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Biomarker combinations from
different modalities predict early
disability accumulation in
multiple sclerosis
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Maria Protopapa1, Muriel Schraad1,
Gabriel Gonzalez-Escamilla1, Sergiu Groppa1,
Stefan Bittner1† and Frauke Zipp1†

1Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main
Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University
Mainz, Mainz, Germany, 2Department of Neurology, Section of Neural Engineering with Signal
Analytics and Artificial Intelligence, University Hospital Würzburg, Würzburg, Germany
Objective: Establishing biomarkers to predict multiple sclerosis (MS) disability

accrual has been challenging using a single biomarker approach, likely due to the

complex interplay of neuroinflammation and neurodegeneration. Here, we

aimed to investigate the prognostic value of single and multimodal biomarker

combinations to predict four-year disability progression in patients with MS.

Methods: In total, 111 MS patients were followed up for four years to track

disability accumulation based on the Expanded Disability Status Scale (EDSS).

Three clinically relevant modalities (MRI, OCT and blood serum) served as

sources of potential predictors for disease worsening. Two key measures from

eachmodality were determined and related to subsequent disability progression:

lesion volume (LV), gray matter volume (GMV), retinal nerve fiber layer, ganglion

cell-inner plexiform layer, serum neurofilament light chain (sNfL) and serum glial

fibrillary acidic protein. First, receiver operator characteristic (ROC) analyses were

performed to identify the discriminative power of individual biomarkers and their

combinations. Second, we applied structural equation modeling (SEM) to the

single biomarkers in order to determine their causal inter-relationships.

Results: Baseline GMV on its own allowed identification of subsequent EDSS

progression based on ROC analysis. All other individual baseline biomarkers were

unable to discriminate between progressive and non-progressive patients on

their own. When comparing all possible biomarker combinations, the tripartite

combination of MRI, OCT and blood biomarkers achieved the highest

discriminative accuracy. Finally, predictive causal modeling identified that LV

mediates significant parts of the effect of GMV and sNfL on disability progression.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1532660/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1532660/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1532660/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1532660/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1532660&domain=pdf&date_stamp=2025-01-31
mailto:vinzenz.fleischer@unimedizin-mainz.de
https://doi.org/10.3389/fimmu.2025.1532660
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1532660
https://www.frontiersin.org/journals/immunology


Fleischer et al. 10.3389/fimmu.2025.1532660

Frontiers in Immunology
Conclusion:Multimodal biomarkers, i.e. different major surrogates for pathology

derived from MRI, OCT and blood, inform about different parts of the disease

pathology leading to clinical progression.
KEYWORDS

multiple sclerosis, biomarker, magnetic resonance imaging, neurofilament, optical
coherence tomography, disease progression, prediction, structural equation modeling
Introduction

In multiple sclerosis (MS), disability progression is

closely related to neuroaxonal degeneration (1, 2). Therefore,

identifying and quantifying axonal damage is an essential step

towards improved clinical decision-making and prognostication.

Currently, magnetic resonance imaging (MRI) is the most

established non-invasive modality for diagnosing, evaluating

treatment effectiveness, and monitoring disease progression in

patients with MS. In particular, conventional structural MRI

metrics, like T2-hyperintense lesion volume (LV) and gray

matter volume (GMV), have been proven to be reproducible

and well-validated in reflecting disease activity and progression,

respectively (3, 4). However, recent technical advances, such as

single molecule array (SiMoA) and easily accessible optical

coherence tomography (OCT), have enabled additional non-

invasive measurements of neurodegeneration-related biomarkers

with increasing clinical application (5, 6). Therefore, blood-based

biomarkers such as serum neurofilament light chain (sNfL) and

serum glial fibrillary acidic protein (sGFAP), as well as measures

of retinal thickness (retinal nerve fiber layer (RNFL), ganglion cell

inner plexiform layer (GCIPL)) have gained significant interest for

diagnostic purposes and are expected to be applied in clinical

routine soon.

Nevertheless, all biomarkers have certain limitations due to the

nature of their respective modalities: MRI is most effective at

detecting focal white matter lesions in the brain and spinal cord,

but lesions in gray matter structures can only be reliably visualized

with rather high field strengths (7). Additionally, conventional MRI

is functionally “blind” to what is known as “normal-appearing

white matter” (NAWM). Blood biomarkers of neuronal (sNfL) or

glial (sGFAP) damage can be influenced by different factors such as

age, blood volume, genetics, and other medical conditions such as

impaired renal function (8–10). Additionally, measures of retinal

thickness may not always accurately reflect the presence and extent

of inflammation or damage in the brain and spinal cord, as they

may be affected by factors such as pupil dilation, eye movements,

and the presence of cataracts or other eye conditions, which can

impact the accuracy of the results (6, 11). Furthermore, the spatial

resolution is limited, as OCT captures only a small part of the

central nervous system (CNS). Thus, the concept of “one

biomarker” indicating the existence of an underlying disease-
02
specific process remains a utopia in predicting disease

progression. However, individual challenges may be overcome by

combining biomarkers from different modalities that ideally also

represent multiple aspects of MS pathology.

Utilizingmultiple biomarkers from different modalities has already

been demonstrated in other neurological disorders such as Alzheimer’s

disease, where a combination of positron emission tomography

(PET)-imaging and cerebrospinal fluid (CSF) biomarkers has

enabled a more precise diagnostic evaluation (12, 13). In people with

MS, initial efforts have shown that multimodal biomarkers can predict

neuropsychological parameters such as cognitive impairment (14).

However, it is unclear which biomarker combinations offer the best

discriminative accuracy for disease progression of MS. The

combination of several biomarkers altogether, by means of predictive

modeling, may be able to compile large amounts of multimodal data,

in order to attain solid conclusions and decision making in

MS monitoring.

Thus, the aim of this study was to investigate the prognostic

value of individual biomarkers (MRI, OCT and blood), as well as

their combinations in predicting four-year disease activity and

progression in MS. To test this, we determined LV and GMV

fromMRI, RNFL and GCIPL from OCT and sGFAP and sNfL from

blood within a cohort of 111 MS patients who were clinically

followed up for four years.
Methods

Participants

In total, out of 141 MS patients that were retrospectively

screened for this project, 111 MS patients that underwent a

comprehensive and detailed clinical assessment were finally

included in the analysis (Figure 1). The selected cohort included

MS patients with MRI (T2-hyperintense LV and GMV), blood

(sNfL and sGFAP), and OCT (RNFL and GCIPL) measurements

at the outpatient clinic of the Department of Neurology, at the

University Medical Center Mainz (Germany) (Table 1). All

included patients had relapsing-remitting multiple sclerosis

(RRMS) as diagnosed according to the 2017 revised McDonald

diagnostic criteria (15). The mean (± standard deviation) disease

duration of all patients at study inclusion was 3.15 ± 4.26 years.
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All diagnostic baseline measurements were performed within 6

months of study inclusion. An experienced neurologist clinically

assessed patients and their Expanded Disability Status Scale

(EDSS) score at study entry and follow up visit (3.74 ± 1.25
Frontiers in Immunology 03
years), along with clinical relapse history over the study period.

EDSS progression was defined as an increase of ≥ 1 point in the

EDSS score for a baseline score of ≥ 1.5 or a 1.5 point increase for a

baseline score of 0 (16). A clinical relapse was defined as a

monophasic clinical episode with new neurological symptoms,

lasting more than 24 h and in the absence of fever or infection

(15). The annualized relapse rates (ARR) were calculated by

dividing the total number of all observed relapses by the total

number of patient-years. All measurements were performed at

least 30 days after a clinical relapse and/or a high-dose

corticosteroid treatment.
TABLE 1 Basic characteristics. Demographic and clinical data of the
included MS patients as well as MRI, OCT and blood biomarkers
at baseline.

Demographics MS patients (n = 111)

Age [years] mean ± SD 34.8 ± 9.67

Sex [female] (percent) 79 (71)

Disease duration [years] mean ± SD 3.15 ± 4.26

Disease-modifying treatment

None (percent) 18 (16)

Mild to moderate efficacy (percent) 69 (62)

High efficacy (percent) 24 (22)

Clinical measures

Baseline EDSS median (25th; 75th percentile) 1.0 (0.0; 2.0)

Follow up EDSS median (25th; 75th percentile) 1.5 (0.0; 2.5)

Patients with EDSS progression (percent) 46 (41.4)

Relapses over 4 years mean ± SD 0.76 ± 1.17

Annualized relapse rate mean ± SD 0.21 ± 0.33

Time to follow up [years] mean ± SD 3.74 ± 1.25

Patients with history of optic neuritis (percent) 33 (30)

MRI measures

LV [ml] mean ± SD 5.97 ± 9.57

GMV [fraction] mean ± SD 0.43 ± 0.03

OCT measures

RNFL [mm3] mean ± SD 0.21 ± 0.02

GCIPL [mm3] mean ± SD 0.76 ± 0.1

Blood measures

sNfL [z-score] mean ± SD 0.115 ± 2.21

sGFAP [pg/ml] mean ± SD 121.2 ± 43.8
Mild to moderate efficacy = interferons, glatiramer acetate, teriflunomide, dimethyl fumarate.
High efficacy = natalizumab, anti-CD20 monoclonal antibodies, sphingosine-1-phosphate
receptor modulators, alemtuzumab.
EDSS, extended disability status scale; GCIPL, ganglion cell-inner plexiform layer; GMV, gray
matter volume; LV, lesion volume; MRI, magnetic resonance imaging; OCT, optical coherence
tomography; RNFL, retinal nerve fiber layer; SD, standard deviation; sGFAP, serum glial
fibrillary acidic protein; sNfL, serum neurofilament light.
FIGURE 1

Study analysis design. Study protocol and design including the three
modalities each with two biomarkers as potential predictors.
Statistically, ROC analysis was performed to evaluate the
discriminative power of single and combined biomarkers.
Subsequently, SEM was applied to test the causal inter-relationships
between the variables. EDSS, expanded disability status scale; GCIPL,
ganglion cell-inner plexiform layer; GMV, gray matter volume; OCT,
optical coherence tomography; RNFL, retinal nerve fiber layer; ROC,
receiver operator characteristics; SEM, structural equation modeling;
sGFAP, serum glial fibrillary acidic protein; sNfL, serum
neurofilament light; LV, lesion volume.
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sNfL and sGFAP measurements

Serum samples were collected by attending physicians at the

University Medical Center Mainz. Samples were processed at room

temperature within 2 hours. Serum samples were spun at 2000xg at

room temperature for 10 minutes, aliquoted in polypropylene tubes

and stored at −80°C. sNfL and sGFAP concentrations were

measured as previously described (10, 14). In brief, sNfL and

sGFAP levels were determined using the highly sensitive single

molecule array (SiMoA) technology (17). Samples were measured in

duplicates by SiMoA HD-1 (Quanterix, USA) using NF-Light

Advantage kits according to the manufacturer’s instructions. The

mean inter-assay and intra-assay coefficient of variation was less

than 10%. Measurements were performed in a blinded fashion

without information about clinical data.
MRI data acquisition

MRI data acquisition was performed as previously described

(14). In brief, structural MRI was performed on a 3-Tesla MRI

scanner (Magnetom Tim Trio, Siemens, Germany) with a 32-

channel receive-only head coil. In all patients, imaging was

performed using a sagittal 3D T1-weighted magnetization-

prepared rapid gradient echo (MP-RAGE) sequence (TE/TI/TR =

2.52/900/1900 ms, flip angle = 9°, field of view = 256 × 256 mm2,

matrix size = 256 × 256, slab thickness = 192 mm, voxel size = 1 × 1

× 1 mm3) and a sagittal 3D T2-weighted fluid-attenuated inversion

recovery (FLAIR) sequence (TE/TI/TR = 388/1800/5000 ms, echo-

train length = 848, field of view = 256 × 256 mm2, matrix size = 256

× 256, slab thickness = 192 mm, voxel size = 1 × 1 × 1 mm3). A

clinician scientist blinded to the patient data excluded major

anatomical abnormalities based on the subject’s T1-weighted and

FLAIR images of the whole brain.
Quantification of white matter LV and GMV

The quantification of WM (white matter) volume, lesion

volume and GMV was performed as previously described (14).

Using voxel-based morphometry (VBM) analysis in the Statistical

Parametric Mapping (SPM8) software, the GM and WM volumes

were calculated. The volumes of WM lesions were assessed using

the cross-sectional lesion growth algorithm of the lesion

segmentation toolbox (18) included in the SPM8 software. 3D

FLAIR images were co-registered to 3D T1-weighted images and

bias corrected. After partial volume estimation, lesion segmentation

was performed with 20 different initial threshold values for the

lesion growth algorithm (18). By comparing manually and

automatically estimated lesion maps, the optimal threshold

(ĸ value, dependent on image contrast) was determined, and

average values were calculated for each patient. A uniform ĸ

value of 0.1 was applied in all patients in order to automatically

estimate lesion volume and filling of 3D T1-weighted images.

Subsequently, the filled 3D T1-weighted images and the native 3D

T1-weighted images were segmented into GM, WM, and CSF and
Frontiers in Immunology 04
then normalized to the Montreal Neurological Institute (MNI)

space. The quality of the segmentations was visually inspected to

increase reliability.
OCT: image acquisition and
scanning protocol

The analysis was performed as previously described (19, 20). In

brief, the Advised Protocol for OCT Study Terminology and

Elements (APOSTEL) recommendations were followed (21)

including a quality control for the raw OCT scans complying

with the OSCAR-IB criteria (22). MS patients with accompanying

diseases potentially affecting the optic nerve or other ocular disease

were excluded in advance. Hence, none of the patients had a history

of glaucoma, retinopathy or other neurological disorders (besides

RRMS). An experienced operator performed OCT image

acquisition following a unified standard acquisition protocol

using a spectral domain OCT (Heidelberg Spectralis, Heidelberg

Engineering, Germany) with Heidelberg Eye Explorer software

(HEYEX, version 1.10.2.0). The measurements were acquired in a

shaded room at ambient light without pupillary dilation. Intra-

retinal layers of the macula were gauged by a standardized scan

comprising 61 vertical or horizontal B-scans while focusing on the

fovea at a scanning angle of 30° × 25° and a resolution of 768 × 496

pixels. Automatic real time was set to nine at high-speed scanning

mode. Confocal scanning laser ophthalmoscopy was performed in

parallel and revealed no evidence of pathology. No further

fundoscopic imaging was carried out. To account for inter-eye

within-patient dependencies, we calculated the mean of both eyes in

patients with no history of optic neuritis; in patients with a history

of unilateral optic neuritis, we only used the OCT scan of the non-

affected eye. Hence, the main statistical analysis was performed at a

per-patient level. All B-scans were automatically segmented

(followed by manual correction by a trained rater) using

segmentation beta-software (Spectralis Viewing Module version

6.9.5.0) of the Heidelberg Eye Explorer (version 1.10.2.0)

provided by the manufacturer. The segmentation lines were the

following retinal layers: RNFL, GCIPL, inner nuclear layer, outer

plexiform layer and outer nuclear layer. The mean volume of the

individual retinal layers was computed in an area of a radius of

3.45 mm around the fovea including the fovea using the Early

Treatment of Diabetic Retinopathy Study (ETDRS) grid. Lastly,

RNFL and GCIPL were finally selected as primary estimate for

neuroaxonal damage of the retina, as both have been associated

with brain atrophy and disability worsening (23, 24).
Statistics

Statistical analysis was performed using SPSS 23 (SPSS,

Chicago, IL, USA), MedCalc (Version 20.115) and GraphPad

Prism 9 software. Summary statistics are presented as mean ±

standard deviation (SD), or median (25th and 75th percentile), or

number (percentage), where applicable. To create a combined

variable for each biomarker combination, a binary logistic
frontiersin.org
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regression model for each combination (corrected for sex, age,

disease duration and disease-modifying treatment) was estimated in

order to get the predicted probability from each model. Then, we

used this probability as the test variable in the subsequent receiver

operating characteristic (ROC) procedure (14).

A ROC analysis was performed to calculate the predictive

discriminating values for each biomarker and the combinations.

This statistical method is preferentially used to make a series of

discriminations into two different states based on a specific

diagnostic variable. Here, the presence or absence of relapses or

EDSS worsening, served as binary classifiers. Every value of that

discriminating variable is used as a cut-off with calculation of the

corresponding sensitivity and specificity.
Structural equation modeling

The analysis was performed as previously described (25) using

the SEM toolbox for MATLAB (version 13a; Mathworks, Natick,

MA, USA). SEM represents a statistical technique that is used to test

and estimate structural relationships between variables in a model.

By structural, we mean that we incorporate causal assumptions as

part of the model. Hence, SEM represents a multivariate technique

that is able test complex relationships among multiple variables

simultaneously, and estimate the strength and direction of these

relationships. In our model, we explored the association between

multimodal biomarkers and the clinical outcomes (clinical relapses

and EDSS progression). We used the Maximum likelihood method

of estimation to fit the models. In order to adjust the models for a

large sample size, we used the Root Mean Square Error of

Approximation (RMSEA) index, which improves precision

without increasing bias (26). The RMSEA index estimates lack of

fit in a model compared to a perfect model and therefore should be

low. In all models, the Invariant under a Constant Scaling (ICS) and

ICS factor (ICSF) criteria should be close to zero, indicating that

models were appropriate for analysis. Finally, based on the Akaike

Information Criterion (AIC) the quality of each model relative to

other models was estimated, with smaller values signifying a better

fit of the model. The strength of associations between the variables

in the models was quantified by standardized coefficients (s),

ranging from 0 (no association) to 1 (very strong association). To

correct for potential confounders the models were adjusted for sex,

age, disease duration and disease-modifying treatment (DMT). P-

values less than 0.05 were considered statistically significant.
Results

Patient characteristics

All demographics and clinical characteristics of the investigated

cohort are summarized in Table 1. In total, 141 early MS patients

with baseline MRI and OCT were selected. Thirty patients were

excluded from the final analysis because either there was no serum

sample available or they were lost to clinical follow-up (Figure 1).

The mean follow-up time in our longitudinal cohort of 111 patients
Frontiers in Immunology 05
was 3.74 ± 1.25 years. The mean age ± SD was 34.8 ± 9.67 years; 79

patients (71.0%) were female and 32 (29.0%) were male. The mean

disease duration at study inclusion was 3.15 ± 4.26 years. All

patients had a relapsing-remitting disease course (RRMS)

according to the 2017 revised McDonald criteria (15). At the time

of inclusion, 18 patients (16%) were not receiving any DMT, 69

(62%) were receiving a mild to moderate efficacy DMT, and 24

(22%) were receiving a high efficacy DMT. The median baseline

disability, quantified with EDSS, was 1.0 (25th and 75th percentile:

0.0−2.0). Overall, 46 patients (41.4%) experienced EDSS

progression during the observation period. The mean ARR was

0.21 ± 0.33; 33 (30%) patients had a history of optic neuritis. The

results from blood biomarker, MRI, and OCT measurements are

also summarized in Table 1.
Predictive discrimination model

An overall ROC analysis was performed to determine the

predictive discriminating value of the individual and combined

measures to distinguish MS patients with and without disease

activity (determined through the presence or absence of relapses

during this time) and with and without disability progression

(determined through the presence or absence of EDSS worsening

over four years). Resulting values with AUC, standard error, 95%

confidence interval and p-values are presented in detail in

Figures 2A and 3A.

In general, none of the individual biomarkers were able to

predict the occurrence of clinical relapses within the 4-year

observation period (AUC-range: 0.523 – 0.602). All p-values for

testing AUC = 0.5 vs. AUC ≠ 0.5 were greater than 0.05 and were

hence not significantly different from a random classifier

(Figure 2B). Only LV showed a trend towards significance (AUC

= 0.602; p = 0.060). In the ROC analysis based on the presence or

absence of EDSS progression, GMV was the only single biomarker

to show significant predictive capability for EDSS progression on its

own (AUC = 0.614, SE = 0.054; p = 0.035), whereas all other single

biomarkers did not (AUC-range = 0.502 - 0.596) (Figure 3B).

When we combined biomarkers within their respective

modality, MRI markers (LV + GMV) were able to predict both

relapses (AUC = 0.631, SE = 0.054; p = 0.015) and EDSS

progression over the four-year period (AUC = 0.621, SE = 0.055;

p = 0.026). Combined blood biomarkers (sNfL + sGFAP) were only

able to predict EDSS progression (AUC = 0.632, SE = 0.059; p =

0.025), while combined OCT measures (RNFL + GCIPL) were

unable to predict either clinical relapses (AUC = 0.599, SE = 0.054; p

= 0.069) or EDSS progression (AUC = 0.507, SE = 0.058, p = 0.906)

(Figures 2C, 3C).

However, all combinations of two biomarker modalities

significantly predicted clinical relapses (AUC range = 0.636 –

0.643) and EDSS progression (AUC range = 0.631 – 0.699)

(Figures 2D, 3D). The best prediction for EDSS progression using

two modalities was achieved with a combination of MRI and blood

biomarkers (AUC = 0.699, SE = 0.055; p < 0.001).

Most notably, the combination of all six biomarkers achieved

the highest AUC for discriminating MS patients with clinical
frontiersin.org
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relapse activity from those without (AUC = 0.678, SE = 0.057; p =

0.002) and for discriminating progressive from non-progressive MS

patients (AUC = 0.706, SE = 0.055; p < 0.001) (Figures 2E, 3E).

Overall, these results demonstrate that the predictive capability of

single biomarkers remains limited except for GMV, whereas

combining multimodal biomarkers stepwise improves their

accuracy in prediction of both relapse activity and disease

progression within early multiple sclerosis.
MRI and blood biomarkers influence
disease activity and progression

In order to create a prediction model analyzing complex

relationships among multiple variables, we next applied SEM to

assess the causal relationship of the most promising biomarker

combinations determined in the ROC approach, namely MRI (LV +

GMV) and blood (sNfL + sGFAP) biomarkers. In addition to the

ROC analysis, SEM allows us to test a model for its compatibility

with the data in its entirety simultaneously. In the predictive

modeling approach, the RMSEA index for the models was below

0.03 and the AIC comparing the models varied between 0.006 and
Frontiers in Immunology 06
0.019. The obtained fit indices in the SEM analysis implied a good fit

of the constructed models to the observed data, providing robust

relations between the variables. Within the SEM model quantifying

the pathways, the input variables (GMV, sNfL, sGFAP and LV)

predicted both ARR and EDSS progression. Our model with

resultant standardized coefficients (s) identified that GMV (s =

0.58; p < 0.01) and sNfL (s = 0.63; p < 0.01) significantly predict

ARR and EDSS progression through lesion volume as mediator

(ARR [s = 0.59; p < 0.01] and EDSS [s = 0.73; p < 0.001]) (Figure 4).

Taken together, LV mediates the path between GMV and sNfL on

the one side, and ARR and EDSS progression on the other side.
Discussion

Here, we present a longitudinal study utilizing a classification

model and a multivariate analysis technique to predict both disease

activity and progression in patients with early MS based on

multimodal biomarker combinations. In our discrimination

model, the triple combination of MRI (LV and GMV), OCT

(RNFL and GCIPL) and blood biomarkers (sNfL and sGFAP)

achieved the best performance in predicting disability progression
FIGURE 2

ROC analysis for the discrimination between the presence or absence of relapse activity (A) Color-coded table depicting the ROC analysis for
individual and combinations of biomarkers. AUC, p-value and 95%-CI for the prediction of clinical relapses (yes/no). (B) ROC curves for single
biomarkers. (C) ROC curves for combined biomarkers within one modality. (D) ROC curves for combined biomarkers within two modalities. (E) ROC
curve for combined biomarkers of all three modalities (GMV + LV, RNFL + GCIPL and sNfL + sGFAP). AUC, area under the curve; CI, confidence
interval; GCIPL, ganglion cell-inner plexiform layer; GMV, gray matter volume; LV, lesion volume; OCT, optical coherence tomography; RNFL, retinal
nerve fiber layer; ROC, receiver operator characteristics; SE, standard error; sGFAP, serum glial fibrillary acidic protein; sNfL, serum
neurofilament light.
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FIGURE 4

MRI and blood biomarkers and their capability to predict clinical outcomes through structural equation modeling (SEM). Predictive modeling of MRI
(GMV and LV) and blood (sNfL and sGFAP) biomarkers. Arrows denote the relationship between the variables expressed as standardized coefficients,
which are shown for each path (* significant at p < 0.01; ** significant at p < 0.001). ARR, annualized relapse rate; EDSS, expanded disability status
scale; GMV, gray matter volume; sGFAP, serum glial fibrillary acidic protein; sNfL, serum neurofilament light; LV, lesion volume.
FIGURE 3

ROC analysis for the discrimination between the presence or absence of EDSS progression. (A) Color-coded table depicting the ROC analysis for
individual and combinations of biomarkers. AUC, p-value and 95%-CI for the prediction of EDSS progression (yes/no). (B) ROC curves for single
biomarkers. (C) ROC curves for combined biomarkers within one modality. (D) ROC curves for combined biomarkers within two modalities. (E) ROC
curve for combined biomarkers of all three modalities (GMV + LV, RNFL + GCIPL and sNfL + sGFAP). AUC, area under the curve; CI, confidence interval;
GCIPL, ganglion cell-inner plexiform layer; GMV, gray matter volume; OCT, optical coherence tomography; RNFL, retinal nerve fiber layer; ROC, receiver
operator characteristics; SE, standard error; sGFAP, serum glial fibrillary acidic protein; sNfL, serum neurofilament light; LV, lesion volume.
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as well as disease activity within the upcoming four years. Our

subsequently constructed SEM model established sNfL, GMV and

LV as viable predictors of both disease activity and progression.

Beyond that, the model further indicated that LV significantly

mediates the effect of sNfL and GMV on future disease activity

and progression over the study period. Thereby, our multi-

biomarker approach highlights the importance of accounting for

LV (neuroinflammation) when implementing cross-modal

biomarkers in predicting clinical outcomes in MS.

Our findings align well with the current understanding of the

pathophysiology in early, inflammation-driven MS, where disease

activity (T2-hyperintense LV) drives ongoing neuroaxonal

degeneration (sNfL and GMV) and clinical disability progression

(27). Although each biomarker has been found to predict certain

aspects of MS pathology individually (6, 17, 28–30), they all have

their own individual strengths and weaknesses. In line with this, the

predictive ability of each biomarker in our ROC analyses was

limited when used on its own, but gained an incremental value

when applied in combination with other biomarkers. Importantly,

combining biomarkers from different modalities, such as MRI and

blood biomarkers, resulted in a significant improvement in

predicting both relapse activity and disease progression. This

implies that certain biomarkers might be able to compensate for

the limitations of others. For example, blood biomarkers have been

found to be poor predictors of fatigue in MS (14, 31), while imaging

of deep gray matter and brainstem structures have shown strong

associations with measures of fatigue (25). Additionally, blood

biomarkers provide a holistic view of cellular damage across the

entire neuroaxis with high temporal resolution but lack of spatial

resolution (5, 8), while conventional MRI markers provide great

spatial resolution but are naturally “blind” for slightly injured tissue

such as NAWM. Therefore, using both imaging and blood

biomarkers can provide a more comprehensive understanding

of disease progression in MS, as they can offer complementary

information of different aspects of the disease process. Furthermore,

the integration of potentially latent variables via observed variables

in the characterization of cross-modal biomarkers may help to

identify patients at risk of disease progression, and therefore aid

therapeutic decision-making. Appropriate biomarkers may even

been chosen according to a patient’s individual symptoms and

signs, which could allow for the creation of more personalized

treatment plans. Accordingly, a recent study found predictors with

mid- to high-accuracy for several disability outcomes in MS by

combining clinical and imaging with omics information (32). This

machine learning study particularly identified algorithms for

predicting the escalation of therapy from first-line to high-

efficacy treatment.

A plethora of different blood biomarker candidates has been

evaluated in clinical and pre-clinical studies on neuroinflammation

(33). However, sNfL and more recently sGFAP have shown the

greatest prognostic potential in MS (14, 33), therefore, we

preselected those biomarkers for our study. There are several

surrogate markers of neurodegeneration in MR imaging, such as

brain parenchyma fraction, total brain volume, and GMV (34). We

decided to primarily include GMV in our analyses since it is widely

used and has a strong association with neurodegeneration and
Frontiers in Immunology 08
cognitive impairment (29, 34). However, as models and algorithms

become more complex and advanced, it makes sense to include

more biomarkers in order to further improve predictive accuracies.

In MS, OCT has been used to detect thinning of retinal layers; this

loss of retinal nerve fibers may be indicative of underlying

neurodegeneration (6). However, in our early MS cohort,

inclusion of OCT did not show a remarkable additive effect in

predicting disease progression or relapse rates. This may have

several reasons: first, changes in the eyes of our early MS cohort

may be subtle and not always be detectable with OCT. Furthermore,

although OCT has a good resolution for damage to the visual

system, namely the retina and the layers immediately beneath it, as

well as the optical radiation, it may not provide sufficient

information on neurodegeneration in other regions of the CNS,

such as infratentorial structures (6, 11). Additionally, previous

studies have shown RNFL to be a significantly variable measure,

especially when considering non-optic neuritis eyes (35–37). In line

with this, in our cohort, only 33 patients had a history of prior optic

neuritis and in order to look at neurodegeneration in MS in general,

we only included OCT results from eyes without prior optic neuritis

in our analyses. This may have limited the predictive capability of

our OCT results; however, both GCIPL and RNFL are well-

established markers and have been associated with disease

progression even when applied for non-optic neuritis eyes (38).

Our study also has some limitations: First, we investigated a

real-world cohort. Hence, the time point for measuring all

biomarkers showed some ranges. However, a real-world cohort

has the advantage of resembling a more realistic clinical situation

and may therefore suffer less from a selection bias (39). Second,

longer follow-up observations are warranted. Third, total GM

atrophy is related to disability in MS (29, 40), but also regional

GM atrophy e.g. thalamic volume plays a key role for clinical

progression (41). Finally, also changes within the NAWM are

relevant for disease worsening in MS (42, 43). Hence, further

studies are needed to incorporate more specific and advanced

MRI-derived markers into such multimodal approaches.

Altogether, the combination of multimodal biomarkers (LV,

GMV, RNFL, GCIPL, sNfL, sGFAP) that represent different parts of

the disease pathology offer advantages in predicting upcoming

disability accumulation in MS. In addition, predictive modeling

specifically revealed that total lesion volume is a substantial

mediator of the prognostic properties of gray matter and

neurofilament on future progression indicating the significance of

overall cerebral lesion load in fostering neuronal loss and

subsequent disability. Validation and replication of multimodal

biomarkers identified so far will be required for generating the

evidence to be applied in personalized health care for people

with MS.
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