
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Lushan Xiao,
Southern Medical University, China

REVIEWED BY

Zekun Jiang,
Sichuan University, China
Eros Montin,
New York University, United States
Aobo Zhang,
Peking University Hospital of Stomatology,
China

*CORRESPONDENCE

Wang Wei

dr.wangwei@xjtu.edu.cn

RECEIVED 21 November 2024

ACCEPTED 13 January 2025
PUBLISHED 29 January 2025

CITATION

Alkhatatbeh T, Alkhatatbeh A, Guo Q,
Chen J, Song J, Qin X and Wei W (2025)
Interpretable machine learning and
radiomics in hip MRI diagnostics: comparing
ONFH and OA predictions to experts.
Front. Immunol. 16:1532248.
doi: 10.3389/fimmu.2025.1532248

COPYRIGHT

© 2025 Alkhatatbeh, Alkhatatbeh, Guo, Chen,
Song, Qin and Wei. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 29 January 2025

DOI 10.3389/fimmu.2025.1532248
Interpretable machine learning
and radiomics in hip MRI
diagnostics: comparing ONFH
and OA predictions to experts
Tariq Alkhatatbeh1, Ahmad Alkhatatbeh2, Qin Guo1,
Jiechen Chen2, Jidong Song3, Xingru Qin4 and Wang Wei1*

1Comprehensive Orthopedic Surgery Department, the Second Affiliated Hospital of Xi’an Jiaotong
University, Xi’an, Shaanxi, China, 2Department of Orthopedics, The First Affiliated Hospital of Shantou
University Medical College, Shantou, Guangdong, China, 3Orthopedic Department, the Second
Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China, 4Department of Radiology, the
Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
Purpose:Distinguishing between Osteonecrosis of the femoral head (ONFH) and

Osteoarthritis (OA) can be subjective and vary between users with different

backgrounds and expertise. This study aimed to construct and evaluate several

Radiomics-based machine learning models using MRI to differentiate between

those two disorders and compare their efficacies to those of medical experts.

Methods: 140 MRI scans were retrospectively collected from the electronic

medical records. They were split into training and testing sets in a 7:3 ratio.

Handcrafted radiomics features were harvested following the careful manual

segmentation of the regions of interest (ROI). After thoroughly selecting these

features, various machine learning models have been constructed. The

evaluation was carried out using receiver operating characteristic (ROC)

curves. Then NaiveBayes (NB) was selected to establish our final Radiomics-

model as it performed the best. Three users with different expertise and

backgrounds diagnosed and labeled the dataset into either OA or ONFH. Their

results have been compared to our Radiomics-model.

Results: The amount of handcrafted radiomics features was 1197 before

processing; after the final selection, only 12 key features were retained and

used. User 1 had an AUC of 0.632 (95% CI 0.4801-0.7843), User 2 recorded an

AUC of 0.565 (95% CI 0.4102-0.7196); while User 3 was on top with an AUC of

0.880 (95% CI 0.7753-0.9843). On the other hand, the Radiomics model attained

an AUC of 0.971 (95% CI 0.9298-1.0000); showing greater efficacy than all other

users. It also demonstrated a sensitivity of 0.937 and a specificity of 0.885. DCA

(Decision Curve Analysis displayed that the radiomics-model had a greater

clinical benefit in differentiating OA and ONFH.
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Conclusion: We have successfully constructed and evaluated an interpretable

radiomics-based machine learning model that could distinguish between OA

and ONFH. This method has the ability to aid both junior and senior medical

professionals to precisely diagnose and take prompt treatment measures.
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1 Introduction

Distinguishing osteonecrosis of the femoral head (ONFH) from

osteoarthritis (OA) is essential for optimal clinical management, given

the significant differences in their underlying pathophysiology,

prognosis, and treatment approaches (1, 2). Magnetic resonance

imaging (MRI) is fundamental in diagnosis (3), offering excellent soft

tissue contrast and the capability to identify early structural changes.

Visual interpretation of MRI findings can be subjective and frequently

overlaps between osteonecrosis of the femoral head (ONFH) and

osteoarthritis (OA), creating challenges for accurate diagnosis,

especially in early or end-stage cases (4). A prior study indicated that

the diagnoses of osteonecrosis of the femoral head (ONFH) established

by radiologists and orthopedic surgeons exhibited only modest

concordance. The authors determined the necessity of establishing a

consistent, precise, and successful diagnostic technique (5).

Recent advancements in radiomics and machine learning have

revolutionized medical imaging analysis, enabling the extraction of

high-dimensional quantitative features from MRI data that surpass

traditional radiological techniques. Radiomics allows for the

quantification of detailed imaging patterns; such as texture,

intensity, and shape. Potentially linked to microstructural changes

specific to osteonecrosis of the femoral head (ONFH) or

osteoarthritis (OA). Studies on knee osteoarthritis demonstrated

that MRI-based radiomics could effectively evaluate cartilage (6)

and subchondral bone morphology (7), aiding in the diagnosis (8),

and prediction of disease severity and progression, including

cartilage degeneration (9).

Similarly, radiomics has identified distinct texture and shape

characteristics associated with necrotic areas in the hip, allowing

early detection and diagnosis of ONFH (10, 11). This approach has

also been employed to distinguish between osteosarcoma and

chondrosarcoma (12), as well as to differentiate avascular necrosis

from transient osteoporosis (13). Furthermore, radiomics has been

applied to predict knee pain improvement (14); and valuable

insights were given on the use of radiomics in OA through this

comprehensive review (15). These developments highlight the

growing potential of radiomics to enhance diagnostic accuracy

and treatment strategies in musculoskeletal disorders.

This study presents a novel radiomics framework that

incorporates SHAP (SHapley Additive Explanations) to distinguish
02
between osteoarthritis (OA) and osteonecrosis of the femoral head

(ONFH). SHAP offers a transparent way to interpret machine

learning models by breaking down how individual radiomics

features contribute to diagnostic predictions. This research is the

first to apply such an approach for differentiating OA and ONFH,

tackling a critical diagnostic challenge with impressive accuracy.

Unlike earlier studies that primarily focused on knee-related

conditions or relied on single- or multi-sequence imaging only to

diagnose ONFH, this study evaluates the performance of a

radiomics-based model against three health professionals with

varying levels of expertise. The results emphasize the model’s

consistency and reliability, addressing the variability often seen in

human diagnoses and enhancing its potential for real-world

clinical use.

By focusing on two disorders that are clinically distinct yet

radiologically similar, this study demonstrates how advanced

radiomics can refine diagnostic precision and facilitate timely

treatment decisions. It has the ability to outperform human

experts in certain scenarios while also aiding less experienced

physicians in making more accurate diagnoses. Furthermore, the

integration of interpretable machine learning ensures that the

approach is accessible and practical for everyday use, ultimately

improving patient care in different orthopedic settings.
2 Materials and methods

2.1 Study participants

From February 2016 to April 2024, a senior musculoskeletal

radiologist at Xi’an Jiaotong University Second Hospital reviewed

radiographs taken by 140 patients; 70 of these patients had

osteoarthritis (OA), and 70 had osteoarthritis (ONFH). Thus, the

ground truth for our investigation and the development of various

machine learning models was based on these. Clinical information

and potential risk factors such as a history of steroid usage or

alcohol consumption, the presence of a double line sign, and MRI

markers of sclerotic and necrotic bone alterations were considered

when evaluating MRI results for ONFH patients. The evaluation for

OA patients centered on recent indications of inflammation, MRI-

confirmed synovitis, elevated subchondral bone signal, bone
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marrow edema, and joint effusion. Patients were not included in the

study if they had any of the following conditions: a history of hip-

related problems, collapsing femoral heads, bone cancers, or low-

quality MRI pictures. Our hospital’s electronic health record system

was the source of the data. See Figure 1 for a visual representation of

the research design pipeline. Patients were not required to provide

informed consent for this retrospective analysis, which was

approved by our hospital’s ethics review board.
2.2 Region of interest segmentation

The 1.5T tesla scanner (Avanto, Siemens Healthineers;

Erlangen, Germany) was used to capture the MRI photographs,

and the parameters used were: In the coronal plane, in the

(headfirst-spine) posture; sequence type turbo spin echo (TSE),

T2-weighted with fat suppressed (FS), slice thickness 4.5mm, field

of view 640*640mm, acquisition matrix 0\320\240\, echo duration

67ms, repetition time 3000ms.

The ROI on each MRI scan was manually segmented by an

orthopedic surgeon with five years of expertise using ITK-SNAP

version 4.2.0 (https://www.itksnap.org/). For individuals with

osteoarthritis, the region of interest (ROI) included the femoral

head and neck. Nevertheless, the ROI was restricted to the necrotic

region for patients with ONFH.
2.3 Image preprocessing

A 7:3 ratio was used for the random case split between the

training and testing groups. In order to train the machine learning

models, we used the whole training dataset. To evaluate the models’

performance internally, we used instances from the testing dataset.
Frontiers in Immunology 03
Unaware of the ground truth diagnosis, three users with varying

levels of experience were shown the same set of randomly shuffled

radiographs. The first user was an orthopedic surgeon working in

our orthopedic department, focusing on sports medicine. A general

radiologist who works in the radiology department of the same

institution was the second user. The third user, was another

orthopedic surgeon from an external hospital. He is focused on

OA, ONFH, and arthroplasty operations. We handled any

differences in voxel spacing in this experiment using the fixed-

resolution resampling approach. By resampling each image to a

1*1*1 mm size, the voxel spacing was uniform across all images. The

data was finally normalized using z-scores, another name for zero-

mean normalization.
2.4 Features extraction

This study’s feature extraction used traditional, hand-crafted

radiomic features—geometry, intensity, and texture—derived from

the initial radiographs. In order to extract radiomic characteristics,

PyRadiomics was employed. The geometric, intensity and textural

types of manually generated radiomic features are the three main

groups. The geometric features relate to the three-dimensional shape

of the bone cells. An analysis of the statistical distribution of voxel

intensities within the femoral head is performed by the intensity

features using first-order statistics. Features that characterize patterns

or spatial distributions of intensities beyond the first order are

indicated by the texture features. Texture features are retrieved

using a variety of methodologies, such as the gray-level run length

matrix (GLRLM), neighborhood gray-tone difference matrix

(NGTDM), gray-level size zone matrix (GLSZM), and the gray-

level co-occurrence matrix (GLCM). The nonlinear intensity of

picture voxels is transformed using a number of transformations—
FIGURE 1

(A–E) The methodology and flow of this study, beginning with MRI data gathering and ending with performance evaluation, includes segmentation,
feature extraction, selection, and the development of multiple machine learning models. AUC, Area Under the Curve; SHAP, SHapley Additive
exPlanations; ROC, Receiver Operating Characteristic; DCA, Decision Curve Analysis.
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including Square, Square Root, Logarithm, Gradient, LBP3D, and

Exponential—in order to attain high-throughput features. One, two,

and three are the sigma values used by the high Laplace filter. In

addition, eight wavelet transform algorithms—HLL, HLH, HHL,

LHH, LLL, LLH, and LHL—were used in the process of obtaining

first-order statistics and texture features. The web resource at https://

pyradiomics.readthedocs.io/en/latest/features.html provides a

thorough explanation of all radiography features.
2.5 Features selection

The features were first standardized using the z-score

standardization method approach before going through three

screening stages before final selection. First, all features were

subjected to the Mann-Whitney U test; features with a P-value

below 0.05 were kept. Then, to identify highly correlated features,

the Pearson test was used. In order to be considered potentially

predictive, features needed a P-value lower than 0.05. Finally, the

least absolute shrinkage and selection operators (LASSO) were used

to evaluate the key features in the end.
2.6 Radiomics models construction

After LASSO was used to identify the key features, we passed

them into various machine learning classifiers such as XGBoost,

NaiveBayes (NB), Random Forests (RF), Logistic Regression (LR),

K-Nearest Neighbors (KNN), Support Vector Machines (SVM),

and others. We selected the best performer after comparing all of

them to construct the final model. We employed 5-fold cross-

validation in this particular instance.
2.7 Statistical analysis

We used the Python Statsmodels package (0.13.2 version) to

evaluate the data, and we deemed a p-value below 0.05 statistically

significant. Using ROC curves and the associated diagnostic

accuracy, sensitivity, specificity, positive predictive value (PPV),

and negative predictive value (NPV), we assessed the clinical
Frontiers in Immunology 04
significance of the models in distinguishing between ONFH and

OA. Decision curve analysis (DCA) and calibration curves were also

used to evaluate the discriminative capacity of the model. To further

evaluate the model’s robustness, we employed the Hosmer-

Lemeshow test.
3 Results

3.1 Patients’ characteristics

The study comprised a total of 140 patients’ MRI scans,

consisting of 70 OA individuals and 70 ONFH patients. The

patients were categorized into a training group of 98 individuals

and a testing group of 42 individuals. Table 1 demonstrates a

summary of the patient’s primary attributes.
3.2 Feature extraction and selection

A grand total of 1,119 Radiomics features were extracted using a

tool that is specifically designed for feature analysis and is part of

Pyradiomics (http://pyradiomics.readthedocs.io). There was a total

of 234 First Order features, 182 GLRM features, 208 GLSLSM

features, 65 NGTDM features, 286 GLCM features, and 14

shape features.

For each of the selected features, we ran a feature screening and

a Mann-Whitney U test. The final count was 1006 features, with

features being maintained only if their P-value was less than 0.05.

The second step was to use the Pearson correlation coefficient, a

measure of feature correlation, to assess features with good

repeatability. When two features had a correlation coefficient

greater than 0.9, just single one of them was retained. In the end,

215 features were retained.

Step three involved using the logistic regression model (LASSO)

to narrow down the feature set for the model’s construction and

decrease the number of features overall. All regression coefficients are

shrunk by LASSO until they approach zero, and the coefficients of

insignificant features are adjusted to zero according to the regulation

weight Lambda (l). The optimal value of l was found by performing

a 10-fold cross-validation with a minimum criteria method. The final

value of l was chosen based on its ability to produce the lowest cross-

validation error. After integrating the features with non-zero

coefficients, a Radiomics model was built using the features used to

construct a regression model. Following this, we determined a

patient’s radiomics score by adding all the retained features

multiplied by their corresponding model coefficients.

Twelve radiomics-related features were identified by LASSO

regression modeling, which was executed using the scikit-learn

package in Python. Below, you can see a plot of the LASSO

models’ coefficient profiles and the mean square errors (MSE)

that were derived from 10-fold validation. Every independent

predictor’s changing trajectory is shown by each curve in the plot.

Figure 2 (left) Describes how LASSO logistic regression is used to

choose features in the Radiomics model. Figure 2 (right) Displays
TABLE 1 These are the fundamental characteristics of a total of
140 patients.

Characteristic ONFH
patients (n=70)

OA
patients (n=70)

Age (years)
Mean ± SD

47.67 ± 15.387 59.16 ± 12.605

Gender, No. (%)

Male 34 (48.6%) 25 (35.7%)

Female 36 (51.4%) 45 (64.3%)
SD, standard deviation.
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the mean squared error (MSE) values derived from a 10-fold cross-

validation of the Radiomics model. For the purpose of interpreting

and visualizing the radiomic features that were utilized in the

radiomics models, the SHAP (16) approach was utilized in

Figure 3. This technique draws attention to the significance of

individual features within the context of a complicated machine

learning framework. It provides insights into how each feature

contributes to the probability of a particular outcome. Moreover,

the SHAP force plot in Figure 4 summarizes how each selected

radiomic feature shifts the model’s prediction from the baseline

(average) output toward the final predicted value. This means it

displays the most influential features in classifying the given MRI

case (Case 1 in our dataset) as either OA or ONFH. The length and

direction of each red bar indicate how much that particular feature

“pushes” the model’s decision. Positive SHAP values suggest that
Frontiers in Immunology 05
the feature’s measured value for this particular case pushes the

model’s prediction toward the chosen positive class (e.g., ONFH),

Whereas negative SHAP values indicate that the feature’s value

nudges the model’s prediction away from the positive class,

potentially supporting the alternative classification (e.g., OA).
3.3 Predictive performance of the
radiomics-model

XGBoost (17), LR (18), MLP (19), sigmoid_SVM (20), and NB

(21) based models were constructed and compared; their AUCs in the

testing cohort were (0.950, 0.964, 0.962, 0.962, and 0.971) respectively

as shown in Figure 5. As NB performed the best, it was the classifier of

choice for in constructing the final Radiomics-model. On the other
FIGURE 3

The 12 most important features are displayed in the bee swarm plot of SHAP values, in order of importance. The SHAP values quantify the
contribution of each factor to the prediction outcome; higher values indicate greater influence. The horizontal axis displays this information. Each
feature’s ranking is based on its relative weight in making the prediction. Here, we can see the distribution of feature values along the vertical axis,
which is colored on a gradient from low (blue) to high (red). A feature’s impact at a given level is proportional to the density of points falling within
that level’s SHAP value range.
FIGURE 2

LASSO Coefficients profile plot with various log (l) is displayed (left); the vertical dashed line represents the selected features with nonzero
coefficients chosen to the optimal lambda. (right) MSE of 10-fold cross-validation for the most valuable features screened for the Radiomics-model.
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hand, the performance of User 1(AUC=0.606) and (AUC=0.632);

User 2 (AUC=0.819) and (AUC=0.565); User 3 (AUC=0.886) and

(AUC=0.880) in the training and testing cohorts respectively.

The significant features selected for the Radiomics-model are

presented in Table 2. The diagnostic AUC, 95%CI, accuracy,

sensitivity, specificity, PPV, and NPV of all three users and the

Radiomics-model are demonstrated in Table 3. The confusion

matrix for the Radiomics model is presented in Figure 6,

comprising True Positives (TP), True Negatives (TN), False

Positives (FP), and False Negatives (FN). In addition, the
Frontiers in Immunology 06
calibration curves showed good agreement between the Radiomics

based model and the perfectly calibrated line, as shown in Figure 7.

The P-values of the Hosmer-LemeShow test in Table 4 were 0.574,

and 0.329 for the Radiomics model in the training and testing

cohort respectively. This indicates a good-fitting model, as all of the

values were greater than 0.05. Both the CLEAR (22) and METRICS

(23) checklists of this study were presented in Supplementary Data

sheet 1 and Supplementary Data sheet 2. Furthermore, the radiomic

signatures extracted from each tested patient have been provided in

Supplementary Data sheet 3. Besides, the net benefit was plotted

against threshold probability in Figure 8, which displays the

Decision curve analysis (DCA); it designates that the Radiomics-

model has the highest net benefit in differentiating between OA and

ONFH. Supplementary Figures 10 and 11 present heatmaps that

display the radiomics features selected in the study.
4 Discussion

In this study, we presented how Radiomics can be utilized to

make a machine learning-based Radiomics model that can

differentiate between OA and ONFH accurately; AUC= 0.968

(95%CI 0.909-1.000). This model has shown superior results to

three different users with various expertise levels, User 1
FIGURE 4

SHAP force plot illustrating the contribution of 12 radiomic features in differentiating osteonecrosis of the femoral head (ONFH) from osteoarthritis
(OA) based on MRI. The base value represents the model’s average prediction, with the final prediction (f(x) = 1.59) derived from the cumulative
feature contributions. Red bars indicate the direction and magnitude of each feature’s influence, with key metrics capturing intensity distribution,
texture complexity, and geometric shape (e.g., sphericity).
FIGURE 5

Shows the ROC curves of different machine learning models ROC curves in the training cohort (left), and the testing cohort (right).
TABLE 2 Displays the key radiomics characteristics chosen using
LASSO analysis.

Sequence Name

‘log_sigma_3_0_mm_3D_glcm_InverseVariance’,
‘log_sigma_5_0_mm_3D_glszm_SmallAreaEmphasis’,
‘original_shape_Flatness’, ‘original_shape_Sphericity’,
‘wavelet_HHH_firstorder_Kurtosis’,
‘wavelet_HHL_firstorder_Maximum’,
‘wavelet_HLL_firstorder_Kurtosis’,
‘wavelet_HLL_gldm_DependenceEntropy’,
‘wavelet_LHH_firstorder_Skewness’,
‘wavelet_LHH_glszm_LargeAreaLowGrayLevelEmphasis’,
‘wavelet_LLL_glszm_GrayLevelNonUniformity’,
‘wavelet_LLL_glszm_GrayLevelNonUniformityNormalized’
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TABLE 3 All the metrics for User 1, 2, 3, and the NB-model.

Model Cohort AUC AUC 95% CI ACC Acc 95% CI SEN SPE PPV NPV

User 1 Train 0.606 0.5081 - 0.7033 0.443 0.3424 - 0.5477 0.000 1.000 0.000 0.443

User 2 Train 0.819 0.7425 - 0.8958 0.443 0.3424 - 0.5477 0.000 1.000 0.000 0.443

User 3 Train 0.886 0.8220 - 0.9506 0.443 0.3424 - 0.5477 0.000 1.000 0.000 0.443

NB-model Train 0.991 0.9790 - 1.0000 0.938 0.8702 - 0.9770 0.907 0.977 0.980 0.894

User 1 Test 0.632 0.4801 - 0.7843 0.619 0.4564 - 0.7643 0.000 1.000 0.000 0.619

User 2 Test 0.565 0.4102 - 0.7196 0.619 0.4564 - 0.7643 0.000 1.000 0.000 0.619

User 3 Test 0.880 0.7753 - 0.9843 0.619 0.4564 - 0.7643 0.000 1.000 0.000 0.619

NB-model Test 0.971 0.9298 - 1.0000 0.905 0.7738 - 0.9734 0.937 0.885 0.833 0.958
F
rontiers in Imm
unology
 07
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AUC, Area under the curve; ACC, accuracy; SEN, Sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value.
FIGURE 6

Evaluation of the Radiomics model using confusion matrices. The performance of the model is presented in both the training cohort (left), and the
testing cohort (right). Class labels are designated as “OA” (0) and “ONFH” (1). The values are as follows: (TP) = 43 and 23; (TN)= 49 and 15; (FP)= 1
and 3; (FN)= 5 and 1 in the training and testing cohorts respectively.
FIGURE 7

There is a significant association between the average predicted probability (x-axis) and the proportion of positive outcomes (y-axis) in the
calibration curves for the Radiomics-model in the testing group (right) and the training group (left), showing that calibration was successful with the
perfectly calibrated line.
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(AUC=0.944 (95%CI 0.862-1.000)) and User 2 (AUC=0.930 (95%

CI 0.838-1.000)) and User 3 (AUC=0.880(95%CI 0.7753 - 0.9843)).

The ROC for the Radiomics-model with three users is illustrated in

Figure 9. Our study was based on a single sequence MRI (T2W1),

which gives a great value to our model, as differentiating between

early or end-stage OA and ONFH solely depending on a single

sequence MRI regardless of the clinical symptoms and a thorough

background checking can be challenging even for experienced

surgeons. But our model was able to accurately achieve this

task effectively.

Wei Li used radiomics based on plain radiographs to grade knee

OA severity (24); his study population consisted of 475 patients,

and X-ray images were processed using a radiomic feature selection
Frontiers in Immunology 08
and dimensionality reduction technique. He found that combining

information from anteroposterior and lateral images significantly

improved the model ’s performance for diagnosing knee

osteoarthritis. Their model outperformed radiologists in

diagnosing knee OA. Francesca, by combining CT and MRI data

and employing radiomics, aimed to predict knee cartilage

degeneration in OA (9). Her findings indicated the potential of

radiomics as a promising tool in clinical practice for early diagnosis

and assessment of cartilage degeneration. Li presented a

comprehensive study on utilizing radiomics signatures and age as

a nomogram model for diagnosing knee osteoarthritis (25). Shengfa

presented a method using Radiomics and Neural network for knee

OA incidence prediction by integrating meniscus and cartilage

features (26). Kaibin investigated the use of radiomics for the

analysis of hip CT to screen osteoporosis (27). Other papers

provided valuable insights into radiomics applications in

orthopedics but differ significantly from the current work in focus

(28). developed a radiomics-based decision support tool for cervical

disc degeneration grading using combined T1 and T2 MRI

modalities, achieving an AUC of 0.95. Their study emphasized

the value of multi-modality integration and higher-order texture

features but focused on cervical spine pathology rather than
TABLE 4 Illustrates the significance levels (P values) obtained by the
Hosmer-Lemeshow test, which is used to assess the goodness of fit
of models.

Model NB-model User 1 User 2 User 3 Cohort

P 0.574 0.321 0.336 0.240 Train

P 0.329 0.078 0.171 0.133 Test
P, P-value.
FIGURE 8

Shows a decision curve analysis was performed on the Radiomics-model across the training group (left) and the testing group (right). The y-axis
represents the net benefit, while the x-axis represents the threshold probability.
FIGURE 9

The receiver operating characteristic (ROC) of the Radiomics model and all three users in the training set (left) and the testing set (right) are
displayed. The findings for the radiomics model are superior to those of other users, with an area under the curve (AUC) of 0.971.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1532248
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Alkhatatbeh et al. 10.3389/fimmu.2025.1532248
TABLE 5 The table provides a comparison of key studies on radiomics applications in musculoskeletal imaging.

Study Objective Sample
Size &
Imaging
Modality

Key Fea-
tures/Techniques

Performance
Metrics

Primary Findings

Klontzas
et al.,
2021 (13)

Differentiate transient
osteoporosis (TOH) from
avascular necrosis (AVN)
using MRI radiomics and
machine learning.

213 hips (109
TOH, 104
AVN); MRI

XGBoost, CatBoost, and SVM
classifiers with 38
radiomics features.

AUC:
0.937 (XGBoost).

Radiomics-based ML achieved similar
performance to musculoskeletal
radiologists and significantly
outperformed general radiologists.

Xue et al.,
2022 (7)

Use MRI-based radiomics for
subchondral bone analysis to
identify knee OA.

88 knees (56
with OA); MRI
(3T, sagittal 3D
BFFE
sequence).

LASSO-selected radiomics features;
SVM model constructed.

AUC:
0.961 (radiomics)

MRI-based radiomics outperformed
traditional structural parameter
analysis for OA classification.

Li et al.,
2023 (25)

Create a nomogram model
combining radiomics
signatures and age to diagnose
knee OA.

4403 knee X-
rays from
1174 patients.

Radiomics feature selection using
LASSO; Logistic regression (LR)
model developed.

AUC: 0.847
(nomogram), 0.843
(radiomics model).

Combining radiomics with clinical
data (age) enhances diagnostic
accuracy and clinical utility.

Cui et al.,
2023 (29)

Develop machine learning
models for MRI-based
radiomics to diagnose
knee OA.

148 patients
(117 training,
31 validation).

LASSO for feature selection;
Logistic Regression, KNN, and
SVM models evaluated.

AUC: 0.984
(training),
0.983 (validation).

MRI radiomics showed excellent
performance in non-invasive and
preoperative OA diagnosis.

Li et al.,
2024 (8)

Develop a bone marrow
edema model using MRI-
based radiomics to diagnose
knee osteoarthritis (OA).

302 patients
(211 training,
91 testing); MRI

Extracted 11 radiomics features
from bone marrow edema; Logistic
regression and nomogram
developed combining
clinical characteristics.

AUC: 0.906
(training),
0.845 (testing).

MRI-based radiomics combined with
clinical features demonstrated superior
diagnostic performance compared to
clinical models alone.

Angelone
et al.,
2024 (9)

Explore radiomics and
machine learning to predict
knee cartilage degeneration
in OA.

138 knees (MRI
and CT scans)

Texture and shape-related
radiomics features; Machine
learning algorithms
for classification.

Accuracy SVM
Linear =
90.25 (±7.03)

Radiomics demonstrated potential for
early OA detection and
personalized treatment.

Gao et al.,
2024 (12)

Develop radiomics models to
differentiate osteosarcoma
(OS) and chondrosarcoma
(CS) using MRI.

87 training, 29
validation; MRI
(CET1 and
T2WI-
FS sequences).

LASSO-selected features;
Multivariate logistic regression.

AUC: 0.970
(training, T2WI-
FS),
0.899 (validation).

Radiomics models effectively
differentiated OS and CS with high
accuracy and diagnostic value.

Li et al.,
2024 (24)

Construct a radiomics-based
automatic grading model for
knee OA using
plain radiographs.

473 knee joints
(AP and
LAT
radiographs).

Radiomics feature selection;
Logistic regression
for classification.

AUC: 0.727
(combined AP &
LAT images).

Combining radiographic views
enhances radiomics model
performance for OA grading.

Wang et al.,
2024 (10)

Develop a multi-sequence
MRI-based radiomics model
for early osteonecrosis of the
femoral head (ONFH).

244 total (122
ONFH, 122
normal); Multi-
sequence MRI.

LASSO and mRMR feature
selection; Multi-sequence
radiomics model.

AUC: 0.94
(test set).

Multi-sequence radiomics model
outperformed radiologists in early
ONFH diagnosis.

Alkhatatbeh
et al.,
2024 (11)

Develop a deep learning-based
radiomics model for early
ONFH using single-
sequence MRI.

150 patients (80
healthy,
70 necrotic).

Logistic regression; Combined
handcrafted and deep
learning features.

AUC: 0.968
(DLR model).

Single-sequence MRI with deep
learning-based radiomics provided
high diagnostic accuracy for
early ONFH.

Xie et al.,
2024 (28)

Develop and validate an MRI
radiomics-based decision
support tool for automated
grading of cervical
disc degeneration.

2,610 cervical
disc samples
from 435
patients (T1 &
T2 MRI).

mRMR for feature selection;
Random Forest for modeling;
Combined radiomics model using
T1 and T2 MRI modalities.

AUC: 0.95
(test set).

The decision support tool
demonstrated robust diagnostic
performance for cervical disc
degeneration and facilitated
individualized management.

Current
Study

Develop a radiomics model to
differentiate between ONFH
and OA using MRI and
machine learning techniques.

140 patients (70
ONFH, 70 OA);
Single-
phase MRI.

Radiomics features selected using
LASSO; SHAP analysis used for
feature importance; NaiveBayes as
a classifier.

AUC: 0.955
(test set).

The proposed model demonstrated
high diagnostic accuracy and
robustness in distinguishing ONFH
from OA, surpassing three
healthcare professionals.
F
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"Imaging Modality" indicates the type of MRI sequences or modalities used in each study. "Target Condition(s)" lists the specific diseases or conditions addressed. "Key Radiomics Features/
Models" highlights the primary features or machine learning models utilized. "Sample Size" indicates the number of participants or samples included in the analysis. "Performance Metrics" report
the diagnostic accuracy, typically measured by AUC (Area Under the Curve). "Key Findings and Contributions" summarize the study’s major outcomes and its impact on the field.
Bold text represents the authors names for each of the studies with the corresponding citation.
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conditions involving the femoral head (10). utilized multi-sequence

MRI (T1, T2, and Cor STIR) to diagnose early osteonecrosis of the

femoral head (ONFH), achieving an AUC of 0.94, and highlighted

the benefits of combining multiple sequences to enhance diagnostic

performance. Similarly (11), used a single-sequence MRI-based

deep learning radiomics model for ONFH diagnosis, achieving an

AUC of 0.968 but with limited focus on model interpretability.

Table 5 compares the previously published papers relative to

this topic.

The present study uniquely addresses the critical clinical

challenge of distinguishing between osteoarthritis (OA) and

osteonecrosis of the femoral head (ONFH)—two conditions with

overlapping imaging characteristics but requiring distinct treatment

strategies. By employing a SHAP-interpreted radiomics framework

and utilizing a single-phase MRI, this work balances simplicity and

accuracy while prioritizing feature interpretability, offering a robust

and clinically applicable tool to improve diagnostic precision and

support timely intervention. This paper represents the first

investigation into the application of radiomics for differentiating

between hip OA and ONFH. While most research focuses on the

knee as it is the primary site of osteoarthritis, hip osteoarthritis

ranks second in prevalence, highlighting the need for further study

in this area. The interpretability of the presented model emphasizes

the significance of individual radiomic features within a complex

machine learning framework and provides insights into their

contribution to specific diagnostic outcomes.Our study has

certain limitations, including a moderate sample size for both

training and testing. In addition,the investigation was conducted

at a single center only; a multi-center study in the future could

provide a more comprehensive examination of Radiomics in

distinguishing between OA and ONFH. Moreover, involving

more senior specialists could enhance the usefulness of this study.

In conclusion, our research developed a Radiomics Model utilizing

radiomics and machine learning to differentiate between OA and

OFH. This strategy surpassed three users with varying levels of

expertise. This innovative approach can provide critical diagnostic

information and improve early treatment planning for patients with

either osteoarthritis or osteonecrosis of the femoral head.
5 Conclusion

A Machine Learning-Based Radiomics model was developed

and evaluated, demonstrating effective differentiation between

ONFH and OA. This model has the potential to benefit both

junior and senior surgeons, as well as radiologists, by facilitating

early accurate diagnosis and the development of timely

treatment plans.
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