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Background: This study aimed to develop a multi-modality model by

incorporating pretreatment computed tomography (CT) radiomics and

pathomics features along with clinical variables to predict pathologic complete

response (pCR) to neoadjuvant chemoimmunotherapy in patients with locally

advanced esophageal cancer (EC).

Method: A total of 223 EC patients who underwent neoadjuvant

chemoimmunotherapy followed by surgical intervention between August 2021

and December 2023 were included in this study. Radiomics features were

extracted from contrast-enhanced CT images using PyrRadiomics, while

pathomics features were derived from whole-slide images (WSIs) of

pathological specimens using a fine-tuned deep learning model (ResNet-50).

After feature selection, three single-modality prediction models and a combined

multi-modality model integrating two radiomics features, 11 pathomics features,

and two clinicopathological features were constructed using the support vector

machine (SVM) algorithm. The performance of the models were evaluated using

receiver operating characteristic (ROC) analysis, calibration plots, and decision

curve analysis (DCA). Shapley values were also utilized to explain the

prediction model.

Results: The predictive capability of the multi-modality model in predicting pCR

yielded an area under the curve (AUC) of 0.89 (95% confidence interval [CI], 0.75-

1.00), outperforming the radiomics model (AUC 0.70 [95% CI 0.54-0.85]),

pathomics model (AUC 0.77 [95% CI 0.53-1.00]), and clinical model (AUC 0.63

[95% CI 0.46-0.80]). Additionally, both the calibration plot and DCA curves

support the clinical utility of the integrated multi-modality model.
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Conclusions: The combined multi-modality model we propose can better

predict the pCR status of esophageal cancer and help inform clinical

treatment decisions.
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Introduction

Esophageal cancer (EC) is one of the major types of cancer

worldwide, with surgical therapy being the primary treatment

modality. However, outcomes are often suboptimal due to early

postoperative recurrence (1, 2). Large-scale randomized clinical trials

have shown that neoadjuvant chemoimmunotherapy followed by

surgery is more effective than surgery alone for locally advanced EC.

Preliminary findings suggest that esophagectomy following neoadjuvant

chemoimmunotherapy achieves satisfactory efficacy and manageable

safety, with pathologic complete response (pCR) rates ranging from

16.7% to 50.0% (3–5). Patients achieving pCR exhibit a more favorable

long-term prognosis compared to those without pCR and may benefit

from wait-and-see strategies (6–8). Nevertheless, a subset of patients

does not respond to neoadjuvant chemoimmunotherapy, potentially

incurring high drug costs and immunotherapy-related adverse events

(irAEs). Therefore, accurately predicting the response to neoadjuvant

chemoimmunotherapy before surgery is of great clinical significance as

it could identify patients who are likely to benefit and inform

appropriate and personalized treatment plans.

Radiomics, a promising method that extracts high-throughput

quantitative data from medical images, has been successfully applied

in precision diagnosis, treatment response prediction, and prognosis

assessment for various types of malignancies (9, 10). Several radiomics-

based models have been proposed to predict pCR in EC patients

undergoing neoadjuvant chemoradiotherapy (11, 12).However, limited

research has explored the utilization of radiomics in assessing the

response to neoadjuvant chemoimmunotherapy, and there is a need to

improve the prediction accuracy of existing models (13). An optimal

strategy that incorporates additional dimensions is essential for

enhancing the performance of prediction models.

With the advent of digital pathology, quantitative analyses

based on artificial intelligence have increased in the field of EC,

demonstrating strong performance in early diagnosis, treatment

response assessment, and survival prediction (14–16). Unlike

radiomics features, digital pathology provides insights into
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molecular characteristics or genetic patterns, potentially

complementing tumor heterogeneity and improving the

predictive accuracy of current models. However, to our

knowledge, there is a lack of academic research integrating

pretreatment CT-derived radiomics features with pathomics

features derived from whole-slide imaging (WSI) for predicting

pCR in EC.

In this retrospective study, we aimed to develop and compare a

multi-modality machine learning model by integrating

pretreatment CT radiomics, pathomics features, and clinical

variables to predict pCR in esophageal cancer prior to the

initiation of therapy.
Materials and methods

Patients

This retrospective study was approved by the Ethics Committee

of Shandong Cancer Hospital and Institute and the requirement for

written informed consent was waived. A specific flowchart of

patient selection is displayed in Figure 1, and an overview of the

entire architecture of the study is provided in Figure 2.

The inclusion criteria were as follows: (1) pathological biopsy

confirming EC with no distant metastasis; (2) age between 18 and 75

years. The exclusion criteria were: (1) treatment with chemotherapy,

radiotherapy, or other anticancer therapies prior to baseline CT

scans; (2) synchronous tumors or a history of other malignancies;

and (3) no surgical treatment following chemoimmunotherapy.

A total of 223 patients with histologically proven EC who

underwent neoadjuvant chemoimmunotherapy and surgical

treatment between August 2021 and December 2023 at Shandong

Cancer Hospital and Institute were recruited for this study. Among

these, 214 patients with pretreatment CT images were enrolled in

the radiomics cohort to build a radiomics model. Additionally, 89

patients with WSI were used to construct the pathomics model. To

further evaluate the ability of pathomics features to predict pCR

when combined with CT-based radiomics and clinicopathological

features, a combined multi-modality model was developed in 80

patients with both pretreatment CT and WSI. Patients were

randomly allocated to the training and testing sets in a 3:1 ratio.
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Evaluation of tumor response

The pathological response was assessed by examining the

percentage of residual viable tumor cells in the resected

specimens, based on the immune-mediated pathological response
Frontiers in Immunology 03
criteria (irPRC) (17, 18). Surgical specimens were evaluated by two

pathologists who were blinded to clinical information and CT

images (Figure 3). pCR was defined as the absence of viable

tumor cells in both the primary tumor and the lymph

nodes (Figure 3A).
FIGURE 2

Workflow of the study. Images of pretreatment CT images and biopsy hematoxylin and eosin-stained slides were retrospectively retrieved and
segmented for feature extraction. A two-sided sample t-test or U-test and the maximum relevance–minimum redundancy (MRMR) algorithm was
used to select features. The top features with scores larger than zero were retained to develop a classifier model by a Support Vector Machine
(SVM) method.
FIGURE 1

Flow diagram of patient cohort selection.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1530279
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qi et al. 10.3389/fimmu.2025.1530279
CT images and WSI acquisition

Contrast-enhanced CT scans were performed using a SIEMENS

CT scanner before treatment. The scanning parameters were as

follows: slice thickness of 5.0 mm, tube voltage of 120 kV, and tube

current of 220 mA. An iodinated contrast agent (300 mg/mL) at a

dose of 1.5 ml/kg of body mass was injected rapidly at a flow rate of

2 mL/s through the patient’s elbow vein using a high-pressure

syringe. To maintain data consistency, only arterial phase CT

images were collected. All acquired CT images were extracted

from the institutional picture archiving and communication

system (PACS) and saved in DICOM format.

H&E-stained slides from formalin-fixed paraffin-embedded

biopsy tissues were used for pathological diagnosis. WSIs for
Frontiers in Immunology 04
analysis were scanned using a Panoramic SCAN II scanner at 40×

objective magnification. All images were obtained in NDPI format

for subsequent region of interest (ROI) annotation and pathological

feature extraction.
Image segmentation and feature extraction

Two experienced radiologists with 5 and 8 years of experience,

who were blinded to the clinical and/or pathological data, manually

delineated the regions of tumor on CT images with the ITK-SNAP

software (version 3.6). The region of interest (ROI) was delineated

to encompass the primary tumor volume in all slices. Before feature

extraction, the CT image intensities were normalized to a scale of
FIGURE 3

Corresponding CT images and WSIs from pCR (A) and non-pCR (B) before and after neoadjuvant treatment. In the CT image, it is seen that the
tumor in the pCR have completely dissipated in the post-treatment image, and stromal tissue with no visible tumor cells was presented in the
pathological images. But CT and histology images from non-pCR shows residual tumor cells but reduced compared to baseline.
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2048 and re-binned by a width of 16 to avoid the influence of the

sparse matrix on the calculation of texture features. And then the

images of all patients were resampled to the same voxel size of 0.8

mm×0.8 mm×5 mm using the ‘sitkBSpline’ interpolator, in order to

minimize the differences of images among patients. In total, 851

features, including shape, first-order, texture, and wavelet features,

were computed and extracted using PyRadiomics (19) in

Python 3.6.

For digital pathology image analysis, ASAP (version 2.1), an

open-source software, was employed to annotate the tumor regions

within the WSI. The original WSIs were converted from RGB to

gray and a threshold of 220 was used to segment the tissue regions

on the gray WSIs. Subsequently, the tissues in the tumor regions

were subdivided into non-overlapping 224×224 tiles at a resolution

of 0.5 mm/pixel (20× magnification). Tiles with less than 50% tissue

were excluded from the analysis. Color normalization was

performed on each tile to normalize the color variations caused

by different staining and scanning of pathology images based on the

Vahadane Method (20). The deep features of each tile were

extracted using a pretrained ResNet50 backbone. The tiles were

input into the ResNet50 backbone and the 2048 outputs at the fully

connected layer were treated as 2048 deep features for each patch.

For each deep feature, the median value of all tiles for one patient

was treated as its feature value, resulting in 2048 deep features for

each patient.
Feature selection and model construction

Feature selection was performed separately for CT radiomics

and pathomics features in the training set. The features were first

normalized using z-scores and tested for normality. A two-sided

sample t-test or U-test was applied to identify features showing

significant differences between the pCR and non-pCR groups.

Finally, features with p<0.1 were selected and further ranked

using a maximum relevance-minimum redundancy (MRMR)

algorithm (21, 22). Top features with scores greater than zero

were retained for the classifier model. In addition to radiomics

and pathomics features, critical clinical characteristics, including

age, sex, smoking history, histology, treatment cycles, T-stage, N-

stage, and clinical stage, were incorporated to select the feature set

for constructing the multimodal prediction model.

Three single-modality prediction models—radiomics,

pathomics, and clinical models—were constructed using a

Support Vector Machine (SVM) approach. The SVM model,

employing a radial basis function (RBF) kernel, was optimized

through five-fold cross-validation using data from the training set.

Subsequently, we developed and validated a multimodal model that

integrated all selected radiomics features with pathomics features

and significant clinical factors. The performance of these models in

predicting pCR was assessed in both the training and testing sets

using receiver operating characteristic (ROC) curve analysis and

area under the curve (AUC). Youden’s index was used to determine

the optimal threshold for converting model output scores into
Frontiers in Immunology 05
predicted classes. The accuracy, sensitivity, specificity, positive

predictive value (PPV), and negative predictive value (NPV) were

calculated. Calibration curves were used to evaluate the goodness-

of-fit of the models, and decision curve analysis (DCA) was

performed to quantify the net benefit to patients at different

threshold probabilities, thus assessing the clinical utility of the

predictive models developed in this study.

To further evaluate the contribution of the combined features to

the multi-modality model prediction, the SHAP value was

calculated to decompose the SVM model decision into individual

feature influences for each sample. SHAP facilitates the

visualization of feature importance within complex machine

learning-based models, elucidating how individual features impact

the likelihood of a particular output, either positively or negatively.
Statistical analysis

Python3.7 was used for feature extraction, feature selection,

machine learning model training, model evaluation, and plotting.

SPSS (version 26.0) was used for the t-test, chi-square test, and

Fisher’s exact test. The ROC curve was plotted for model

performance evaluation. AUC was calculated, and bootstrapping

was utilized for calculating the 95% confidence interval (95% CI).

Continuous variables are presented as mean ± standard deviation,

and categorical variables are presented as counts (%). Student’s t-

test was used to compare continuous variables, and the chi-square

test or Fisher’s exact test was used to compare categorical variables.

Statistical significance was set at p<0.05.
Results

Patient population characteristics

The baseline clinical characteristics and pCR distribution of the

patients in each cohort are summarized in Tables 1 and 2,

respectively. Patients achieving pCR accounted for 28% (60/214)

and 28.1% (25/89) in the radiomics and pathomics groups,

respectively. There were no statistically significant differences in

baseline characteristics between patients with and without pCR,

except for sex (p=0.015) in the pathomics cohort.
Feature selection and interpretation

In our study, 851 radiomics features were extracted from ROIs

on CT images, and 2048 deep learning features (pathomics features)

were extracted from pathological section images. We performed an

independent feature-selection strategy for each feature set within

the training cohort. Following dimensionality reduction, 10

radiomics features, 20 pathomics features, and 15 combined

features significantly associated with pCR were retained. The

selected features of these model are listed in Table 3 and Figure 4A.
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TABLE 1 Clinical characteristics of patients.

Characteristics Radiomics cohort (n=214) Pathomics cohort (n=89)

pCR(n=60) non-pCR (n=154) P value pCR(n=25)
non-
pCR(n=64)

P value

Age, mean, y 62.6 ± 7.1 62.7 ± 6.5 0.933 64.6 ± 5.8 62.8 ± 7.3 0.291

Gender 0.153 0.015

Male 48 (80.0) 135 (87.7) 18 (72.0) 60 (93.8)

Female 12 (20.0) 19 (12.3) 7 (28.0) 4 (6.2)

Smoking status 0.302 0.257

Never 26 (43.3) 55 (35.7) 11 (44.0) 20 (31.3)

Former or Current 34 (56.7) 99 (64.3) 14 (56.0) 44 (68.7)

Histology 0.251 0.354

Adenocarcinoma 2 (3.3) 14 (9.1) 0 (0.0) 5 (7.8)

Squamous
cell carcinoma

58 (96.7) 140 (90.9) 25 (100.0) 59 (92.2)

T stage 0.252 0.284

T1 1 (1.7) 2 (1.3) 0 (0.0) 1 (1.6)

T2 7 (11.7) 8 (5.2) 5 (20.0) 6 (9.4)

T3 50 (83.3) 133 (86.4) 20 (80.0) 52 (81.2)

T4a 2 (3.3) 11 (7.1) 0 (0.0) 5 (7.8)

N stage 0.386 0.091

N0 8 (13.3) 35 (22.7) 2 (8.0) 18 (28.1)

N1 39 (65.0) 83 (53.9) 16 (64.0) 35 (54.7)

N2 11 (18.4) 30 (19.5) 7 (28.0) 9 (14.1)

N3 2 (3.3) 6 (3.9) 0 (0.0) 2 (3.1)

TNM stage 0.621 0.06

I 1 (1.7) 2 (1.3) 0 (0.0) 1 (1.6)

II 12 (20.0) 39 (25.3) 5 (20.0) 21 (32.8)

III 43 (71.6) 97 (63.0) 20 (80.0) 34 (53.1)

IVA 4 (6.7) 16 (10.4) 0 (0.0) 8 (12.5)

Treatment cycles 0.961 0.541

≤2 45 (75.0) 116 (75.3) 22 (88.0) 51 (79.7)

>2 15 (25.0) 38 (24.7) 3 (12.0) 13 (20.3)

Tumor location 0.76 0.626

Upper segment 3 (5.0) 6 (3.9) 2 (8.0) 2 (3.1)

Middle segment 24 (40.0) 55 (35.7) 8 (32.0) 23 (35.9)

Lower segment 33 (55.0) 93 (60.4) 15 (60.0) 39 (60.9)

PD-L1, CPS 0.238 0.396

<1 3 (5.0) 20 (13.0) 1 (4.0) 8 (12.5)

≥1 14 (23.3) 33 (21.4) 7 (28.0) 19 (29.7)

NE 43 (71.7) 101 (65.6) 17 (68.0) 37 (57.8)
F
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To further evaluate the contribution of the combined features to

the multi-modality model prediction, the SHAP value was

calculated to decompose the SVM model decision into individual

feature influences for each sample. Figure 4B shows the SHAP

values of the multi-modality model for overall patient cohort, as

well as Figure 4C, D show the impact of the important features on

the model output in one pCR case and one non-pCR case,

respectively. For the pCR case, the “Histology” was the feature

that contributed the most to the model output, while four

pathomics features also showed great impact. For the non-pCR

case, three pathomics features corresponded to an increased

likelihood of non-pCR.
Frontiers in Immunology 07
Performance comparison of the
prediction models

By integrating clinical, radiomics, and pathomics features in the

training set, a combined multi-modality prediction model was

developed using the nonlinear SVM method. The distributions of

combined scores are illustrated in Figure 5, with an increase in

combined score, and more participants achieving pCR were

identified in the training and testing cohorts.

Table 4 and Figure 6 present a comparison of the different SVM

models. The combined model accurately predicted pCR in the

training (AUC=0.99 [0.96-1.00]) and testing (AUC=0.89 [0.75-
TABLE 3 The top 10 radiomics, 20 pathomics and 15 combined feature in the final model.

Radiomics feature Pathomics feature Combined features

wavelet-HHH_glszm_SmallAreaLowGrayLevelEmphasis DF1122 original_shape_Sphericity

original_shape_Sphericity DF97 original_glcm_lmc1

wavelet-LLH_glcm_Correlation DF236 DF1234

wvelet-LHL_firstorder_Skewness DF251 DF661

wavelet-LHL_glcm_Correlation DF318 DF1565

wavelet-HLL_gldm_LargeDependenceHighGrayLevelEmphasis DF849 DF642

wavelet-HHH_glszm_LowGrayLevelZoneEmphasis DF989 DF915

wavelet-HHL_firstorder_Median DF1331 DF938

wavelet-LHH_firstorder_Skewness DF1679 DF950

wavelet-LHH_gldm_LargeDependenceLowGrayLevelEmphasis DF1739 DF1218

DF1892 DF1739

DF938 DF1179

DF302 DF302

DF1300 Smoking history

DF927 Histology

DF1159

DF1731

DF941

DF1400

DF1565
TABLE 2 pCR rate among different cohort.

Radiomics cohort
(n=214)

Pathomics cohort
(n=89)

Radiopathomics cohort
(n=80)

Training set

pCR 45 19 17

non-pCR 115 48 43

pCR rate 28.1% 28.4% 28.3%

Testing set

pCR 15 6 6

non-pCR 39 16 14

pCR rate 27.8% 27.3% 30%
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1.00]) sets. The specificity of the multi-modality was markedly high

in the testing set at 94.28%, while the sensitivity was moderate

(66.7%). The NPV of the combined model was 86.7% in the testing

set, whereas the PPV was approximately 80%. Additionally, the

single radiomics model displayed a marginally lower AUC (0.70

[0.54-0.85]) than multi-modality model, whereas the clinical model

had a much lower AUC of 0.63 (0.46-0.80). The pathomics model

yielded a higher AUC (0.77 [0.53-1.0]) than the other single-

modality models but was still slightly lower than that of the

multi-modality model (Figures 6A, B).
Clinical usefulness of the multi-
modality model

We evaluated the clinical usefulness of the combined multi-

modality model for pCR recognition via DCA in the training and

testing cohorts, revealing that the multi-modality model conferred

better net benefits than the CT radiomics and pathomics models

(Figure 6E, F). The calibration curves also revealed that the

prediction probability of the multi-modality model was in good

agreement with the actual outcomes of neoadjuvant

chemoimmunotherapy for esophageal cancer in both the training

and testing groups (Figures 6C, D).
Frontiers in Immunology 08
Discussion

We developed a combined predictive model using multimodal

pretreatment CT radiomics and WSI pathomics features, in

addition to clinical variables, to predict the response to

neoadjuvant chemoimmunotherapy in esophageal cancer prior to

treatment initiation. The integrative, multi-modality model showed

significant improvement in assessing the response to neoadjuvant

chemoimmunotherapy compared with the single-modality model

in terms of the AUC (0.89 [95% CI: 0.75,1.00]). To our knowledge,

this is the first study to combine pathomics and radiomics in the

field of esophageal cancer.

Individualized treatment for patients with esophageal cancer

undergoing neoadjuvant therapy has been a research priority over

the past decade. Neoadjuvant chemoimmunotherapy has shown

remarkable advances in the management of esophageal cancer,

resulting in a high rate of pCR and improved long-term prognosis

(8, 23, 24). However, pCR can only be confirmed postoperatively.

Patients who are sensitive to neoadjuvant chemoimmunotherapy

might have good prognoses and could benefit from watch-and-wait

strategies (25). Conversely, for patients who do not respond to

neoadjuvant chemoimmunotherapy, earlier surgical intervention

can be considered to avoid unnecessary immunotherapy-associated

toxicity and morbidity. Recently, several studies have explored the
FIGURE 4

The selected features in multi-modality model. (A). The importance scores of the top 15 features chosen by the MRMR. (B). SHAP values of the
multi-modality model for overall patient cohort. (C, D). SHAP values of the multi-modality model for cases with pCR and non-pCR, respectively. A
SHAP value larger than zero indicates a positive impact, while a SHAP value smaller than zero indicates a negative impact. The features with absolute
SHAP values smaller than 0.01 were not shown in this figure.
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predictive effectiveness of genetic (26, 27), microbiome (28), and

tumor microenvironment biomarkers (3, 29) in EC patients following

neoadjuvant chemoimmunotherapy. However, their clinical

application remains limited due to high costs and invasiveness.

Therefore, the development of a preoperative and accurate

approach to predict pCR prior to treatment is meaningful.

Radiomics is a rapidly developing research field, andmany studies

havedemonstrated the role of radiomics biomarkers in predicting pCR

toneoadjuvant chemoradiotherapy in esophageal cancer (11, 30, 31).A
Frontiers in Immunology 09
meta-analysis by Zhao et al. (32) highlighted the clinical value of

pretreatment imaging-based radiomics in predicting pCR, achieving a

pooled AUC of 0.84 (95%CI: 0.81–0.87) in patients who underwent

neoadjuvant chemoradiotherapy. However, the role of radiomics in

predicting pCR following neoadjuvant chemoimmunotherapy for

esophageal cancer remains limited. In our study, the AUC value of

the prediction model based on radiomics features was only 0.70 in the

testing set, which was lower than that reported by Li et al. (33). The

superior results in Li et al.’s study was mainly attributed to post-
FIGURE 5

Distribution of the combined score between the pCR and non-pCR groups in the multi-modality model in both training (A, B) and testing set (C, D).
TABLE 4 The performance of the proposed models for the prediction of pCR.

Model Training set Testing set

AUC
(95%CI)

ACC SEN SPE PPV NPV
AUC
(95%CI)

ACC SEN SPE PPV NPV

Clinical
model

0.68
(0.59-0.77)

69.4% 55.6% 74.8% 46.3% 81.1%
0.63

(0.46-0.80)
66.7% 46.7% 74.4% 41.2% 78.4%

Radiomics
model

0.71
(0.62-0.81)

75.0% 57.8% 81.7% 55.3% 83.2%
0.70

(0.54-0.85)
72.2% 40.0% 84.6% 50% 78.6%

Pathomics
model

0.87
(0.78-0.97)

88.1% 73.7% 93.8% 82.4% 90.0%
0.77

(0.53-1.00)
77.3% 66.7% 81.3% 57.1% 86.7%

Combined
model

0.99
(0.96-1.00)

95% 100.0% 93.0% 85% 100%
0.89

(0.75-1.00)
85% 66.7% 92.9% 80% 86.7%
fron
AUC, Area under the receiver operating curve; CI, Confidence interval; SEN, sensitivity; SPE, Specificity; ACC, Accuracy; PPV, Positive predictive value; NPV, Negative predictive value.
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treatmentCT,which provided direct information on tumor regression

or residual after treatment. However, theirmodel could not provide an

earlier estimation of treatment response to guide the administration of

neoadjuvant chemoimmunotherapy and required patients to undergo

several examinations. Thus, the predictive performance of the single-

modality model based solely on radiomics features remains

unsatisfactory. Radiomics-derived data should be combined with

other features to achieve a more powerful predictive value (34).

Incontrast to radiomics,whichcaptures the spatialmacrostructure

of tumors, histopathology contains valuable microstructural

information about the tumor cell, extracellular matrix, and tissue
Frontiers in Immunology 10
morphology, which may be overlooked in radiomics analyses. With

the development of artificial intelligence and digital pathology, we can

extract quantitative features from diagnostic slides that cannot be

recognized by the naked eye (35–38). Pathomics-based analyses of

esophageal cancer specimens have proven effective in lesion detection,

cancer diagnosis, and prognostic evaluation (14, 15). In terms of

predicting the efficacy of neoadjuvant therapy, Bhargava (39) and

Tian (40) et al. demonstrated that thepathological features frombiopsy

slides are predictive of pCR in breast cancerwith anAUCs of 0.71-0.73

in the validation cohorts. Consistent with these studies, our pathomics

model based on deep learning also demonstrated good performance in
FIGURE 6

ROC analysis of predict models for predicting pCR in the training set (A) and validation set (B), respectively. (C, D). Calibration curves of models in
training and testing set on discriminating pCR versus non-pCR. (E, F). Decision curve analysis (DCA) was performed on four models for classifying
pCR versus non-pCR in the training and testing cohorts.
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predicting pCR in esophageal cancer (AUC of 0.87 on the training set

and 0.77 on the testing set). Biopsies can provide insights into specific

subregions or areas with unique characteristics of the tumor tissue, such

as cellular compositionandmorphological features, under amicroscope.

By fusing biopsy data with imaging, complementary information from

both microscopic and macroscopic levels representative of tumor

heterogeneity can be provided. The superior performance of our

combined multi-modality model is likely due to the integration of

heterogeneous radiomics and pathomics features, suggesting that the

comprehensive capture ofmicrostructural andmacrostructural features

can effectively predict pCR in esophageal cancer.

In clinical practice, the combined multi-modality model has the

potential to assist clinicians in accurately predicting the efficacy of

neoadjuvant chemoimmunotherapy before its administration, which

is critical for developingpatient treatmentplans andoptimizingoverall

patientmanagement. For patientspredicted toachieve apCR, itmaybe

beneficial to administer intensive neoadjuvant chemoimmunotherapy

and adopt awatch-and-wait strategy to improve survival andquality of

life. Conversely, for patients unlikely to achieve a pCR, neoadjuvant

treatment might be unnecessary due to its associated excessive

treatment-related toxicity.

Despite the innovativenatureofour study, several limitations exist.

First, the study’s retrospective design, along with the small sample size

and absence of external validation. A total of 223 patients were

included in our study; however, combined pathological and

radiological analysis was only conducted in 80 patients due to the

exclusion of a significant number of patients who did not undergo

biopsy at our institution. Multicenter and large-sample prospective

studies are warranted to further validate the preliminary results.

Another significant factor that hampers the effectiveness of the

proposed prediction model is the imbalance in the distribution of

baseline characteristics, such as sex, between patients who achieved a

pCR and those who did not within the pathomics cohort. Specifically,

the relatively small number of females in our study may influence the

outcomes, as previous literature has indicated that sex is associated

with the extent of benefit derived from immunotherapy (41). Our

future research will includemore female patients to ensure the balance

of baseline characteristics between patients with and without pCR.

Additionally, previous studies (4) have shown that adenocarcinoma

(ADC) and squamous cell carcinoma (SCC) have different response to

neoadjuvant chemoimmunotherapy and may lead to different

prediction performances. The model constructed by merging the

two histopathological types may lead to a decline in prediction

efficiency. The lack of adequate patients with ADC (less than 10%)

also placed a higher weight on the SCC group, which may bias the

pooled estimates toward SCC group when generating the overall

results. Therefore, larger data sets should be used in future research,

and the twohistological subtypes shouldbehierarchicallymodeled and

verified. Finally, all ROIs are manually delineated from the arterial-

phase CT images, which is time-consuming and laborious. It is

necessary to collect multiphase CT data and develop a user-friendly

tool to encourage the use of radiomic measures in daily

clinical practice.

In conclusion, the current study demonstrated that a model

integrating pretreatment CT, WSI, and clinical variables significantly

enhances the prediction of pCR in patients undergoing neoadjuvant
Frontiers in Immunology 11
chemoimmunotherapy, compared to single-modality models. The

improved performance of our multi-modality model highlights its

potential for advancing precision decision-making and personalizing

treatment strategies for patients with esophageal cancer.
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