible for this process remains

unidentified (156).

IBD is a chronic relapsing inflammatory disorder associated with

an increased risk of developing CRC (157). Compared with sporadic

CRC, IBD-related CRC typically occurs at a younger age, progresses

more rapidly, and has a worse prognosis (158). Therefore, focusing

on the pathogenesis of IBD can help prevent the development of CRC

in advance. Studies have shown that mitochondrial dysfunction

activates pyroptosis through multiple pathways, thereby

exacerbating the occurrence of IBD (159). Mitochondrial

dysfunction, combined with impaired autophagy, leads to increased

ROS levels, which activate the Nucleotide-binding oligomerization

domain, Leucine-rich repeat, and Pyrin domain-containing protein 3

(NLRP3) inflammasome and subsequently induce pyroptosis (160).

Meanwhile, defects in mitochondrial respiration lead to cellular

energy metabolism disorders, making cells more prone to

pyroptosis (160). Pyroptosis of intestinal epithelial cells disrupts the

intestinal barrier, rendering the gut more susceptible to attacks from

pathogens and inflammatory factors. Additionally, the pore-forming

action of Gasdermin proteins, which causes cell membrane rupture

and the release of large amounts of inflammatory factors (such as IL-

1b and IL-18), further intensifies the intestinal inflammatory state

(159). Research has found that the E3 Ub ligase gp78 mediates mixed

ubiquitination of NLRP3, inhibiting its activity by preventing the

oligomerization and subcellular translocation of the nucleotide-

binding and oligomerization domain of NLRP3, thereby reducing

inflammasome activation and its detrimental effects (161). Parkin-

driven mitophagy and inhibition of NLRP3 inflammasome activation

in the colon exert a protective effect against DSS-induced colitis in

mice (162). Moreover, in IBD, the epigenetic modifier SET and

MYND Domain containing protein 5 (SMYD5) regulates toll-like

receptor 4 target genes in macrophages at the K20 site (163). This

regulation increases the risk of IBD progression to CRC by mediating

PGC-1a ubiquitination and degradation through methylation,

thereby inhibiting MB.
3.4 GC

For GC patients, clinical drug resistance has always been a

limitation in late-stage treatment. X-ray repair cross-complementing

1 (XRCC1) is a key regulator of cisplatin-induced DNA damage and

apoptosis (164). Thioredoxin-like 1 mediates cisplatin resistance by

negatively regulating the expression of XRCC1 through the UPS (165).

Myocyte enhancer factor 2A activates PGC1a transcription and

inhibits Kelch-like ECH-associated protein 1, reducing the

ubiquitination and degradation of NRF2, thereby regulating ROS

levels and mediating GC cisplatin resistance (166). Ferroptosis
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resistance is one of the key factors leading to GC drug resistance.

Studies have shown that SRY-box transcription factor 13 (SOX13)

promotes the protein reshaping of ETC complexes by directly

transactivating Supercomplex assembly factor 1, leading to the

assembly of supercomplexes, mitochondrial respiration,

mitochondrial energetics, and increased chemo- and immuno-

resistance (167). Zanamivir restores the ferroptosis resistance

phenotype by directly targeting SOX13 and promoting the

ubiquitination and degradation of SOX13 mediated by a tripartite

motif containing 25 (TRIM25) (167). Research has found that LncRNA

BDNF-AS can affect the ubiquitination modification of VDAC3 by

FBXW7 by recruiting WD repeat-containing protein 5 (168). The

USP7 can stabilize Heterogeneous nuclear ribonucleoprotein A1 in

cancer-associated fibroblasts through deubiquitination, leading to

increased secretion of exosomal miR-522, thereby inhibiting

ferroptosis and promoting acquired drug resistance in GC (169),
Frontiers in Immunology 13
primarily by targeting arachidonate 15-lipoxygenase and blocking the

accumulation of lipid ROS in Mt. In TCM treatment, the compound

herbal medicine Huachansu induces apoptosis in GC cells by

increasing ROS levels and inhibiting USP activity (170). Mechanisms

and targets are shown in Table 5.
3.5 ESCA

In ESCA, OTU deubiquitinase 1 is a deubiquitinating enzyme

that regulates the apoptosis-inducing factor (AIF), capable of

ubiquitinating AIF at K244, impairing mitochondrial oxidative

phosphorylation, and reducing cell viability. Additionally, its

deubiquitination at K255 enhances AIF’s binding capacity to DNA,

promoting the occurrence of parthanatos (171). On the other hand,

the E3 Ub ligase Itch plays a significant role in TNF-related
TABLE 5 Ubiquitination targeting the MH mechanism in GC.

MH Medicine Targets Ubiquitination Deubiquitination Main findings References

MB

/ MEF2A KEAP1-NRF2 /

MEF2A activates the transcription of PGC1,
increasing mitochondrial biogenesis. MEF2A inhibits
the transcription of KEAP1, reducing the
ubiquitination and degradation of NRF2, and
activating the KEAP1/NRF2 signaling pathway,
thereby regulating reactive oxygen species levels and
maintaining the homeostasis of the mitochondrial
biogenesis process.

(166)

Cisplatin TXNL1 XRCC1 /

XRCC1 is a key regulator of cisplatin-induced DNA
damage and apoptosis. TXNL1, a member of the
thioredoxin family, negatively regulates the
expression of XRCC1 through the ubiquitin-
proteasome pathway.

(165)

MM

/

BDNF-
AS-
WDR5-
FBXW7

VDAC3 /

BDNF-AS regulates the expression of FBXW7 by
recruiting WDR5, thereby affecting the transcription
of FBXW7; FBXW7 ubiquitinates and regulates the
protein expression of VDAC3.

(168)

Zanamivir SOX13 TRIM25 /

Zanamivir targets SOX13 and promotes the
ubiquitination and degradation of SOX13 mediated
by TRIM25, inhibiting the assembly of the
mitochondrial respiratory chain supercomplex and
restoring ferroptosis sensitivity.

(167)

Cisplatin and
paclitaxel

mir-
522-
ALOX15

/ hnRNPA1(USP7)

hnRNPA1 is found to mediate the packaging of
miR-522 into exosomes, and USP7 stabilizes
hnRNPA1 by deubiquitination. Cisplatin and
paclitaxel promote the secretion of miR-522 from
cancer-associated fibroblasts (CAFs) by activating
the USP7/hnRNPA1 axis, leading to the suppression
of ALOX15 and a reduction in lipid-ROS
accumulation in cancer cells, ultimately leading to
decreased chemotherapy sensitivity.

(169)

CCMH
PI3K/Akt
and
MAPK

UPS /

CCMH affects the ROS pathway, ubiquitin-
proteasome system, PI3K/Akt, and MAPK signaling
pathways. CCMH significantly increases the level of
ROS in gastric cancer cells, and NAC can reverse
the effect of CCMH on ROS levels in gastric cancer
cells. NAC antagonizes the apoptotic induction of
CCMH. CCMH can significantly reduce the activity
of the 20S proteasome in gastric cancer cells. CCMH
also regulates the expression of key proteins in the
PI3K/Akt and MAPK signaling pathways.

(170)
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apoptosis-inducing ligand-mediated apoptosis in ESCA. Knockdown

of Itch leads to resistance to TNF-related apoptosis-inducing ligand-

mediated apoptosis and significantly alters mitochondrial

morphology, increasing mitochondrial cholesterol content. High

cholesterol levels reduce membrane fluidity, further intervening in

mitochondrial dynamic homeostasis (172). Apart from cholesterol,

proteins are also an important factor affecting mitochondrial

dynamic homeostasis. Syntaphilin (SNPH) is a static mitochondrial

anchor protein primarily expressed in the brain, playing a crucial role

in neurotransmitter release and MK. In various tumor cells, SNPH is

downregulated or even silenced, leading to the redistribution of Mt

from the perinuclear area to the cell periphery, resulting in increased

tumor cell migration and invasion (173). Studies have found that

CUL1 can ubiquitinate SNPH, disrupting mitochondrial dynamic

homeostasis and promoting tumor metastasis and radioresistance

(174). In the transformation of ESCA keratinocytes, cells with high

CD44 expression exhibit a series of mitochondrial autophagy

characterist ics : mitochondrial fragmentation, reduced

mitochondrial content, and Parkin mitochondrial translocation

(175). Mechanisms and targets are shown in Table 6.
3 Discussion

In summary, we have summarized the various aspects of MH

regulation by different ubiquitinases and deubiquitinases in current
Frontiers in Immunology 14
scientific research, including MB, mitophagy, and the MM involved

in these processes. In gastrointestinal tumors, through the

ubiquitination regulation of MH, we have discovered different cell

death crosstalk mechanisms, such as mitophagy, ferroptosis, and

apoptosis, tumor drug resistance mechanisms, metabolic

reprogramming, and new targets for TCM treatment. However,

the specific roles of these mechanisms and the potential crosstalk

between signaling pathways in different tumor types have not yet

been fully elucidated. Clinical treatment results suggest that single-

target therapies may not be sufficient for gastrointestinal tumors,

and the development of new drugs is needed. Proton beam therapy

(PBT) has been shown to inhibit colon cancer metastasis by

stimulating mitochondrial biogenesis through the upregulation of

PGC-1a and its co-transcription factors (NRF1a/ERRa).
Additionally, compounds like hydroxytyrosol (HTyr) can

promote mitochondrial biogenesis by increasing PGC-1a
expression, offering potential as adjuvant anticancer agents.

Advances in gene-editing technologies, such as CRISPR/Cas9,

offer the potential to directly target mitochondrial dysfunction by

correcting genetic defects or modulating key regulatory pathways.

Although clinical translation is still in its infancy, preclinical studies

have demonstrated the feasibility of these approaches. In addition,

current research has not determined the mechanisms by which

ubiquitination regulation of MH is involved in the immune evasion

of gastrointestinal tumors, which may require further experimental

data support.
TABLE 6 Ubiquitination targeting the MH mechanism in ESCA.

MH Medicine Targets Ubiquitination Deubiquitination Main findings References

MK /
CREB-
SNPH

UPS /

Ubiquitin-proteasome degradation and histone
modification promote the downregulation of
SNPH in RR ESCC cells. Dephosphorylation of
CREB promotes the re-expression of SNPH,
which induces radiosensitization. Moreover, the
expression of SNPH is related to the
radiotherapy efficacy in esophageal squamous
cell carcinoma and is an independent prognostic
factor for patients with esophageal squamous
cell carcinoma.

(174)

Mitophagy / CD44 Parkin /

Cells with high CD44 expression exhibit a series
of mitochondrial autophagy characteristics:
mitochondrial fragmentation, reduced
mitochondrial content, and Parkin translocation
to mitochondria.

(175)

MM

/ OTUD1 / AIF(K244)

OTUD1 can deubiquitinate AIF at position
K244, disrupt mitochondrial structure, and
impair OXPHOS, promoting the function of AIF
in mitochondrial respiration, and inducing a
shift in cellular metabolism towards glycolysis.

(171)

/
COP1/
ZRANB1

MITF /
COP1 and ZRANB1 jointly regulate the
ubiquitination status of MITF, maintaining the
stability of mitochondrial structure and function.

(176)

/ Itch STARD1 /

After Itch is knocked out, the morphology of
mitochondria changes significantly, and
cholesterol content increases. Itch may stabilize
STARD1, increase the input of cholesterol to
mitochondria, thereby inhibiting Bax activation
and the release of cytochrome c.

(172)
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Glossary

MH Mitochondrial Homeostasis
Frontiers in Immunol
MB Mitochondrial Biogenesis
MM Mitochondrial Metabolism
MK Mitochondrial Kinetics
GI Gastrointestinal
Mt Mitochondria
mtDNA Mitochondrial DNA
HCC Hepatocellular Carcinoma
ESCA Esophageal Cancer
PAAD Pancreatic Cancer
GC Gastric Cancer
CRC Colorectal Cancer
ROS Reactive Oxygen Species
BCL-2 B-cell lymphoma/leukemia-2
IBD Inflammatory Bowel Disease
Ub Ubiquitin
DUBs Deubiquitinating enzymes
USP Ub-specific protease
UPS Ubiquitin-Proteasome System
PGC-1a peroxisome proliferator-activated receptor gamma

coactivator-1 alpha
OXPHOS Oxidative Phosphorylation
NRFs Nuclear Respiratory Factors
MITOL1/MARCH5 Mitochondrial ubiquitin ligase/Membrane-Associated RING-

CH-Type Finger 5
PolgA DNA Polymerase Gamma Catalytic Subunit
TRAF6 Tumor Necrosis Factor Receptor-Associated Factor 6
SIRT1 Silent information regulator 1
ATP Adenosine Triphosphate
MMP Mitochondrial Membrane Potential
GSK-3b Glycogen synthase kinase 3b
Tom20 Translocase of the outer mitochondrial membrane 20
MCL-1/BAK myeloid cell leukemia-1/BCL-2 Antagonist 1
p53 Tumor Protein 53
K24 Lysine 24
CL Cardiolipin
PA phosphatidic acid
OMM Outer Mitochondrial Membrane
IMM Inner Membrane Membrane
NEDD4-1 Neural Precursor Cell Expressed, Developmentally Down-

regulated Protein 4-1
MDM35 Mitochondrial Distribution and Morphology Protein 35
PINK1 PTEN induced putative kinase 1
Parkin Parkin rbr E3 ub protein Ligase
GTPase Guanosine Triphosphatase
Drp1 Dynamin-related protein 1
ogy 20
MFN1 Mitofusin 1
MFN2 Mitofusin 2
OPA1 Optic Atrophy 1
Fis1 Mitochondrial fission factor
Gb2 G-protein b2
CCCP Carbonyl cyanide 3-chlorophenylhydrazone
PGAM5 Phosphoglycerate mutase 5
CUL1 Cullin1
FBX F-box protein
Fzo1 Fusion of Mitochondria Protein 1
6-OHDA 6-hydroxydopamine
IKKg Inhibitor of Nuclear Factor Kappa-B Kinase Subunit Gamma
OMA1 Optic Atrophy 1
MUL1 Mitochondrial E3 ubiquitin protein ligase 1
PARL Presenilin-Associated Rhomboid-Like
ULK1 Unc-51 Like Autophagy Activating Kinase 1
SIAH1 Seven in Absentia Homolog 1
LC3 Microtubule-associated protein 1 light chain 3
Atg Autophagy-related
LAMP1 Lysosomal-associated membrane protein 1
SUMOylation Small Ubiquitin-like Modifier Conjugation
HIF-1a Hypoxia-inducible factor 1-alpha
ETC Electron Transport Chain
H2Aub histone H2A ubiquitination
Hsp27 heat shock protein 27
PFKP Phosphofructokinase Platelet
HRD1 HMG-CoA Reductase Degradation 1
NADK Nicotinamide Adenine Dinucleotide Kinase
STAT3 Signal Transducer and Activator of Transcription 3
mTORC1 mechanistic target of rapamycin complex 1
LAMTOR1 mTOR Activator 1
BDNF brain-derived neurotrophic factor
VDAC3 Voltage dependent anion channel 3
CDK9 Cyclin-dependent kinase 9
TCM traditional Chinese medicine
HBx hepatitis B virus -encoded X protein
UBE2O Ubiquitin conjugating enzyme E2 O
HMGCR 3-hydroxy-3-methylglutaryl-CoA reductase
TACE Transarterial chemoembolization
STOML2 Stomatin like 2
IKE imidazole erastin
RBCK1 RANBP2-type and C3HC4-type zinc finger containing 1
MAVS mitochondrial antiviral signaling
LA Lipoic acid
NLRP3 Nucleotide-binding oligomerization domain, Leucine-rich

repeat, and Pyrin domain-containing protein 3
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RIPK1 Receptor-interacting protein kinase 1
Frontiers in Immunol
MCU mitochondrial calcium uniporter
PFK1 phosphofructokinase-1
GPC4 glypican 4
USP36 Ubiquitin specific peptidase 36
ogy 21
XRCC1 X-ray repair cross-complementing 1
SOX13 SRY-box transcription factor 13
AIF apoptosis-inducing factor
SNPH Syntaphilin
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