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Macrophage plays an important role in homeostasis and immunity, and

dysfunctional macrophage polarization is believed to be associated with the

pathogenesis of tissue fibrosis and tumor progression. Colony stimulating factor-

1 (CSF-1), a polypeptide chain cytokine, through its receptor (CSF-1R) regulates

the differentiation of macrophages. Recently, the promising therapeutic potential

of CSF-1/CSF-1R signaling pathway inhibition in cancer treatment is widely used.

Furthermore, inhibition of CSF-1/CSF-1R signaling combined with radiotherapy

has been extensively studied to reduce immunosuppression and promote

abscopal effect. In addition, cumulative evidence demonstrated that M2

phenotype macrophage is dominant in tissue fibrosis and the inhibition of

CSF-1/CSF-1R signaling pathway ameliorated pulmonary fibrosis, including

radiation-induced lung fibrosis. Herein, we provide a comprehensive review of

the CSF-1/CSF-1R signaling pathway in radiotherapy, with a focus on advances

in macrophage-targeted strategies in the treatment of cancer and

pulmonary fibrosis.
KEYWORDS
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1 Introduction

Macrophages exist in all tissues of adult mammals and are considered to be components

of resident tissues (1). Due to the important roles that macrophages play in both innate and

adaptive immunity, they are involved in various pathological processes such as cancer and

tissue repair (2, 3). Two major activated polarized states of macrophages are demonstrated in

response to external environmental signals, and this polarized morphology is distinct from

the irreversible tissue-specific phenotype of macrophages, which can be reversibly regulated

by a variety of cytokines or transcription factors. Generally, macrophage polarization

phenotypes can be classified into two types: M1 macrophages and M2 macrophages (4).

M1 macrophages secret proinflammatory factors and show proinflammatory functions. M2
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macrophages exhibit anti-inflammatory functions and are involved in

tissue repair (5). The imbalance of inflammatory and anti-

inflammatory macrophage phenotypes is critical in kinds of

pathological processes, including the development of tissue fibrosis

and tumor (6–8). Thus, modulation of macrophage polarization is a

potential therapeutic strategy for a variety of diseases. Macrophage

polarization is regulated by several factors, including CSF-1/CSF-1R

signaling, which is proved to be critical for shaping the M1/M2

macrophage phenotype (9). CSF-1 promotes the differentiation of

myeloid cells into macrophages through its receptor (CSF-1R), and

regulates the migration, proliferation, survival and polarization

of macrophages.

Radiotherapy has become one of the most important treatments

for malignant tumors. According to statistics, about 60% of patients

will receive radiotherapy (10). Studies have shown that radiotherapy

combined with CSF-1R inhibitors exert synergistic effects through

regulating macrophage polarization in the tumor microenvironment

(TME), thereby improving tumor local control and enhancing anti-

tumor immunity (11, 12). In addition, pulmonary fibrosis is a long-

term complication of radiation-induced lung injury, in which M2-

dominant phenotype is involved (13). Therefore, targeting

polarization of macrophages to explore new strategies for the

prevention and treatment of radiation-induced pulmonary fibrosis

attract more and more attention in recent years.

Therefore, exploring the physiological and pathological roles of

CSF-1/CSF-1R signal transduction in tumor treatment and

radiation-induced pulmonary fibrosis is of great significance for

the comprehensive treatment of malignant tumors. Here we

summarize the biological functions of the CSF-1/CSF-1R

signaling pathway and its role in radiotherapy.
2 CSF-1/CSF-1R signaling pathway:
structure and biological function

CSF-1, also known as macrophage colony-stimulating factor (M-

CSF), is a homologous dimer protein with three different forms:

secreted glycoprotein, secreted glycoprotein polysaccharide, and a

membrane-bound glycoprotein (14). CSF-1 is expressed in a variety

of cells, such as osteoblasts and various cancer cells, which can be

used as a potential tumor marker (15, 16). CSF-1R is a tyrosine kinase

transmembrane receptor that is activated in an autocrine or paracrine

manner. It is encoded by the oncogene c-fms, and its kinase domain

contains 20 tyrosine residues, with a highly conserved structure (17).

CSF-1R is highly expressed in a variety of tumor cells, including lung

cancer, breast cancer, lymphoma, cervical cancer and so on (18).

CSF-1 binds to its unique receptor CSF-1R in a hydrophilic manner,

which triggers dimerization and phosphorylation of CSF-1R, leading

to subsequent biological effects (19). Under physiological conditions,

CSF-1 is capable of promoting macrophages polarized into M2

phenotype, which is involved in the latter phases for maintaining

tissue repair and homeostasis (20, 21). In cancer, the chronic M2

phenotype or the tumor-associated macrophages (TAMs) inhibits

tumor cell apoptosis, and induces angiogenesis under pathological

conditions, thus promoting disease progression (22–25).
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Accumulating evidence showed that, upregulated CSF-1

promotes the infiltration, survival, and metastasis of TAMs

expressing CSF-1R in the tumor microenvironments (11, 26), and

blocking the CSF-1/CSF-1R signaling pathway can reduce

immunosuppressive TAMs in tumors. CSF-1/CSF-1R inhibitors

have been identified as therapeutic targets for a variety of

malignant tumors, such as glioma, hepatocellular carcinoma,

breast cancer, lung cancer and pancreatic cancer (27), and have

broad application prospects in tumor immunotherapy (Table 1).

In addition, aberrant expression of CSF-1/CSF-1R signaling has

been reported in kinds of inflammatory diseases (12, 28–31). Related

studies have shown that chronic inflammation largely leads to tissue

fibrosis, including pulmonary fibrosis, in which M2 macrophages play

an important role (32, 33). Previous data indicated that CSF-1

contributes to pulmonary fibrosis in mice. CSF1-/- mice

demonstrated less fibrosis in response to bleomycin challenge (34).

AndM2macrophages are responsible for pulmonary fibrotic disease in

many fibrosis models. Although the pathogenesis of pulmonary fibrosis

remains unclear, abnormalities in lung macrophages have been

reported to dramatically contribute to the pathogenesis of pulmonary

fibrosis. Blocking the CSF-1/CSF-1R signaling pathway may be a

potential therapeutic target for pulmonary fibrosis (35, 36).
3 CSF-1/CSF-1R signaling pathway in
tumor radiotherapy

TME includes cells such as macrophages, dendritic cells, T cells,

endothelial cells and fibroblasts, as well as extracellular matrix

(ECM) components, proteases, and cytokines, playing a critical

role in tumor evolution and metastasis (37). In the tumor growth

and metastasis, immune cells in the tumor microenvironment play

very important roles, including T lymphocytes, B lymphocytes,

TAMs, bone marrow-derived suppressive cells and other cells.

TAMs are the immune cells that infiltrate the most tumor tissue.

They are immune regulatory cells that differentiate from peripheral

monocytes under the influence of the tumor microenvironment.

TAMs are mainly M2-polarized macrophages, which play

immunosuppressive roles, promoting tumor growth, metastasis,

and angiogenesis (38). TAMs are closely related to CSF-1. When

tumor cells proliferate uncontrollably, they secrete a large amount

of CSF-1, stimulating the production of a large number of

immunosuppressive M2 macrophages (39).

TAMs are associated with radiation resistance, and CSF-1/CSF-1R

inhibitors can alter macrophage polarity and show radiation

sensitization effects. Radiotherapy can induce adaptive immune

responses in tumors, which can be achieved by increasing the

expression of MHC class I proteins in tumor cells, enhancing

antigen presentation, promoting the release of damaging molecular-

related patterns from damaged tumor cells and enhancing the

recruitment and activity of antigen-presenting cells (40), and the

combination of CSF-1/CSF-1R inhibitors and radiotherapy exert a

synergistic effect and enhance the anti-tumor immunity.

Jones et al. demonstrated that radiotherapy combined with

macrophage depleting agents enhanced tumor killing and found that
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TABLE 1 Curtent cilincal trails with inhibitors against CSF-1R in inflammatory diseases and cancer.

Target Compound
Combination
partners

Clinical
Phase

Indications NCT number
Reference
(PMID)

CSF-1R LY3022855(IMC-CS4)

Durvalumab,
tremelimumab

I Advanced solid cancers NCT02718911 (60)

/ I Advanced solid cancers NCT01346358 (61)

/ I
Metastatic breast cancer,
metastatic castration-resistant
prostate cancer

NCT02265536 (62)

cyclophosphamide,
pembrolizumab, GVAX

I
Borderline resectable
pancreatic cancer.

NCT03153410 /

Vemurafenib (BRAF
inhibitor), Cobimetinib
(MEK inhibitor)

I,II Advanced melanoma NCT03101254 (63)

CSF-1R Axatilimab(SNDX-6352)

Durvalumab(anti-PD-L1) I Solid Tumor NCT03238027 /

/ I,II Chronic graft-versus-host disease NCT03604692 (64)

/ II Chronic graft-versus-host disease NCT04710576 (65)

Durvalumab(anti-PD-L1) II
Unresectable
Intrahepatic Cholangiocarcinoma

NCT04301778 /

CSF-1R Emactuzumab

Paclitaxel I

Advanced solid tumors (diffuse-
type giant cell tumor, soft tissue
sarcoma or malignant
mesothelioma, ovarian,
endometrial,breast cancer,
pancreatic cancer)

NCT01494688 (66)

/ I
locally advanced diffuse-type
tenosynovial giant cell tumours

NCT01494688 (67)

Atezolizumab(anti-
PD-L1)

Ib
Advanced solid tumors (urothelial
bladder cancer and melanoma,
non-small cell lung cancer)

NCT02323191 (68)

Selicrelumab (agonistic
cluster of differentiation
40 mAb)

Ib Advanced solid tumor NCT02760797 (69)

CSF-1R
JNJ-40346527(PRV-
6527, Edicotinib)

/ I
Alzheimer Disease, Mild
Cognitive Impairment

NCT04121208 /

/ I/II
Relapsed or refractory classical
Hodgkin lymphoma

/ (70)

Disease-modifying
antirheumatic drug

IIa Active rheumatoid arthritis NCT01597739 (71)

/ IIa Severely active Crohn’s disease NCT03854305 /

CSF-1R
Cabiralizumab
(FPA008, BMS986227)

APX005M (CD40
agonist), Nivolumab
(anti-PD-1)

I
Biopsy-proven advanced
melanoma, non-small cell lung
cancer, or renal cell carcinoma

NCT03502330 (72)

Nivolumab (anti-PD-1) I Advanced Solid Tumors NCT02526017 (73)

/ I/II
Pigmented Villonodular Synovitis,
Tenosynovial Giant Cell Tumor

NCT02471716 /

Nivolumab (anti-PD-1),
HuMax-IL8

II
Head and Neck Squamous
Cell Carcinoma

NCT04848116 /

Nivolumab (anti-PD-1) II Peripheral T Cell Lymphoma NCT03927105 /

CSF-1R Vimseltinib(DCC-3014) / III Tenosynovial giant cell tumour NCT05059262 (74)

(Continued)
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TABLE 1 Continued

Target Compound
Combination
partners

Clinical
Phase

Indications NCT number
Reference
(PMID)

CSF-1R ARRY-382(PF07265804)
Pembrolizumab (anti-
PD-1)

II Advanced Solid Tumors NCT02880371 (75)

CSF-1R,
KIT, FLT3

Pexidartinib(PLX3397)

/ I

Refractory leukemias or solid
tumors including
neurofibromatosis type 1-related
plexiform neurofibromas

NCT02390752 (76)

Durvalumab(anti-PD-L1) I
Metastatic/Advanced Pancreatic
or Colorectal Cancers

NCT02777710 /

Binimetinib I
Advanced Gastrointestinal
Stromal Tumor

NCT03158103 (77)

/ I
Symptomatic, advanced
solid tumors

NCT02734433 (78)

/ I/II Tenosynovial Giant-Cell Tumor NCT01004861 (79)

Sirolimus (mTOR) I/II
Sarcoma, Malignant Peripheral
Nerve Sheath Tumors

NCT02584647 (80)

Pembrolizumab (anti-
PD-1)

I/II

Melanoma, Non-small Cell Lung
Cancer, Squamous Cell
Carcinoma of the Head and
Neck, Gastrointestinal Stromal

NCT02452424 /

/ II Recurrent glioblastoma NCT01349036 (81)

/ III
Pigmented Villonodular Synovitis,
Tenosynovial Giant Cell Tumor

NCT02371369 (82)

CSF-1R,
VEGFRs, FGFR-1

surufatinib

/ I Healthy Chinese subjects NCT02320409 (83)

Toripalimab(anti-PD-1) I

Advanced gastric/
gastroesophageal junction
adenocarcinoma, esophageal
squamous cell carcinoma, biliary
tract cancer

NCT04169672 (84)

Toripalimab (anti-PD-1) I Advanced solid tumors NCT03879057 (85)

Toripalimab (anti-PD-1) II
Advanced neuroendocrine
tumours and
neuroendocrine carcinomas

NCT04169672 (86)

/ Ib/II
Advanced Well-Differentiated
Neuroendocrine Tumors

NCT02267967 (87)

Toripalimab (anti-PD-1),
etoposide,cisplatin

Ib/II Advanced small-cell lung cancer NCT04996771 (88)

/ II
Advanced or Metastatic
Differentiated Thyroid Cancer
and Medullary Thyroid Cancer

NCT02614495 (89)

/ III
Advanced well-differentiated
pancreatic and extrapancreatic
neuroendocrine tumors

NCT02589821,
NCT02588170

(90)

CSF-1R, Aurora
B, VEGF,
PDGFRa, c-Kit

Chiauranib / I
Refractory advanced solid tumor
and lymphoma

NCT02122809. (91)

CSF-1R, VEGFRs SYHA1813 / I
Recurrent high-grade gliomas or
advanced solid tumors

ChiCTR2100045380 (92)

CSF-1R,
PDGFR, VEGFR

Vorolanib(X-82) Everolimus I Solid tumors NCT01784861 (93)

CSF-1R,
Bcr-Abl, DDR1

Nilotinib / II
Locally advanced pigmented
villonodular synovitis

NCT01261429 (94)

(Continued)
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colorectal (MC38) and pancreatic (KPC) cell lines produced CSF-1

after irradiation, leading to an increase inM2macrophages, which were

immunosuppressive in tumors. The use of CSF-1 monoclonal

antibodies reversed macrophage aggregation and inhibited tumor

growth (41). Parsons and colleagues found that the differentiation of

hematopoietic stem cells and progenitor cells into M2 macrophages

within tumors promoted tumor growth after radiotherapy. Using a

non-small cell lung cancer-bearing mouse model, the tumor was

irradiated alone or in combination with the CSF-1R inhibitor

GW2580 (selective blockade of CSF-1R self-phosphorylation and

activation) for 20 Gy. They found that the CSF-1/CSF-1R signaling

pathway induced hematopoietic progenitor cells and stem cells derived

from bone marrow within the tumor differentiating into M2 tumor-

associated macrophages, which contributed to tumor survival and

regeneration after radiotherapy. The use of GW2580 improved the

tumor-killing ability of radiotherapy and the survival rate of mice (42).

Seifert et al. studied the inhibitory immune response of macrophages

induced by radiotherapy in a mouse model of pancreatic cancer.

Radiation induced an increase in the infiltration of M2 macrophages

in pancreatic tumor tissue and reduced the anti-tumor effect mediated

by T cells. Combination of radiotherapy with CSF-1 monoclonal

antibody changed the phenotype of macrophages in pancreatic

tumors, enhanced the effect of T cells, and slowed down the growth

of tumor (43). Stafford et al. investigated the effect of inhibiting CSF-1R

on bone marrow cell recruitment and polarization to delay the

recurrence of glioblastoma after radiotherapy. They constructed a

mouse model of intracranial in situ glioblastoma and administered

whole brain irradiation at a dose of 12 Gy or in combination with

PLX3397 (a small molecule CSF-1R tyrosinase activity inhibitor). They

found that combined treatment enhanced the response of intracranial

tumors to radiotherapy and blocked the differentiation of mononuclear

cells recruited by radiotherapy into immunosuppressive and

angiogenic TAMs, thereby delaying tumor recurrence (44). Xu et al.

found that blocking CSF-1R signaling pathway inhibited tumor

infiltration of bone marrow cells and improved the radiotherapy

efficacy of prostate adenocarcinoma. The authors constructed a

tumor-bearing animal model of prostate cancer with local irradiation

of 15 Gy and found that the expression level of CSF-1 and the

recruitment of tumor-infiltrating bone marrow cells were increased.
Frontiers in Immunology 05
Further mechanism investigation showed that radiotherapy induced

the recruitment of kinase ABL1 to the nucleus by DNA damage where

it bound to the CSF1 gene promoter and enhanced the transcription of

the CSF1 gene. Elevated CSF-1 played a crucial role in the systemic

recruitment of primary myeloid cells to the irradiated tumor.

Combined with CSF1R inhibitors, it reduced the number of tumor-

infiltrating bone marrow cells and inhibited tumor growth (45). In the

tumor-bearing model of breast cancer, combination of CSF-1

monoclonal antibody or PLX3397 would lead to depletion of

immunosuppressed macrophages, significantly delaying tumor

regeneration after radiotherapy (46). In the future, CSF-1/CSF-1R

pathway inhibitors combined with radiotherapy are potential targets

for the treatment of tumors.
4 CSF-1/CSF-1R signaling pathway in
radiation-induced pulmonary fibrosis

60-70% of cancer patients require radiotherapy during treatment,

and the most common and severe side effect after thoracic radiation is

radiation-induced lung injury. Up to 50% of lung cancer patients

develop pneumonia in the high-dose areas of the lungs, and pulmonary

fibrosis occurs in 70-80% of patients (47). Radiation-induced

pulmonary fibrosis is a progressive, interstitial fibrosis pulmonary

disease, which is an important pathological process in the late stage

of radiotherapy. Its clinical manifestations are mainly characterized by

progressive dyspnea and decreased lung function (48). There are no

effective medications for the treatment of radiation-induced pulmonary

fibrosis by now (49).

Although the pathogenesis of pulmonary fibrosis is still unclear,

recent studies have reported the important role of macrophages as

key regulatory factors for fibrosis (50), with M2 polarized

macrophages playing an important role in various fibrosis models

(51–53). Depletion of macrophages, especially M2-type

macrophages, attenuated pulmonary fibrosis (54, 55). In addition,

studies showed that CSF-1 was elevated in alveolar lavage in

patients with pulmonary fibrosis and stimulated macrophages and

fibroblasts to participate in fibrosis formation (56). As an essential

factor for macrophage differentiation and proliferation, the
TABLE 1 Continued

Target Compound
Combination
partners

Clinical
Phase

Indications NCT number
Reference
(PMID)

CSF-1R,
VEGFR2,
PDGFRb, c-kit,
FLT3, RET

Sunitinib / II Advanced germ cell tumor NCT00912912 (95)

CSF-1R,
cKIT, Lyn,
Fyn, PDGFR

Masitinib (AB1010) Isoquercetin II
SARS-CoV 2, COVID-19,
Coronavirus Disease 2019

NCT04622865 /

CSF-1R, VEGFR,
cKIT, BRAF,
PDGFR, FGFR

Regorafenib (Stivarga)
/ II Hepatocellular Carcinoma NCT04476329 /

/ II Malignant Solid Tumor NCT04116541 /

CSF-1R,
Aurora B

Chiauranib Etoposide, paclitaxel Ib,II Recurrent ovarian cancer
NCT03901118
NCT03166891

(96)
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inhibition of CSF-1/CSF-1R pathway affects macrophage

production and thus attenuates lung fibrosis.

Baran et al. investigated the role of CSF-1 in the pathogenesis of

pulmonary fibrosis and found that its expression was elevated in

patients with pulmonary fibrosis. In mouse model of bleomycin-

induced pulmonary fibrosis, knocking out CSF-1 or usage of CSF-1R

inhibitor showed protective effect (56). Zhou et al. investigated the

role of IL-34 (a ligand of CSF-1R) and found that IL-34 upregulated

IL-6 and IL-8 expression in human lung fibroblasts and these effects

were reversed when treated cells with anti-CSF-1R antibody. These

data confirmed the inflammatory effect of IL-34 on human lung

fibroblasts and suggested that the IL-34/CSF-1R axis may be a novel

therapeutic target in pulmonary disease (57). Joshi et al. investigated

that monocyte-derived alveolar macrophages in the pulmonary

fibrosis microenvironment were regulated by the CSF-1/CSF-1R

signaling pathway. In a mouse model of asbestos-induced

pulmonary fibrosis, CSF-1 monoclonal antibodies or inhibitor

PLX3397 were used to block the CSF-1/CSF-1R signaling pathway

to reduce monocyte differentiated alveolar macrophages and the

alleviated pulmonary fibrosis was observed (58).

The evidence of CSF-1/CSF-1R signaling pathway in radiation-

induced pulmonary fibrosis is limited. Zhang et al. showed that in

the middle and late stages of radiation-induced lung injury (RILI),

various pro-fibrotic cytokines such as IL-4 and IL-13 promoted

macrophage polarization into M2 macrophages, leading to
Frontiers in Immunology 06
excessive secretion and deposition of extracellular matrix,

ultimately resulting in fibrosis and structural changes (52). M2

macrophages can regulate myofibroblast activity in the middle and

late stages of RILI through TGF-b/Smad pathway, promoting the

progression of radiation-induced pulmonary fibrosis (59). Meziani

et al. studied the use of CSF-1R inhibitors to prevent radiation-

induced pulmonary fibrosis by depleting pulmonary interstitial

macrophages and constructed a 16Gy mouse chest irradiation

model. They found that using clodrosomes to deplete alveolar

macrophages did not improve pulmonary fibrosis while using

CSF-1R monoclonal antibodies to deplete pulmonary interstitial

macrophages alleviated radiation-induced pulmonary fibrosis (59).

Despite the rapid advances in radiation oncology in plan design and

image-guided radiotherapy, normal tissue toxicity remains a dose-

limiting factor for optimal local tumor control. The inhibition of the

CSF-1/CSF-1R signaling pathway offers a novel therapeutic

modality for mitigating radiation-induced pulmonary fibrosis.
5 Summary

In summary, due to the crucial regulatory role of the CSF-1/CSF-

1R signaling pathway in tumor development and fibrotic processes,

inhibiting the CSF-1/CSF-1R signaling pathway seems to be a

promising strategy for cancer treatment and fibrosis (Figure 1).
FIGURE 1

Schematic overview of critical role of CSF-1/CSF-1R signaling pathway in pulmonary fibrosis and tumor progression. IL-10, Interleukin-10;
IL-4, Interleukin-4; TGF-b, Transforming growth factor-b; IL-13, Interleukin-13; EMT, Epithelial-mesenchymal transition; M2, alternatively
activated macrophages.
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Although different experimental models may yield some controversial

results, the accumulation of preclinical evidence has paved the way for

the clinical application of CSF-1/CSF-1R inhibitors in tumor

radiotherapy and fibrotic diseases. Further researches are needed to

achieve further understanding of the interaction between CSF-1/CSF-

1R signaling pathway inhibitors and tumor radiotherapy and fibrosis.

This will help provide new treatment strategies for precise radiotherapy

of tumors and reduce radiotherapy side effects.
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