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Succinylation represents an emerging class of post-translational modifications

(PTMs), characterized by the enzymatic or non-enzymatic transfer of a negatively

charged four-carbon succinyl group to the e-amino group of lysine residues,

mediated by succinyl-coenzyme A. Recent studies have highlighted the

involvement of succinylation in various diseases, particularly cancer progression.

Sirtuin 5 (SIRT5), a member of the sirtuin family, has been extensively studied for its

robust desuccinylase activity, alongside its deacetylase function. To date, only a

limited number of SIRT5 substrates have been identified. These substrates mediate

diverse physiological processes such as glucose oxidation, fatty acid oxidation,

ammonia detoxification, reactive oxygen species scavenging, anti-apoptosis, and

inflammatory responses. The regulation of these activities can occur through either

the same enzymatic activity acting on different substrates or distinct enzymatic

activities targeting the same substrate. Aberrant expression of SIRT5 has been

closely linked to tumorigenesis and disease progression; however, its role remains

controversial. SIRT5 exhibits dual functionalities: it can promote tumor proliferation,

metastasis, drug resistance, and metabolic reprogramming, thereby acting as an

oncogene; conversely, it can also inhibit tumor cell growth and induce apoptosis,

functioning as a tumor suppressor gene. This review aims to provide a

comprehensive overview of the current research status of SIRT5. We discuss its

structural characteristics and regulatory mechanisms, compare its functions with

other sirtuin family members, and elucidate the mechanisms regulating SIRT5

activity. Specifically, we focus on the role of succinylation modification mediated

by SIRT5 in tumor progression, highlighting howdesuccinylation by SIRT5modulates

tumor development and delineating the underlying mechanisms involved.
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1 Introduction

Cancer continues to pose a significant global health challenge.

According to recent data, the countries with the highest incidence of

new cancer cases include China, the United States, India, Japan,

Germany, Brazil, Russia, France, the United Kingdom, and Italy

(1–3). Emerging research underscores the critical role of PTMs in

tumor progression (4, 5). a member of the sirtuin family, was

initially characterized as a mitochondrial deacetylase but has since

been recognized for its diverse roles in PTMs, particularly

desuccinylation (6). Located on chromosome locus 6p23, SIRT5 is

an NAD-dependent deacetylase that contains a Zn²+ binding

domain and a Rossmann fold domain, which together form the

substrate binding site and the NAD+ binding site (6). Compared to

other sirtuins, SIRT5 features a larger lysine acyl-binding pocket,

resulting in relatively weaker deacetylase activity but robust

desuccinylase activity (7). SIRT5 stands out among sirtuins due to

its unique ability to remove succinyl groups from lysine residues,

significantly influencing protein function and cellular metabolism

(8). The biological significance of desuccinylation has garnered

increasing attention, especially in the context of cancer. By

modulating the succinylation status of key metabolic enzymes,

SIRT5 affects various cellular processes, including glycolysis,

mitochondrial function, and cell proliferation (9–11). This

modulation is crucial because succinylation can either activate or

inhibit enzymes involved in these pathways, thereby impacting

tumorigenesis and cancer progression.

PTMs encompass a diverse array of chemical alterations where

modifying groups covalently bind to substrate proteins, thereby

altering their physiological properties such as activity, cellular

localization, stability, and interactions with other proteins,

ultimately influencing their function (12). Advances in

proteomics have led to the identification of various PTM types,

including acetylation, propionylation, methylation, butyrylation,

succinylation, crotonylation, malonylation, ubiquitination, and 2-

hydroxyisobutyrylation. As proteomics continues to advance, an

increasing number of studies are reporting the involvement of

PTMs in cancer development and progression (13, 14). Among

these PTMs, succinylation has garnered significant attention in

recent years for its role in tumorigenesis. Succinylation involves the

reversible and dynamic covalent attachment of a succinyl group

(-COCH2-CH2-COOH), donated by succinyl-CoA, to amino acid

residues, predominantly lysine, within substrate proteins (15). This

process is evolutionarily conserved and plays a critical role in

numerous biological processes. Aberrant lysine succinylation has

been shown to significantly impact metabolic pathways, gene

transcription, DNA damage responses, and protein folding,

stability, and functionality (16). Although several studies have

documented the involvement of succinylation in various

physiological and pathological processes (17, 18), including tumor

biology (19), elucidating the regulatory mechanisms underlying

succinylation in cancer can provide novel insights for prevention

and therapeutic strategies.

In summary, the research surrounding SIRT5 and its

desuccinylation activity underscores its pivotal role in cancer biology.

By modulating the succinylation status of key metabolic enzymes and
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interacting with tumor suppressor pathways, SIRT5 exerts

multifaceted influences on tumorigenesis. The ongoing elucidation of

SIRT5’s functions and mechanisms may pave the way for novel

therapeutic approaches that target metabolic pathways in cancer

treatment, potentially improving outcomes for patients with

malignancies characterized by dysregulated metabolic processes (20,

21). Therefore, this review aims to provide a comprehensive overview

of the current research status of SIRT5. Specifically, it seeks to elucidate

the role of SIRT5-mediated succinylation modification in tumors,

thereby establishing a theoretical foundation for understanding the

mechanisms of tumor development. Additionally, this review offers

new perspectives for tumor therapy and drug development,

highlighting the potential of targeting SIRT5 and succinylation as

innovative strategies for combating cancer.
2 SIRT5

2.1 Structure and functional characteristics
of SIRT5

The human SIRT5 gene, located at chromosome locus 6p23,

encodes two protein isoforms comprising 310 and 299 amino acids,

respectively. Predominantly localized within the mitochondria, with

minor presence in the cytoplasm, SIRT5 exhibits a complex

structural architecture. The protein consists of 14 b-strands and 9

a-helices that form both the zinc-binding domain and the

Rossmann fold domain, thereby creating the substrate and NAD+

binding sites (6). Within the substrate binding site, three

hydrophobic residues—phenylalanine-223 (Phe223), leucine-227

(Leu227), and valine-254 (Val254)—form the entrance for acyl-

lysine groups. Two non-hydrophobic residues, tyrosine-102

(Tyr102) and arginine-105 (Arg105), specifically recognize the

negatively charged acyl-lysine structure. Additionally, alanine-86

(Ala86) contributes to the formation of a larger lysine acyl-binding

pocket in SIRT5 (22). These structural features confer SIRT5’s

preference for short-chain carboxylates, such as malonyl, succinyl,

and glutaryl groups, over acetyl groups (23). Consequently, the

catalytic efficiency of SIRT5 for desuccinylation, demalonylation,

and deglutarylation activities is approximately 1000-fold higher

than its deacetylase activity (24).
2.2 Expression patterns and regulatory
mechanisms of SIRT5

SIRT5 exhibits widespread expression across various organs,

including the brain, heart, liver, kidneys, muscles, and testes, with

predominant localization within mitochondria; however, it is also

detectable in the cytoplasm and nucleus (25). In mammals, SIRT5

functions as a primary regulator of lysine desuccinylation. In mouse

liver and embryonic fibroblasts, a comprehensive proteomic

analysis identified 2,565 succinylation sites across 779 proteins.

Upon SIRT5 gene knockout, over 90% of these sites demonstrated

increased succinylation levels, primarily affecting proteins involved

in the tricarboxylic acid (TCA) cycle and fatty acid metabolism (26).
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Consistent with these findings, Rardin et al. (27) reported that in the

absence of SIRT5, 386 succinylation sites across 140 proteins in

mouse liver mitochondria exhibited enhanced succinylation. These

succinylated proteins predominantly participate in energy

metabolism, b-oxidation, and ketone body production. Recent

studies have further elucidated the role of SIRT5 in cardiac

tissues, identifying key targets that suggest SIRT5-mediated

deglutarylation may play a crucial role in maintaining cardiac

energy metabolism (28, 29). This evidence underscores the

importance of SIRT5 in regulating metabolic pathways critical for

cellular function and homeostasis.

Despite the identification of numerous SIRT5 substrates, including

a variety of metabolic enzymes, research into its desuccinylase,

demalonylase, and deglutarylase activities is still in its early stages.

This relative paucity of research can be attributed to several factors.

Firstly, the discovery of SIRT5’s non-acetylation-related enzymatic

activities is relatively recent compared to its deacetylase function,

which has been extensively studied over the years. The novel nature

of these modifications means that specific tools and methodologies for

their detection and study are still being developed, refined, and

disseminated within the scientific community. Secondly, the

complexity of succinylation, malonylation, and glutarylation as PTMs

poses additional challenges. These PTMs occur at lower abundances

than acetylation and require highly sensitive and specific analytical

techniques, such as mass spectrometry coupled with enrichment

strategies, for reliable detection and quantification. The technical

hurdles associated with studying these modifications have likely

slowed progress in this area. Furthermore, the functional significance

of these PTMs is not yet fully understood, which may lead to a lack of

targeted research efforts. While it is clear that they play critical roles in

cellular metabolism and other biological processes, the exact

mechanisms by which they influence protein function and cellular

physiology remain to be elucidated. As the importance of these

modifications becomes more apparent, interest and investment in

this field are expected to increase, driving further discoveries.

Continued advancements in technology, along with growing

awareness of the importance of these PTMs, are likely to facilitate

deeper exploration and understanding of SIRT5’s role in regulating

these modifications and their implications for health and disease. In

summary, while significant strides have been made in identifying

SIRT5 substrates, the full spectrum of its enzymatic activities,

particularly those related to desuccinylation, demalonylation, and

deglutarylation, remains to be thoroughly investigated. Addressing

these knowledge gaps will be crucial for advancing our

understanding of SIRT5’s functions and developing potential

therapeutic targets for diseases characterized by dysregulated

metabolic processes.
2.3 Comparison of SIRT5 with other
members of the sirtuin family

In addition to SIRT5, the sirtuin family encompasses proteins

with distinct characteristics and structures. The sirtuins constitute a

highly conserved family of proteins, comprising seven members in

mammals (SIRT1-7), which regulate various metabolic and stress
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response pathways (30). Specifically, SIRT1 and SIRT2 are

predominantly localized in the cytoplasm, while SIRT3, SIRT4,

and SIRT5 reside within mitochondria, and SIRT6 and SIRT7 are

found in the nucleus (31). These proteins play pivotal roles in

genomic stability, cell cycle regulation, metabolism, aging, and

disease development (32). Sirtuins possess NAD+-dependent

deacetylase activity (SIRT1, SIRT2, SIRT3, SIRT5, SIRT6, and

SIRT7) or mono-ADP-ribosyltransferase activity (SIRT4 and

SIRT6). Each sirtuin exhibits distinct enzymatic activities,

biological functions, and subcellular localizations, which

contribute to their diverse roles in cancer biology (Table 1).

For instance, SIRT1, an NAD+-dependent histone deacetylase

belonging to the sirtuin family, has been closely associated with

tumor development (33). It influences a wide array of processes,

including cellular senescence (34), DNA replication (35), cell

growth, metabolism (36), and tumor progression (37). Studies

indicate that SIRT1 impacts the onset and progression of various

cancers, such as colorectal, prostate, breast, and murine lung

cancers, sarcomas, and lymphomas (38–40). Given its high

expression in certain tumor tissues and its inhibition of several

tumor suppressor genes like FOXO1, p73, and WRN (41–43),

SIRT1 is believed to promote tumorigenesis. SIRT1 primarily

modulates transcription factors, histones, and other non-histone

substrates through deacetylation, thereby affecting gene expression

patterns (35, 37). In contrast, SIRT5 exhibits a broader range of

actions, encompassing not only deacetylation but also

desuccinylation and demalonylation activities (27). While both

SIRT1 and SIRT5 are involved in metabolic regulation, SIRT1 is

more closely associated with nutrient-sensing signaling pathways,

whereas SIRT5 focuses on the direct regulation of metabolic

enzymes. This distinction highlights the specialized roles of each

sirtuin in cellular metabolism and underscores the importance of

understanding their individual contributions to cancer biology.

SIRT2, predominantly localized in the cytoplasm but also

present in mitochondria and nuclei, deacetylates a variety of

endogenous substrates, playing a significant role in multiple

physiological and pathological processes. These include cancer

cell proliferation, cell cycle regulation, apoptosis, genomic

integrity, cellular metabolism, infection, and inflammation

(44–46). Notably, SIRT2 exhibits both oncogenic and tumor-

suppressive functions across different cancer types, indicating

context-specific roles in cancer progression (47). While both

SIRT5 and SIRT2 possess deacetylase activity, their distinct

subcellular distributions determine their primary functions. The

mitochondrial localization of SIRT5 positions it as a key regulator of

metabolic processes, particularly in energy production and

metabolite conversion (48). In contrast, SIRT2’s presence in the

cytoplasm involves it more prominently in processes such as

cytoskeletal dynamics, cell division, and signaling pathways (49).

SIRT3 is a critical mitochondrial deacetylase that plays an

essential role in regulating protein acetylation levels, maintaining

mitochondrial integrity, and modulating energy metabolism

(50, 51). Hyper-acetylation, frequently observed in tumors,

contributes to cancer survival by altering protein function. SIRT3

counteracts this hyper-modification, thereby modulating tumor

progression (52). Moreover, SIRT3 can reprogram metabolism,
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significantly impacting tumor initiation and progression (53).

However, its dual nature, exhibiting both pro- and anti-

tumorigenic effects, complicates its targeting for therapeutic

purposes (54, 55). Both SIRT3 and SIRT5 are principal sirtuin
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members within the mitochondria, each contributing uniquely to

mitochondrial function. SIRT3 is renowned for its antioxidant

effects and metabolic control, enhancing mitochondrial efficiency

and reducing oxidative stress (56). It acts primarily as a
TABLE 1 Comparison of SIRT5 with other SIRTs.

Name Length Structure Location Enzyme activity Oncogene Anti-cancer

SIRT1 747 Deacetylase
BC (39), PC (74), CRC (38),

LUD (75)
AML (76), GC (77)

SIRT2 389 Deacetylase AML (78), EC (79), BC (80) BC (81), HCC (82)

SIRT3 399 Deacetylase GC (83), BC (84), CRC (85)
Glioma (86), OC (87), NSCLC

(88), HCC (89)

SIRT4 314
1. ADP ribosyltransferase

2. Lipoamidase
3. Deacetylase

HCC (90)
PC (60), GC (91), NSCLC (92),

CRCC (93)

SIRT5 310
1. Succinyl deacylase
2. Malonyl deacylase

3. Deacetylase

CRC (94), NSCLC (95),
PC (96)

HCC (97)

SIRT6 355

1. Deacetylase
2. ADP ribosyltransferase

3. Long-chain
fattyacyl deacylase

HCC (98), PC (99), BC
(100), MM (101),

SCC (102),

Glioma (103), CRC (104), OC
(105), NSCLC (106), HCC (107)

SIRT7 400
1. Succinyl deacylase

2. Deacetylase
HCC (108), GC (109), CRC
(110), OC (111), CC (112)

BC (71)
BC, breast cancer; PC, prostate cancer; CRC, colorectal cancer; LUD, lung adenocarcinoma; AML, acute myeloid leukemia; EC, endometrial cancer; CC, cervical cancer. HCC, hepatocellular
carcinoma; GC, gastric cancer; OC, ovarian cancer; NSCLC, non-small cell lung cancer; CRCC, chromophobe renal cell carcinoma; MM, multiple myeloma; SCC, squamous cell carcinoma;
PDAC, pancreatic ductal adenocarcinoma.
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deacetylase, normalizing hyper-acetylation and supporting

mitochondrial health. Conversely, SIRT5 exhibits a broader

range of demodification activities within the mitochondria. It

plays a crucial role in fatty acid oxidation (28) and amino acid

metabolism (57), including the regulation of arginase II activity via

desuccinylation, which influences the urea cycle (58).

SIRT4 significantly inhibits glutamine metabolism by ADP-

ribosylating glutamate dehydrogenase, thereby limiting the supply

of energy and materials required for rapid proliferation in tumor

cells (59, 60). This effect has been confirmed across various cancer

types, including breast cancer (61), colorectal cancer (62),

esophageal squamous cell carcinoma (63), and thyroid cancer

(64). The consensus that SIRT4 suppresses tumor development

through inhibition of glutamine metabolism suggests its potential as

a novel biomarker and therapeutic target for malignancies. While

both SIRT5 and SIRT4 act within mitochondria, they exhibit

distinct functional orientations and mechanisms. SIRT5 primarily

modulates metabolic enzyme activity through its unique

demodification activities, whereas SIRT4 affects metabolic

processes by regulating signaling pathways. Specifically, SIRT5’s

enzymatic actions are more directly involved in the regulation of

metabolic enzyme activity, while SIRT4 plays a more significant role

in signal transduction and metabolic network regulation.

SIRT6 is predominantly localized in the nucleus and possesses

two key enzymatic activities: NAD+-dependent deacetylase and

mono-ADP-ribosyltransferase. These activities are integral to

SIRT6’s functions (65). Studies have shown that, acting as a

deacetylase for histone H3 lysine 9 (H3K9), SIRT6 controls the

expression of various glycolytic genes, particularly by co-repressing

the transcription factor hypoxia-inducible factor 1a (HIF-1a), thus
inhibiting tumor progression (66). Moreover, overexpression of

SIRT6 can induce apoptosis in fibrosarcoma and human cervical

cancer cell lines via its mono-ADP-ribosyltransferase activity without

affecting normal cells (67). Conversely, SIRT6 has also been shown to

enhance cytokine secretion and cell motility, and increase drug

resistance by hyperactivating calcium channels, playing a pro-

oncogenic role (68). This dual action of SIRT6 appears to depend

on tissue context, spatiotemporal distribution of various factors, and

different stages of tumorigenesis. Despite sharing deacetylase activity,

SIRT5 and SIRT6 differ significantly in their biological functions due

to their distinct subcellular localizations. SIRT5 operates mainly

within the mitochondria, influencing metabolic pathways and

energy conversion, whereas SIRT6 is active in the nucleus,

participating in DNA repair and gene expression regulation. This

disparity underscores the Sirtuin family’s capability to perform

diverse functions within the cell, contributing to cellular health and

adaptation to environmental changes.

SIRT7, primarily localized in the nucleolus, has recently been

identified as possessing deacetylase activity towards specific

substrates, thereby influencing cellular life activities through

various pathways (69). Overexpression of SIRT7 has been

observed in several human malignancies, including hepatocellular

carcinoma (70), breast cancer (71), thyroid cancer (72), gastric

cancer (73), and others. Its expression levels correlate with clinical-

pathological features and patient prognosis, underscoring its

potential role in tumor biology. The oncogenic effects of SIRT7
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are closely linked to its deacetylation activity, which primarily

influences gene expression regulation. Unlike SIRT7, which

predominantly affects transcriptional regulation, SIRT5 plays a

crucial role in cellular energy metabolism. The mitochondrial

localization of SIRT5 establishes it as a key regulator of metabolic

enzyme activity, whereas the nuclear role of SIRT7 positions it as an

important participant in gene expression modulation. These two

sirtuin members influence cellular health through distinct

mechanisms: SIRT5 by modulating metabolic pathways and

SIRT7 by regulating gene expression.

In summary, while all members of the sirtuin family depend on

NAD+ and can influence metabolic processes, each member

exhibits specific cellular localization and functional characteristics.

SIRT5 stands out for its importance in non-conventional lysine

modifications, such as desuccinylation, which are less common

among other sirtuin members. Additionally, the unique role of

SIRT5 in mitochondrial metabolism, particularly in fatty acid

oxidation, highlights its significance in cellular energy production

and tumor progression.
3 The succinylation modification
mechanism regulated by SIRT5

3.1 Definition of succinylation modification

Protein PTMs represent a vast array of biochemical alterations that

modulate protein function. To date, over 600 types of PTMs have been

identified, including methylation, phosphorylation, ubiquitination,

acetylation, succinylation, and lactylation (113). Among these,

succinylation involves the enzymatic or non-enzymatic addition of a

succinyl group to the e-amino group of lysine residues within proteins,

representing a reversible modification that can significantly influence

protein spatial conformation, activity, stability, and intracellular

localization (114). This acylation process can occur either non-

enzymatically or enzymatically (16). Enzymatic succinylation

primarily relies on succinyltransferases, which are analogous to

histone acetyltransferases (HATs), facilitating the transfer of a

succinyl group from succinyl-CoA to target protein lysine residues.

This process is highly specific, allowing for precise regulation of protein

function (115, 116) (Figure 1). In contrast, non-enzymatic

succinylation occurs dynamically and widely in response to changes

in the cellular metabolic environment, such as during metabolic or

oxidative stress conditions. Under these circumstances, succinyl groups

can directly bind to lysine residues through spontaneous chemical

reactions. The dynamic equilibrium of this non-enzymatic

modification is influenced by various factors, including the

concentration of succinyl donors, intracellular pH levels, and redox

status (116, 117).

Understanding the dynamic equilibrium of succinylation is

critical for elucidating its role under both physiological and

pathological conditions. Under normal physiological conditions,

appropriate regulation of succinylation levels helps maintain

cellular metabolic homeostasis and function. Conversely, in

pathological states, aberrant increases or decreases in succinylation

can lead to cellular dysfunction, thereby promoting disease
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progression. For instance, in cancer cells, succinylation influences cell

proliferation and apoptosis by modulating the activity of key

metabolic enzymes (116, 118). Moreover, succinylation is closely

associated with the development and progression of various

metabolic diseases, including liver metabolism disorders and

diabetes. The main factors affecting the dynamic balance of

succinylation include cellular metabolic status, environmental

conditions (such as temperature and pH), and cellular signaling

pathways (119, 120). Therefore, delving deeper into the regulatory

mechanisms governing succinylation’s dynamic balance could

provide new insights and potential therapeutic targets for

preventing and treating related diseases.

Lysine succinylation is a prevalent PTM observed in both

eukaryotic and prokaryotic cells (121), with its role in eukaryotic

cells being closely associated with cancer progression. Within the

nucleus of eukaryotic cells, lysine succinylation has been identified

at specific histone sites, including H1.3K65, H1.3K86, H2BK109,

H2BK117, H3K79, H3K120, and H3K122 (122). Additionally, non-

histone proteins such as HMGB2K114, HMGB1K127,

HMGB1K114, and HMGB1K43 also undergo succinylation (123).

In the cytoplasm, lysine succinylation affects a wide array of

metabolic enzymes and regulatory proteins. These include

glycolytic enzymes and those involved in the TCA cycle, such as

PDK3, IDH2, ACO2, DLAT, PDHA1, PITRM1, GOT2, MDH2,

IDH3B, and SDHA. Enzymes involved in fatty acid metabolism, like

ACAA2, HSD17B10, ETFa, HADHB, and HADHA, are also subject

to this PTM. Proteins participating in ketone body metabolism,

such as OXCT1 and ACAT1, and those related to reactive oxygen

species (ROS) scavenging, including SOD, PRX, and GPX, exhibit

succinylation as well (124). Thus, in eukaryotes, the dynamic

regulation of protein succinylation and desuccinylation modulates

various cellular processes, including metabolism, transcriptional

regulation, and DNA damage repair. These processes are essential

for maintaining normal cellular functions and are intimately linked

with the occurrence and development of tumors.
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3.2 The role of succinylation in energy
metabolism, oxidative stress response, and
gene expression regulation

Succinyl-coenzyme A (succinyl-CoA) serves as the

primary donor of succinyl groups, primarily derived from the

mitochondrial TCA cycle through the oxidative decarboxylation

of a-ketoglutarate. Beyond glucose metabolism, the catabolism of

amino acids such as methionine, threonine, valine, and isoleucine

can also generate succinyl-CoA. Additionally, short-chain fatty acid

w-oxidation products, including hydroxy fatty acids, can be

converted into succinyl-CoA. For instance, fibroblasts have been

shown to utilize fatty acids as an effective source of succinyl-CoA

under conditions where glucose and pyruvate are absent from the

culture medium (125). The intracellular concentration of succinyl-

CoA directly influences the level of succinylation modification

(126), indicating that alterations in metabolic pathways can lead

to corresponding changes in protein succinylation.

In the realm of energy metabolism, succinylation plays a pivotal

role in modulating the activity of key metabolic enzymes. Studies

have demonstrated that succinylation can influence the function of

TCA cycle enzymes, thereby affecting overall mitochondrial energy

production. This modification is particularly relevant in conditions

characterized by mitochondrial dysfunction, such as heart failure

and ischemic stroke. In models of heart failure, altered succinylation

patterns have been linked to impaired oxidative phosphorylation

capacity and dysregulated energy metabolism, highlighting the

potential of targeting succinylation pathways for therapeutic

interventions (127). The dynamic regulation of succinylation,

mediated by enzymes such as SIRT5, which desuccinylates

metabolic enzymes, underscores the complexity of metabolic

regulation and its impact on cellular energy homeostasis (17).

SIRT5’s role in controlling succinylation levels further emphasizes

the intricate balance required for maintaining optimal

metabolic function.
FIGURE 1

Succinylation modification mechanism diagram.
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Oxidative stress represents another critical domain where

succinylation exerts its regulatory influence. Accumulation of ROS

can lead to oxidative damage, which is implicated in various diseases,

including neurodegenerative disorders and cardiovascular diseases.

Recent evidence suggests that succinylation can modulate ROS

generation by influencing the stability and activity of antioxidant

enzymes. For instance, succinylation of specific proteins involved in

the antioxidant response can either enhance or inhibit their activity,

thereby shaping the cellular response to oxidative stress (128). This

regulatory mechanism is particularly significant in the context of

aging and neuroinflammation, where increased succinylation levels

have been associated with a senescence phenotype in microglia,

suggesting a potential link between succinylation and age-related

neurodegenerative processes (129).

Succinylation also plays a substantial role in regulating gene

expression. This modification can alter chromatin structure and

transcription factor activity, thereby influencing the transcription of

genes involved in metabolism, stress response, and other critical

cellular functions. Notably, succinylation of histones has been

implicated in the regulation of gene expression patterns associated

with tumorigenesis, indicating that this PTM could serve as a

potential therapeutic target in cancer (130). Moreover, the interplay

between succinylation and other PTMs, such as acetylation and

phosphorylation, adds an additional layer of complexity to the

regulatory networks governing gene expression and cellular

responses to environmental cues (131).

In summary, succinylation emerges as a crucial post-translational

modification that intricately links energy metabolism, oxidative stress

response, and gene expression regulation. Ongoing research into the

mechanisms and effects of succinylation continues to unveil its

significance in maintaining cellular homeostasis and its potential

implications in various diseases. As our understanding of

succinylation deepens, it holds promise as a target for therapeutic

interventions aimed at modulating metabolic disorders, oxidative

stress-related conditions, and cancer (17).
3.3 Mechanism of protein desuccinylation
catalyzed by SIRT5

Succinylation modification plays an essential role in various

biological processes, and the regulatory mechanism of SIRT5 on

succinylation has garnered increasing attention. Advances in the

study of the deacylase SIRT5 have confirmed its dual capabilities: not

only does it function as a deacetylase but it also exhibits potent

desuccinylase activity (27). This versatility positions SIRT5 as a key

regulator of cellular metabolism and other critical biological functions.

The enzymatic process by which SIRT5 catalyzes protein

desuccinylation involves several critical steps that reflect the general

mechanism of NAD+-dependent deacylation enzymes. Initially, SIRT5

must recognize and bind to the succinylated protein substrate. This

binding typically occurs through the identification of specific sequence

motifs or structural features on the substrate, particularly those

harboring succinylated lysine residues. Upon binding, SIRT5 utilizes

NAD+ as a covalent catalyst. In this context, NAD+ serves both as an

electron donor and as a component that generates a covalent
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intermediate (ADP-ribose) during the reaction—a step essential for

deacylation. The active site of SIRT5 contains a conserved cysteine

residue that forms a covalent bond with the succinyl group of the

succinyl-lysine residue. During this interaction, NAD+ is converted

into nicotinamide and released from the complex. Subsequently, SIRT5

undergoes a series of chemical rearrangements to transfer the succinyl

group from the substrate to the cysteine residue within the enzyme’s

active site, forming a succinyl-enzyme intermediate. Finally, a water

molecule attacks the succinyl group within the succinyl-enzyme

intermediate, leading to the cleavage of the succinyl group. This

results in the release of free succinate and the restoration of the

unmodified state of the protein substrate. Once the reaction is

complete, the desuccinylated protein is released from SIRT5, and the

enzyme is reset to engage with another succinylated substrate,

continuing the desuccinylation cycle (132). Through these catalytic

steps, SIRT5 effectively removes succinyl groups from proteins,

restoring the original state of lysine residues or altering their

chemical environment. This action influences protein function,

stability, or interactions with other molecules. Such deacylation is

crucial for cellular metabolism, signaling pathways [such as NF-kB
and IRF signaling (133), Notch and b-catenin signaling (134)], and

adaptation to environmental changes.

The desuccinylation process mediated by SIRT5 is vital for

regulating various cellular functions, including metabolism and

stress responses. By modulating the succinylation state of proteins,

SIRT5 can influence metabolic pathways, transcriptional activities,

and other cellular processes, thereby playing a significant role in

health and disease, including cancer development and progression.
3.4 The comparison of SIRT5 with the
other desuccinylase

In addition to the well-characterized SIRT5 and SIRT7, recent

studies have identified new proteins that exhibit desuccinylase activity.

Notably, Jialun Li et al. (135) reported that histone desuccinylation is

predominantly catalyzed by class I histone deacetylases (HDAC1/2/3).

Inhibition or depletion of HDAC1/2/3 resulted in a significant increase

in global histone succinylation levels, while ectopic expression of these

enzymes—but not their deacetylase-inactive mutants—reduced global

histone succinylation. Furthermore, in vitro assays demonstrated

robust histone desuccinylase activity for class I HDAC1/2/3

complexes. These findings establish that class I HDAC1/2/3, rather

than SIRT family proteins, are the principal histone desuccinylases,

particularly important for promoter histone desuccinylation. The

understanding of desuccinylation mechanisms in microorganisms

remains in its infancy due to the paucity of identified specific

desuccinylases. CobB, a known Sir2-like bacterial lysine deacetylase,

was recently identified as the first prokaryotic enzyme with

desuccinylation activity (136). The characterization of CobB as a

bifunctional enzyme capable of both lysine desuccinylation and

deacetylation suggests that eukaryotic Kac-regulatory enzymes may

possess enzymatic activities on various lysine acylations with distinct

structures. Additionally, in the model soil bacterium Streptomyces

coelicolor, a sirtuin-like protein named ScCobB2 was biochemically

characterized as a divergent desuccinylase. Comparative LC-MS/MS
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analysis of the DScCobB2 mutant versus wild-type succinylome

revealed a total of 673 unique succinylated sites, with 470 sites

quantified across 317 proteins. Further quantitative analysis

indicated that at least 114 proteins involved in two major pathways

—protein biosynthesis and carbon metabolism—are markedly

hypersuccinylated in DScCobB2 cells (137). We conducted an

analysis of the protein domains of these desuccinylases. Figure 2

illustrates the specific sites regulated by SIRT5 and SIRT7 in the

context of succinylation modification.

In summary, while SIRT5 is well-characterized as a desuccinylase

with distinctive features, the existence and characteristics of other

desuccinylases remain speculative without further research. SIRT5

stands out due to its defined role in mitochondrial function and its

dependence on NAD+, distinguishing it from potential non-sirtuin

desuccinylases that might operate through different mechanisms and

within distinct cellular contexts. Future investigations into the diversity

and specificity of desuccinylases will be crucial for elucidating their

roles in cellular regulation and disease pathogenesis.
3.5 Factors influencing SIRT5 activity

Given the unique properties and functions of SIRT5 discussed

previously, this section delves into the primary factors that influence its

activity. As an NAD+-dependent deacylase, the intracellular

concentration of NAD+ is crucial for SIRT5’s functionality. NAD+

serves dual roles: it acts as a cofactor essential for SIRT5’s
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desuccinylation reaction and operates as a rate-limiting factor for

enzyme activity. The catalytic mechanism of SIRT5 requires NAD+

as a cofactor. During catalysis, NAD+ is consumed, generating

nicotinamide and an ADP-ribose moiety. This process is pivotal for

forming a covalent intermediate necessary for the desuccinylation

reaction. The active site of SIRT5 contains a conserved cysteine

residue that forms a covalent bond with the succinyl group of

succinyl-lysine. Simultaneously, the ADP-ribose portion of NAD+

transiently forms a covalent complex with the enzyme, facilitating

subsequent hydrolysis steps (8). Variations in intracellular NAD+ levels

directly impact SIRT5 activity. Higher NAD+ levels enhance SIRT5’s

desuccinylase activity by providing sufficient cofactor support for the

catalytic reaction, while decreased NAD+ levels reduce SIRT5 activity

due to insufficient cofactor availability (138). The cellular metabolic

state, particularly the energy status, significantly influences NAD+

levels (139). For instance, under conditions of fasting or caloric

restriction, NAD+ levels increase, potentially enhancing SIRT5

activity (140). Conversely, in states characterized by high-fat diets or

obesity, NAD+ levels may decrease, leading to reduced SIRT5 activity

(141). The ratio of NAD+ to reduced nicotinamide adenine

dinucleotide (NADH) also plays a critical role in determining SIRT5

activity. A higher NAD+/NADH ratio generally promotes SIRT5

activity, indicating greater availability of NAD+ as a cofactor,

whereas a lower ratio can inhibit SIRT5 activity (121). During stress

responses, such as oxidative stress or hypoxia, cells experience

fluctuations in NAD+ levels, which directly affect SIRT5 activity and

consequently influence the cellular response to these stress conditions
FIGURE 2

Succinylation modification specific cite of desuccinylase.
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(142, 143). In certain disease states, including diabetes and

cardiovascular diseases, alterations in NAD+ levels can indirectly

impact SIRT5 activity and its regulatory role in cellular metabolism

and signaling (142, 144). Changes in cellular metabolic status directly

influence the supply of NAD+, thereby affecting SIRT5 activity.

Understanding the impact of NAD+ levels on SIRT5 activity

can provide insights into the enzyme’s role in cellular physiology

and offer potential intervention strategies for related diseases,

including cancer.
4 Role of SIRT5 in cancer

Succinylation modifications have been implicated in various

malignancies, including lung cancer, melanoma, hepatocellular

carcinoma, osteosarcoma, neurologic malignancies, renal cell

carcinoma, thyroid cancer, and colorectal cancer (119, 145, 146).

However, the role of succinylation in tumor progression is

contingent upon the specific succinylation-modified genes, which

can exert either tumor-suppressive or oncogenic effects. SIRT5,

identified as the latest desuccinylation gene, acts as a double-edged

sword in tumorigenesis. By modulating the expression of different

target genes, SIRT5 can either inhibit or promote tumor

development. The specific regulatory effects of SIRT5 on different

cancer cells behaviors were shown in Table 2, Figure 3.
4.1 SIRT5-mediated succinylation
regulation and its role in suppressing
tumor progression

Studies have demonstrated that the succinylation of superoxide

dismutase 1 (SOD1) promotes cancer cell proliferation; however,

SIRT5 can reverse this effect by mediating desuccinylation and

thereby restoring SOD1 enzyme activity. Lung cancer cells with
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mutations at the succinylation sites of SOD1 exhibit significantly

reduced proliferation rates, indicating the tumor-suppressive role of

SIRT5 (154). Clark et al. (155) found that mutant isocitrate

dehydrogenase 1 (IDH1) converts a-ketoglutarate (a-KG) into R-2-

hydroxyglutarate (R-2-HG), an a-KG analog that elevates succinyl-

CoA levels, leading to abnormal succinylation of mitochondrial

proteins and promoting cancer cell growth while impairing

apoptosis. However, ectopic expression of SIRT5 reverses the

metabolic defects and apoptotic resistance in IDH1-mutated glioma

cells, impairing their growth both in vitro and in vivo (156). In

hepatocellular carcinoma (HCC), SIRT5 also exerts a tumor-

suppressive function. Expression of SIRT5 is lower in primary liver

cancer tissues compared to normal tissues. Aberrant activation of acyl-

CoA oxidase 1 (ACOX1), which is involved in H2O2 generation, leads

to DNA oxidative damage and impaired liver function, contributing to

HCC onset. SIRT5 can inhibit ACOX1 through desuccinylation,

thereby reducing H2O2 levels and mitigating oxidative stress (97). In

gastric cancer, Lu et al. (151) discovered that SIRT5 expression is

significantly decreased in human gastric cancer tissues. Functional

analyses indicated that overexpression of SIRT5 can inhibit gastric

cancer cell growth both in vitro and in vivo by arresting the cell cycle at

the G1/S phase and suppressing migration and invasion via

modulation of epithelial-mesenchymal transition (EMT). Further

analysis revealed that the tumor-suppressive effect of SIRT5 in gastric

cancer is associated with the regulation of 2-oxoglutarate

dehydrogenase (OGDH) expression. SIRT5-mediated desuccinylation

of OGDH inhibits the OGDH complex’s activity, leading to reduced

mitochondrial membrane potential, decreased ATP production,

increased ROS levels, and altered NADP/NADPH ratios, ultimately

suppressing gastric cancer progression. In prostate cancer, SIRT5

expression is significantly reduced, and a correlation between

decreased SIRT5 levels and reduced patient survival has been

established. Quantitative global succinylation profiling in prostate

cancer revealed a significant increase in the succinylation of lysine

118 (K118su) of lactate dehydrogenase A (LDHA), enhancing LDH
TABLE 2 The role of SIRT5 in different cancers.

Cancer type Function Functional involvement Target gene
Protein
modification

Colorectal cancer (147) oncogene Mitochondrial respiration and proliferation ME2 Desuccinylation

Breast cancer (148) oncogene Glutamine metabolism and proliferation GLS Desuccinylation

Non-small cell lung cancer (95) oncogene Tumor growth FABP4 Deacetylation

Ovarian cancer (149) oncogene Cell growth and cisplatin-resistance NRF2 Deacetylation

Renal cancer (150) oncogene
Sunitinib‐resistant mitochondrial functions and
antioxidant capacity

IDH2 Deacetylation

Hepatocellular carcinoma (97) Tumor suppressor H2O2 production and oxidative DNA damage ACOX1 Desuccinylation

Gastric cancer (151) Tumor suppressor
cell growth, migration, mitochondrial functions and
redox status.

OGDH Desuccinylation

Prostate cancer (152) Tumor suppressor Metastasis PI3K Deacetylation

Glioblastoma (153) Tumor suppressor Occurrence and prognosis
70 differently
expressed genes

DNA methylation
ME2, malic enzyme 2; GLS, glutaminase; FABP4, fatty acid binding protein 4; NRF2, nuclear factor erythroid 2-related factor 2; IDH2, isocitrate dehydrogenase 2; ACOX1, acyl-CoA oxidase 1;
OGDH, oxoglutarate dehydrogenase; PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase.
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activity and exacerbating tumor progression. Overexpression of SIRT5

reduces LDHA-K118 succinylation, inhibiting the migration and

invasion of prostate cancer cells and alleviating disease progression

(157). Beyond these examples, SIRT5 has also been found to inhibit

gastric cancer invasion by catalyzing the desuccinylation of S100A10

protein (158), and it can desuccinylate the K280 site of serine

hydroxymethyltransferase 2 (SHMT2) protein, thereby inhibiting

osteosarcoma development (159). Therefore, SIRT5 can inhibit

tumor cell growth through interfering with multiple pathways.
4.2 SIRT5-mediated succinylation
regulation promoting tumor initiation
and progression

Recent studies have also identified SIRT5 as an oncogenic

promoter through its involvement in various pathways across

different malignancies. Teng et al. (147) discovered that

mitochondrial malic enzyme 2 (ME2) is highly expressed in

colorectal cancer (CRC) tissues, and knockdown of ME2 inhibits

CRC cell proliferation. Further analysis revealed that overexpressed

ME2 undergoes SIRT5-mediated desuccinylation. Deprivation of

glutamine directly enhances the interaction between SIRT5 and

ME2, promoting desuccinylation of ME2 at lysine 346 and thereby

activating ME2 enzyme activity. This activation leads to increased

cellular proliferation and tumor growth. In breast cancer, SIRT5

expression is significantly elevated, and knockout of SIRT5 can

induce oxidative stress by increasing the succinylation of IDH2,
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leading to apoptosis in tumor tissues and inhibiting tumor growth

(160). In RCC, SIRT5 interacts with subunit A of the succinate

dehydrogenase complex (SDHA). Knockout of SIRT5 results in

increased succinylation and expression levels of SDHA. Elevated

SIRT5 expression has been observed in RCC cells and tissues, and

SIRT5 knockout inhibits cancer cell proliferation. These findings

suggest that SIRT5 promotes the occurrence and development of

RCC by inhibiting SDHA succinylation (161). Thus, elevated SIRT5

expression has been observed in various cancers and correlates with

poor patient prognosis.

Given the contrasting oncogenic and tumor-suppressive effects

of SIRT5, it is evident that the specific role of SIRT5 depends on its

key target genes and the type of tumor. Additionally, studies have

found that the function of SIRT5 also depends on whether it

performs desuccinylation or deacetylation (6). Currently, research

on SIRT5 presents many unresolved questions. The investigation

into SIRT5-mediated desuccinylation activity is still in its infancy,

and the relationships and mechanisms between SIRT5 and multiple

cancers require further exploration to provide guidance for future

cancer treatments.
5 Potential of SIRT5 as a therapeutic
target in cancers

The role of SIRT5-mediated desuccinylation in tumor

progression underscores its potential as a therapeutic target for

cancer treatment. In non-small cell lung cancer (NSCLC),
FIGURE 3

The role of SIRT5 in different cancers.
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quercetin has been shown to bind to SIRT5, thereby regulating

SIRT5-mediated desuccinylation of PI3K. This interaction inhibits

PI3K/AKT phosphorylation, subsequently blocking homologous

recombination and non-homologous end-joining repair processes,

leading to mitotic mutations and apoptosis, and ultimately alleviating

NSCLC progression (162). In colorectal cancer (CRC), Zhang et al.

(163) reported that extracellular vesicles isolated from Lactobacillus

plantarum can inhibit SIRT5 expression, thus modulating the

desuccinylation level of p53. This regulation leads to inhibition of

CRC cell proliferation and glycolysis, effectively suppressing the in

vivo growth of tumor tissues. Apart from pharmacological

interventions, recent studies have identified upstream regulatory

genes involved in tumor progression that affect SIRT5 expression.

In hepatocellular carcinoma (HCC), Bai et al. (164) found that solute

carrier family 25 member 20 (SLC25A51), a newly identified

mammalian mitochondrial NAD+ transporter, is upregulated in

human HCC specimens and cell lines. Further analysis revealed

that SLC25A51 activates SIRT5 expression, promoting a metabolic

shift from oxidative phosphorylation to glycolysis—a key mechanism

driving tumor progression. Knockout of SLC25A51 reduces SIRT5

expression, thereby mitigating HCC progression. However, current

research predominantly focuses on the oncogenic role of SIRT5, with

limited information on enhancing its expression to exert tumor-

suppressive effects. In gastric cancer, Tang et al. (165) demonstrated

that SIRT5 expression is regulated by cyclin-dependent kinase 2

(CDK2). Typically, CDK2 exacerbates tumor progression by

regulating cell cycle progression and DNA damage response.

Conversely, knockout of CDK2 can inhibit malignant proliferation

and aerobic glycolysis of cancer cells by increasing SIRT5 expression,

revealing a novel role for SIRT5 as a tumor suppressor regulated by

upstream genes in cancer.

The development of specific SIRT5 regulators has emerged as a

promising approach in clinical cancer therapy. The information of

specific SIRT5 regulators was showed in Table 3. Deng et al. (166)

identified e-N-thioglutaryl-lysine derivatives as potent inhibitors of

SIRT5, with photo-crosslinking derivative 8 exhibiting the strongest

inhibitory effect. Kinetic analysis revealed that these derivatives

inhibit SIRT5 by competing with lysine substrates. Co-crystal

structure analysis demonstrated that photo-crosslinking derivative 8

binds to SIRT5 via hydrogen bonds and electrostatic interactions with

specific residues, occupying the lysine substrate binding site and

potentially reacting with NAD+ to form a stable thio-intermediate.

This structural insight provides valuable information for the design of

drug-like inhibitors and cross-linking chemical probes for SIRT5-

related research. Additionally, Jiang et al. (167) designed six N-

terminal-to-side-chain cyclic tripeptides and evaluated their efficacy

through in vitro deacetylase inhibition assays and proteolytic stability

tests. Among these compounds, cyclic tripeptide 10 exhibited strong

inhibition of SIRT5-mediated desuccinylation reactions and

demonstrated superior proteolytic stability against SIRT5.

Compared to previously reported potent and selective SIRT5

inhibitors, cyclic tripeptide 10 represents a novel modular scaffold,

offering a new avenue for discovering improved SIRT5 inhibitors that

could serve as chemical or pharmacological probes and potential

treatments for tumors characterized by upregulated SIRT5-mediated

desuccinylase activity. Regarding SIRT5 activators, MC3138, a
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selective SIRT5 activator, mimicked the effects of SIRT5

overexpression-mediated deacetylation and desuccinylation in

pancreatic cancer cells, leading to reduced levels of metabolites

such as glutamine and glutamate (168). Given that SIRT5

expression is downregulated in human and mouse pancreatic

ductal adenocarcinomas, the application of MC3138 in pancreatic

tumors showed inhibitory effects on proliferation. Combination

treatment with gemcitabine may represent a therapeutic strategy

for this type of cancer (169). Therefore, modulating SIRT5 expression

appears to be an effective means of alleviating tumor progression. The

ongoing development of small molecule inhibitors or activators of

SIRT5 offers new strategies for future cancer treatments. As our

understanding of SIRT5 functions deepens, its potential as a

therapeutic target for cancer treatment becomes increasingly evident.
6 Future research directions
and challenges

Despite the promising role of SIRT5 in cancer therapy, several

challenges and future research directionsmust be addressed. A primary

challenge is the need for a deeper understanding of the molecular

mechanisms by which SIRT5 exerts its effects on tumor biology.

Although SIRT5 has been implicated in various pathways, its specific

interactions and regulatory networks within different cancer types

remain inadequately defined. Future studies should focus on

elucidating these mechanisms, potentially utilizing advanced genomic

and proteomic approaches to comprehensively map SIRT5 interactions

within the tumor microenvironment (170). Moreover, the

development of specific SIRT5 inhibitors or modulators is critical for

translating these findings into clinical applications. This includes

investigating the potential side effects and off-target effects of such

therapies, as well as assessing their efficacy when used in combination

with existing cancer treatments. It will also be important to explore

dose-response relationships and pharmacokinetic properties to ensure

optimal therapeutic outcomes. Additionally, exploring the role of

SIRT5 in immune modulation could open new avenues for

immunotherapy, particularly in cancers that exhibit resistance to

current therapies (171). Understanding how SIRT5 influences

immune cell function and tumor-immune interactions may provide

insights into novel therapeutic strategies that combine SIRT5

modulation with immunotherapeutic approaches. As research

progresses, addressing these challenges will be essential for

harnessing the full therapeutic potential of SIRT5 in oncology. The

integration of multi-disciplinary approaches, including systems

biology, computational modeling, and translational research, will be

crucial for overcoming the complexities associated with SIRT5’s

multifaceted roles in cancer. Addressing these issues will not only

enhance our understanding of SIRT5’s biological functions but also

pave the way for innovative cancer therapies targeting this enzyme.
7 Conclusion

SIRT5, functioning primarily as a desuccinylase, exhibits

significant regulatory roles in tumor biology. Advances in
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TABLE 3 The information of specific SIRT5 regulators.

Molecular name Molecular structural formula IC50

e-N-thioglutaryl-lysine 120 nM

N-terminal-to-side-chain cyclic tripeptides 13.2 mM

cyclic tripeptide 10 2.2 mM

gemcitabine 0.98 mmol/L,

MC3138 25.4 mM
F
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proteomics have led to the recognition that SIRT5 is not merely a

deacetylase but increasingly serves as a critical desuccinylase involved

in modulating multiple metabolic pathways, including glycolysis, the

TCA cycle, fatty acid metabolism, and ROS scavenging. SIRT5 plays a

pivotal role in cellular energy metabolism and homeostasis, with its

dysregulation being implicated in various types of cancer. These

findings underscore the central importance of SIRT5 in tumor

metabolic reprogramming, suggesting that both SIRT5 itself and

the succinylation modifications it regulates could serve as

promising targets for the development of novel anticancer

therapies. However, the specific functions of SIRT5 in different

types of tumors remain to be further elucidated, particularly given

its dual nature as a potential tumor suppressor in some contexts and a

tumor promoter in others. Consequently, the application of SIRT5 as

a therapeutic target necessitates personalized research approaches

tailored to specific tumor types and microenvironments. Future

studies should focus on delineating the precise mechanisms by

which SIRT5 exerts its effects, considering the complex interplay

between SIRT5 activity, metabolic alterations, and tumor progression.

By addressing these challenges, researchers can harness the

therapeutic potential of SIRT5 to develop more effective and

targeted anticancer strategies.
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