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1State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical
Engineering, Southeast University, Nanjing, China, 2College of Acupuncture-Moxibustion and Tuina,
Nanjing University of Chinese Medicine, Nanjing, China
Introduction: Themain challenge for cancer therapy lies in immuno-suppressive

tumor micro-environment. Reprogramming tumor-associated macrophages

(TAMs) into an anti-tumor phenotype is a promising strategy.

Methods: A comprehensive analysis by combing multi-regional single-cell, bulk

and spatial transcriptome profiling with radiomics characterization was

conducted to dissect the heterogeneity of TAMs and resolve the landscape of

the CXCL9:SPP1 (CS) macrophage polarity in HCC.

Results: TAMs were particularly increased in HCC. SPP1+ TAMs and CXCL9+

TAMs were identified as the dominant subtypes with different evolutionary

trajectories. SPP1+ TAMs, located in the tumor core, co-localized with cancer-

associated fibroblasts to promote tumor growth and further contributed to

worse prognosis. In contrast, CXCL9+ TAMs, located in the peritumoral region,

synergized with CD8+ T cells to create an immunostimulatory micro-

environment. For the first time, we explored the applicability of CS polarity in

HCC tumors and revealed several key transcription factors involved in shaping

this polarity. Moreover, CS polarity could serve as a potential indicator of

prognostic and micro-environmental status for HCC patients. Based on

medical imaging data, we developed a radiomics tool, RCSP (Radiogenomics-

based CXCL9/SPP1 Polarity), to assist in non-invasively predicting the CS polarity

in HCC patients.

Conclusion: Our research sheds light on the regulatory roles of SPP1+ TAMs and

CXCL9+ TAMs in themicro-environment and provides new therapeutic targets or

insights for the reprogramming of targeted macrophages in HCC.
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1 Introduction

Liver cancer ranks among the top five causes of cancer-related

mortality globally (1). Hepatocellular carcinoma (HCC) is the

predominant pathological subtype, which accounting for

approximately 90% of liver cancer cases (2). Despite the surgery

being the most effective treatment for HCC, elusive onset and swift

progression often result in patients presenting too late for surgical

intervention (3). Immunotherapy has transformed the landscape of

cancer treatment, offering new hope for HCC patients (4). However,

the effectiveness of immunotherapy is limited to a small fraction of

HCC patients, highlighting the critical need to identify factors

hindering immune infiltration and develop combination strategies

to improve the prognosis (5).

HCC is composed of a complex tumor micro-environment

(TME) consisting of cellular (tumor-infiltrating immune cells and

stromal cells), chemical (cytokines and chemokines), and

extracellular matrix components (6, 7). Compared to tumor cells,

TME components exhibit greater genetic stability, making them

more suitable targets for therapeutic intervention (8). Macrophages,

acting as key components of the immune system, are extensively

present in numerous tissues. Tumor-associated macrophages

(TAMs) are a subset of macrophages stem from circulating

monocytes and accumulate within tumors, which are closely

linked to patient survival and correlate with drug resistance (9).

Their roles within the TME guide the mutual evolution of cancer

ecosystem during the stages of tumor growth, spread, and reaction

to treatment (10). Therefore, TAMs have emerged as an attractive

therapeutic target.

Numerous studies have utilized single-cell RNA sequencing

(scRNA-seq) to dissect the diverse functional subsets of TAMs

(11–13). However, TAMs are thought to exhibit a non-uniform

distribution within tumor tissues, rather than a structured spatial

distribution (14). The expression of TAM subtypes in the tumor

core versus the peritumoral region also influences tumor

dynamics and prognosis for patients (15, 16). Multi-regional

sampling has proven instrumental in characterizing tumor

heterogeneity, which identified the spatiotemporal evolutionary

patterns within the TME by aggregating cellular components from

multiple regions of the patients (17). In addition, the development

of spatial transcriptomics (ST) technology has facilitated detailed

examinations of distinct transcriptional profiles and cellular

interactions across different spatial domains (18). Therefore,

further characterization of the spatial heterogeneity of TAMs

subsets is essential for comprehensive understanding the tumor

ecosystem in HCC.

Reprogramming the polarization state is one important strategy

in therapies targeting TAMs (19). TAMs are highly sensitive to their

surroundings, and can be polarized into tumoricidal M1 and

tumor-supportive M2 types (20). M1 TAMs contribute to the

elimination of tumor cells and defense against pathogens, and M2

TAMs are primarily linked to facilitating tumor growth and

suppressing immune responses (21, 22). However, some TAMs

subsets may exhibit non-classical M1/M2 phenotypes or express

M1 and M2 signatures non-exclusively, which epitomizing a
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narrower interpretation of TAMs (23, 24). Importantly,

pioneering research in other solid tumors has highlighted the

mutually exclusive expression of CXCL9/SPP1, rather than

traditional M1/M2-signatures in TAMs (25, 26). The CXCL9:

SPP1 (CS) expression ratio, or CS polarity, has been identified as

a key determinant of whether TAMs adopt an anti-tumor or pro-

tumor phenotype. However, the scenary of CS polarity in HCC and

the underlying regulatory mechanisms warrant further exploration.

Additionally, the potential of CS polarity as a prognostic marker has

been highlighted, prompting further development toward clinical

application (25, 27, 28). Radiomics, as a non-invasive approach, has

shown promise in prognostic stratification of HCC by transforming

routinely acquired medical images into higher-dimensional

radiomics features and constructing predictive models (29).

Therefore, developing a non-invasive imaging biomarker that

reflects CS polarity is essential to facilitate its clinical translation.

In this study, we integrated multi-omics data to explore the

heterogeneity of TAMs in HCC tumors. By employing multiple

computational strategies, we specifically focused on the

subpopulation characterized by elevated expression of SPP1 and

CXCL9. SPP1+ TAM, located within the tumor core, cooperated

with cancer-associated fibroblasts to induce extracellular matrix

formation, thereby promoting HCC tumorigenesis. In contrast,

CXCL9+ TAM, positioned in peritumoral regions, recruited CD8+

T cells to create an immunostimulatory micro-environment. We

preliminarily identified the CXCL9:SPP1 polarization paradigm in

HCC and revealed underlying regulatory mechanisms and

associations with other TME components. Additionally, the CS

polarity may serve as a reliable prognostic and micro-

environmental status indicator for HCC patients. We developed a

radiomics model, RCSP (Radiogenomics-based CXCL9/SPP1

Polarity), based on medical imaging data, to assist in non-

invasively predicting the levels of this biomarker. In conclusion,

our work unveils the applicability of the CXCL9/SPP1 polarization

state in HCC for the first time and emphasizes the broad prospects

for personalized treatment based on the CS polarity.
2 Materials and methods

2.1 Study design

The study aimed to investigate the heterogeneous of TAMs

within the HCC microenvironment using multi-omics data,

including single-cell sequencing, spatial transcriptomics, bulk

transcriptomics, and radiomics, as summarized in Supplementary

Table 1. The study includes the following key aspects (Figure 1).

Firstly, we integrated single-cell data from paired normal,

peritumor and core tumor regions to construct an atlas of TAMs.

Subsequently, we employed three distinct computational methods

to identify the predominant subtypes of TAMs, followed by a

detailed analysis combining multi-omics data. The study then

focuses on TAMs polarization based on trajectory analysis,

dichotomy expression, patient-based polarization, and biological

processes. In parallel, we developed markers reflecting TAMs
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FIGURE 1

Study design. The study was designed to investigate the detailed landscape of tumor-associated macrophages (TAMs) within the hepatocellular
carcinoma (HCC) micro-environment using multi-omics data, including single-cell data, spatial data, bulk data, and radiomics data. The study
includes the following key aspects. Firstly, we integrated single-cell data from paired normal, peritumor and core tumor regions to construct an atlas
of TAMs. Subsequently, we employed three distinct computational methods to identify the key subtypes of TAMs, followed by a detailed analysis
combining multi-omics data. The study then focused on TAMs polarization based on trajectory analysis, dichotomy expression, patient-based
polarization, and biological processes. In parallel, we developed markers reflecting TAMs polarization and explored the relationship between these
markers and micro-environment components, treatment decisions, molecular subtyping, and prognosis. Finally, leveraging CT images from multiple
cohorts, we developed a non-invasive predictive model to assess the polarization of TAMs within patients.
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polarization and explored the relationship between these markers

and micro-environment components, treatment decisions,

molecular subtyping, and prognosis. Finally, leveraging CT

images from multiple cohorts, we developed a non-invasive

predictive model to assess the polarization of TAMs within patients.
2.2 Data collection and power analysis

Multi-regional scRNA-seq data of HCC were obtained from the

Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/

geo/) under accession codes GSE156337 (n=14), GSE140228 (n=6)

and GSE189903 (n=4), encompassing a total of 24 patients and

167,169 cells with corresponding sampling locations, including

normal tissue, peritumoral area, and the tumor core. These

datasets were all performed using the 10×Chromium single cell

platform (10×Genomics). To mitigate batch effects across these

datasets, we integrated the samples using default parameters in the

FindIntegrationAnchors and IntegrateData functions of Seurat

package. In addition, we included a single-cell dataset from

patients who underwent immunotherapy (n=20), consisting of 10

responders and 10 non-responders to treatment, to validate the

results of spatial transcriptomics (https://lambrechtslab.sites.vib.be/

en/aHCC). The batch correction of this dataset was processed was

performed on a sample-by-sample basis.

Spatial transcriptomics data from tumor sections of responders

(n=3) and non-responders (n=4), as well as normal sections of non-

responders (n=3), were extracted from HCC patients receiving

immunotherapy on Mendeley Data (identifier: skrx2fz79n) (30).

Bulk transcriptomics data from four cohorts ofHCCpatients (n=942)

were included, which comprised the HCC cohort (TCGA-LIHC, n=425)

from the TCGA data portal (http://gdac.broadinstitute.org/) and the

LIRI-JP project cohort (n=232) from the International Cancer

Genome Consortium (ICGC) portal (https://dcc.icgc.org/). The

raw counts were transformed into TPM values. Additionally, two

independent expression datasets based on microarray from GEO

were included: GSE14520 (n=221) and GSE116174 (n=64). The

clinical information is summarized in the Supplementary Table 1.

Two radiomics cohorts with clinical information and

corresponding preoperative CE-CT imaging data of HCC patients

were retrieved from the publicly accessible Cancer Imaging Archive

(TCIA) database (https://www.cancerimagingarchive.net/). We

excluded patients with missing images in the enhanced phase and

those without reference tumor locations. Finally, we included the

TCIA-TCGA-LIHC cohort (n=41), which could be matched with

relevant transcriptomic information from the TCGA-LIHC, and the

TCIA-HCC-TACE-Seg cohort (n=65), which consisted of HCC

patients who underwent TACE pre-treatment contrast-enhanced

CT scanning.

Power analysis was conducted using the SCOPIT website for

single cell data, to determine the minimum number of cells required

per sample to achieve 95% statistical power (31). Using the

retrospective analysis mode, we first performed marker

identification and clustering to determine the percentage of each
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cell type. Based on these results, we calculated the minimum

number of cells needed to capture at least 10 cells from the lowest

frequency cluster (representing 1% of the population) with 95%

probability. This approach allowed us to estimate the required cell

count for each sample to ensure sufficient power for downstream

analyses. For the bulk and radiogenomics data, sample size

estimation and power analysis were performed using the

ssizeRNA package (v1.3.2), confirming that the sample size was

sufficiently powered (power = 0.8, false discovery rate = 0.05) to

detect differential expression between patients with high and low

CXCL9/SPP1 polarity (32).
2.3 Quality control and preprocessing of
scRNA-seq data

According to the standardized pipeline, the scRNA-seq data

were processed using the Seurat package (version 4.3.0) in R

software (33). Cells were meticulously screened as follows: (1)

those containing fewer than 200 genes, or more than 5,000 genes

were filtered out; (2) cells with a mitochondrial gene proportion

exceeding 20%, as determined by the PercentageFeatureSet

function, were excluded; (3) genes expressed in three or fewer

cells were subsequently removed. After quality control, the gene

expression matrices were normalized using the NormalizeData

function, and (4) doublets were detected and removed using

DoubletFinder (34).

After batch effect elimination, the NormalizeData function was

used to normalize the expression matrix, and the FindVariableFeatures

function was applied to identify the top 2,000 highly variable genes

(HVGs). For dimensionality reduction and clustering on the expression

matrix, ScaleData was used to scale the data, and RunPCA was

performed to analyze the first 50 principal components. The results

were then clustered using FindNeighbors (resolution=0.6) and

FindClusters and projected onto two-dimensional uniform manifold

approximation and projection (UMAP) embedding images for

visualization. The characteristic genes of each cell type were

identified using the FindAllMarkers function, with a logFC threshold

of 0.25 and a minimum fraction of genes detected in cells set at 0.1.
2.4 Annotation of cell clusters

Based on a previous study (35), the CellMarker 2.0 and

PanglaoDB databases (36, 37), the expression of specific features

was considered the main basis for cluster annotation. We

performed a two-round annotation process.

First, hepatocytes (expressing HP and KRT8), endothelial cells

(expressing ACTA2 and RGS5), fibroblasts (expressing GNG11 and

VWF), and immune cells (expressing PTPRC) were distinguished.

Immune cells were further categorized into macrophages

(expressing CD163 and CD68), monocytes (expressing S100A8

and S100A9), dendritic cells (CD1E and CD1C), mast cells

(expressing TPSB2 and KIT), natural killer cells (expressing
frontiersin.org
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NKG7 and KLRF1), B cells (expressing CD79A and MZB1), and T

cells (expressing CD3D and CD3E). Then, macrophages were re-

integrated and further categorized into different subtypes based on

characteristic genes and marker genes obtained in a previous study

(35). The biological functions of these subtypes were analyzed

through enrichment analysis using the GO databases with the

clusterProfiler package (version 4.9.2).
2.5 Identification of predominant
macrophage subtype in HCC

We employed three computational methods to comprehensively

evaluate the predominant macrophage subtype in HCC

tumorigenesis. (1) Cell-type prioritization analysis. The Augur

algorithm was used to identify which cell types are most responsive

to biological perturbations (38). This method utilizes a random forest

classifier on subsampled matrices and reports the mean cross-

validation area under the receiver operating characteristic curve

(AUC) across these subsamples. An AUC value of 0.5 suggests that

there is no significant difference in perturbation between cells from

the tumor site and those from the normal state within a cluster. In

contrast, an AUC value of 1.0 indicates that cells from the tumor site

exhibit a higher degree of perturbation compared to the normal state.

(2) Tissue enrichment analysis (39). To quantify the enrichment

preference of cell types across different tissue groups, we compared

the observed and expected cell numbers for each cluster within each

tissue group using the following formula: Ro/e = (Observed/

Expected). The expected cell numbers for each cell type in the

tissues were derived from the Chi-squared test. We considered a

cluster to be enriched in a specific tissue if the Ro/e ratio was greater

than 2. (3) Prognostic assessment (40). The Scissor algorithm was

applied to identify cell types associated with the survival outcomes of

HCC patients in the TCGA-LIHC cohort. Overall survival (assessed

using Cox regression) served as the dependent variable. The alpha

parameter was set at 0.01, and the cutoff for the percentage of Scissor-

selected cells among the total cells was set at 0.2. The reliability

significance test was conducted using the reliability.test function.
2.6 Cell communication analysis

Cell communication analysis was performed using the CellChat

package (version 2.0.0) to explore potential interactions between cell

types (41). First, we constructed a CellChat object using scRNA-seq

data from HCC and normal liver tissues. We then utilized the

CellChat database to investigate cell-cell communication and

identify ligand-receptor pairs within these cell populations. These

interactions were further analyzed to identify specific communication

patterns. The probability of communication between cells was

computed to examine the molecular interaction networks between

various cell types, with particular focus on the communication

between TAM subtypes, especially SPP1+ TAMs and CAFs.

Additionally, to assess the relationship between CXCL9+ TAMs
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and immunotherapy response, we constructed a separate CellChat

object using scRNA-seq data from immunotherapy responders and

non-responders. This analysis focused on the differential

communication patterns of CXCL9+ TAMs in CXCL signaling

pathways between T cell subpopulations.
2.7 Trajectory analysis

To investigate the single-cell trajectories of TAM subtypes and

the cell state transitions between CXCL9+ and SPP1+ TAMs, we

performed trajectory analysis in DDR-Tree method with default

settings using the R package Monocle2 (version 2.29.0) (42).

Differentially expressed genes were identified for each cluster

using the differentialGeneTest function, and cells were ordered in

pseudotime based on genes with a q-value less than 0.05. We

focused on the differences in the trajectories of CXCL9+ and

SPP1+ TAMs across distinct trajectory branches, with the pattern

of each cell on the branches determined by the expression levels of

markers. Following trajectory construction, we again used the

differentialGeneTest function to identify DEGs along the

pseudotime continuum. This analysis was complemented with

transcription factor activity analysis to identify potential

therapeutic targets driving the phenotypic changes in CXCL9+

and SPP1+ TAMs.
2.8 Transcription factor activity analyses

DoRothEA analysis was used to infer the key transcription

factors (TFs) of CXCL9+ and SPP1+ TAMs. DoRothEA (version

1.14.1) is a gene set resource that includes tTFs and their

interactions with target genes, which enables the inference of TF

activity from gene expression data (43). The TF activity scores,

represented by the viper score, were estimated for cell clusters using

DoRothEA, with the analysis conducted within a database that

contains interactions with a specified confidence level.

Subsequently, the identified TFs were combined with the DEGs of

trajectory analysis to identify potential therapeutic targets driving

the phenotypic changes of CXCL9+ and SPP1+ TAMs.
2.9 Estimation of cell type infiltration from
bulk transcriptome data

The CIBERSORTx deconvolution algorithm (https://

cibersortx.stanford.edu/) was employed to quantitatively estimate

the subtypes of TAMs and the infiltration levels of CAFs in the

TCGA-LIHC cohort (44), using absolute mode. The integrated

scRNA-seq data from this study served as the reference for

constructing the signature matrix. When creating the signature

matrices, CIBERSORTx was executed with quartile normalization

disabled for RNA-seq datasets. The permutation parameter was set

to 500 iterations, and all other parameters were maintained at their
frontiersin.org
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default settings. To assess the relationships among the proportions

of cell type infiltration, Pearson’s correlation analysis was

conducted. Correlations were considered significant if the

absolute value of the correlation coefficient (|R|) exceeded 0.3 and

the false discovery rate (FDR) was less than 0.05.
2.10 Spatial transcriptomics data
processing and analysis

Spatial transcriptomics data processing and visualization were

conducted using the Seurat package (version 4.3.0). For

normalization of the ST data, we employed the SCT method. The

functions SelectIntegrationFeatures, PrepSCTIntegration,

FindIntegrationAnchors, and IntegrateData were sequentially

applied to integrate the ST data. To delineate the tumor area, we

utilized the BoundaryDefine function from the Cottrazm R package

(version 0.1.1) (45). The cellular composition of each spot was

deconvoluted using the SpatialDecon function. To visualize the

spatial co-localization of CAFs, SPP1+ TAMs, CXCL9+ TAMs, and

CD8+ T cells in ST slices, we scored the top 20 DEGs of cell clusters

with the AddModuleScore function. The SpatialDimPlot and

SpatialFeaturePlot functions were combined to visualize the cell

expression levels within the ST data.

PROGENy (version 1.24.0) was utilized to estimate the activity

of 14 oncogenic pathways for each spot (46). The model calculates

pathway activity by considering the expression levels of genes that

are more responsive to perturbations within those pathways.

NicheNet (version 2.0.4) was employed to infer the mechanisms

of interaction between SPP1+ TAMs and CAFs with malignant cells

in tumors (47). Specifically, we used the GetTissueCoordinates

function from the Seurat package to obtain the spatial coordinates

of the spots across different HCC samples. We then computed the

Euclidean distance between each pair of spots. Hepatocyte or tumor

cell spots were selected in normal or tumor sections, respectively.

Subsequently, fibroblast or SPP1+ TAMs-CAFs spots were chosen,

ensuring that these spots were within a distance no greater than 2.5

times that of the hepatocyte or tumor cell spots. Malignant cells

were designated as receiver cells, and hepatocytes served as

reference cells. The ligand_activity_target_heatmap function was

applied to visualize the regulatory activity of ligands.
2.11 Multiplex immunofluorescence
staining

Multiplex immunofluorescence (mIF) staining was performed

on liver tissue sections obtained from HCC mouse model. The

animal experimental protocols were approved by the Institutional

Animal Care and Use Committee of Nanjing University of

Chinese Medicine (approval number: 202312A034). Tissue

sections were incubated 10 minutes with citrate buffer (10 mM)

at 98°C for antigen retrieval, and blocked 1 hour with 5% bovine

serum albumin (BSA) at room temperature. Following this, tissue

sections were incubated overnight at 4°C with the primary
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antibodies, which included anti-SPP1/Osteopontin (Proteintech,

China), anti-CXCL9 (Invitrogen, USA), anti-CD68 (Boster,

China), anti-a-SMA (Boster, China), and anti-CD8 (Abcam,

UK). The sections were then incubated with the corresponding

secondary antibodies: Alexa Fluor 488-conjugated goat anti-rabbit

(Abcam, UK), Alexa Fluor 594-conjugated goat anti-rabbit

(Abcam, UK), and Cy3-conjugated goat anti-rabbit (Abcam,

UK) for 1 hour at room temperature. Finally, the sections were

mounted with DAPI-containing antifade medium (Sigma-

Aldrich, USA), and images were captured using a fluorescence

microscope (Nikon, Japan). The results are expressed as cell

density (cells/mm2), calculated by dividing the total number of

positive cells by the total area.
2.12 Individual-based method for CS
polarity definition

To further understand the role of CXCL9:SPP1 TAM polarity

(CS polarity) in the TME, we implemented an individual-based

method (25) for determining the relationship between CS polarity

and the gene expressions and biological function in diverse cell

types. For scRNA-seq data, the CS polarity was defined as the ratio

of the adjusted mean counts of gene CXCL9 to those of gene SPP1

in TAMs. We first established the adjusted mean counts, the

calculation of the adjusted mean count for gene G in cell type C

for patient P is as follows:

1. Compute the mean expression. For gene G in cell type C of

patient P,

XP,C,G =
1
mo

m
i=1XP,C,G(i)

where m is the cell numbers of cell type C, and XP,C,G(i) is the

expression value of gene G in cell i.

2. Calculate the scaling factor. First, we calculate the average

expression XP,C for all genes in cell type C for patient P, and then the

average expression XC for all genes in cell type C across all patients

N.

XP,C =
1
go

g
j=1XP,C,j

XC =
1
No

N
k=1Xk,C

The scaling factor SC is finally calculated as follows,

SC =
XP,C

XC

where g is the total number of genes in cell type C for patient P,

XP,C,j is the average expression of the gene j in cell type C for patient

P, and Xk,C is the average expression of all genes in cell type C for

the patient k.

3. Calculate the adjusted mean counts. We multiply the average

expression XP,C,G obtained in step (1) by the scaling factor SC in step

(2) to obtain the adjusted average count Xadj
P,C,G.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1528103
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gu et al. 10.3389/fimmu.2025.1528103
Xadj
P,C,G = XP,C,G � SC

After the adjusted mean counts established, the CS polarity for

patient P is defined as follows,

CS _ Ratio =
Xadj
P,TAM,CXCL9

Xadj
P,TAM,SPP1

where Xadj
P,TAM,CXCL9 is the adjusted mean counts of CXCL9 in

TAMs for patient P, and Xadj
P,TAM,SPP1 is the adjusted mean counts

of SPP1.
2.13 Radiomics feature extraction and
RCSP model construction

Two radiomics cohorts from the TCIA database, TCIA-TCGA-

LIHC (n=41) and TCIA-HCC-TACE-Seg (n=65), comprising a

total of 106 HCC patients with contrast-enhanced CT (CE-CT)

images, underwent radiomics analysis. Patients in the TCIA-

TCGA-LIHC cohort served as the training set due to the

availability of matched transcriptomic information. The TCIA-

HCC-TACE-Seg cohort patients were utilized as the validation

set. Tumor reference coordinates were retrieved from the TCIA

website (48). For the volume of interest (VOI) of the tumor, lesions

were manually annotated on both arterial and portal venous phase

images, using reference markups and segmented with a threshold-

based segmentation algorithm via 3D Slicer software. The area

beyond the liver parenchyma was excluded, along with large vessels,

adjacent organs, and air cavities. Image preprocessing and feature

extraction were conducted using the PyRadiomics tool (version

3.0.1) in Python (49). Images were resampled to a voxel size of 1 × 1

× 1 mm³ to standardize voxel spacing and discretized with a fixed

bin width of 25.

A two-stage modeling strategy was implemented to develop the

RCSP (Radiogenomics-based CXCL9/SPP1 Polarity) model. Stage

1: Radiomics score (RadScore) construction. The radiomics features

extracted from each VOI were categorized into three classes: (1)

first-order features (n=18), (2) shape features (n=14), and (3)

texture features (n=68). Features were calculated on both the

original image and the filtered image. In the training set,

radiomics features significantly correlated with the CS polarity (|r|

> 0.3, P < 0.05) were initially identified using Pearson correlation

after Z-score normalization. Feature selection was then performed

using the least absolute shrinkage and selection operator (LASSO)

regression model, following the determination of the optimal l
value through leave-one-out cross-validation. The RadScore for

each sample was calculated based on the coefficients of the

selected features in the model. Subsequently, this cohort was

subjected to correlation analysis, receiver operating characteristic

(ROC) curve analysis to predict CS polaritys in patients. Stage 2:

Clinical indicators incorporation. To enhance prognostic

robustness, we combined the RadScore with clinical indicators.

The clinical indicators common across both training and validation

cohort were selected for inclusion, and assessed via univariate Cox

proportional hazards regression (P < 0.15). The filtered variable
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were combined with the precomputed RadScore into the Cox

proportional hazards regression models, and the risk score for

each patient was calculated using the following formula:

RiskScore  =  b̂ RadScore · Radscore +ob̂ j·X
(clinical)
j

Where b̂ RadScore is the estimated coefficient for the RadScore

derived from the model, X(clinical)
j represents the clinical covariates,

and b̂ j are the estimated coefficients for each clinical indicator

X(clinical)
j .

Patients in the training cohort were stratified into high-risk and

low-risk subgroups using the median RiskScore as threshold.

Survival differences between subgroups were evaluated using

Kaplan-Meier analysis with log-rank testing. The model with

fixed coefficients was applied to the validation cohort. The patient

stratification was stratified using the predefined threshold of risk

score from the training cohort, and survival curves were compared

following the same protocol.
2.14 Statistical analysis

Statistical and bioinformatics analyses, as well as data

visualization and plotting, were conducted using R software

(version 4.3.0) and Python (version 3.7). The nonparametric

Wilcoxon test was employed to investigate differences in

continuous and categorical variables between the two groups. For

comparisons among three or more groups, the Kruskal-Wallis test

and one-way ANOVA were applied. The Benjamini-Hochberg

method was utilized to adjust the P-values for multiple testing,

implemented via the R function p.adjust. Proportions were

compared using the chi-squared test or Fisher’s exact test, as

appropriate. Survival analysis was conducted using the Kaplan-

Meier method, facilitated by the R package survival (version 3.5.5).

Independent prognostic analysis was performed using univariate

and multivariate Cox proportional hazard regression models, which

estimated the hazard ratio (HR) and the 95% confidence interval

(CI) concurrently. The meta-analysis and the generation of forest

plots were completed using the R package meta (version 6.5.0). A P-

va lue of less than 0 .05 was cons idered to indica te

statistical significance.
3 Results

3.1 Construction of multi-regional TAMs
atlas in HCC

To systematically characterize macrophages in HCC

progression, we integrated three scRNA-seq datasets from Zhang

et al. (n = 7), Sharma et al. (n = 8), andWang et al. (n= 6) containing

173,614 cells from different sampling locations of 21 primary HCC

tumors. After preprocessing and batch effects mitigation, 167,169

cells were kept and grouped into transcriptionally distinct clusters

using graph-based clustering (Figure 2A, Supplementary

Figures 1A, B). In total, 32 distinct clusters were identified, and
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we annotated each cluster with its respective markers. Cells were

classified into 10 major cell types (Figure 2B, Supplementary

Figure 1C), including hepatocytes (n=13,269) identified by the

expression of HP and KRT8, fibroblast (n=2,813) which were

positive for GNG11 and VWF expression, endothelial cells

(n=12,092) marked by ACTA2 and RGS5, T cells (n=96,086)

which expressed the T-cell receptor signaling mediators CD3D

and CD3E, NK cell (n=19,501) identified by NKG7 and KLRF1

expression, B cells (n=5,147) marked by CD79A and MZB1,

dendritic cell (n=3,856) marked by CD1E and CD1C, monocyte

(n=3,569) defined by their classical markers S100A8 and S100A9,

macrophage (n=10,518) which were positive for CD163 and CD68

expression, and mast cells (n=318) marked by TPSB2 and KIT.

Using SCOPIT power analysis, we showed that the cell types with
Frontiers in Immunology 08
the lowest frequency in each sample can be detected in other

samples with high confidence of 95% using the number of cells

captured (Supplementary Figures 2A, B).

We analyzed cellular distribution across different sampling sites

and found that T cells and NK cells were the most abundant

(Figure 2C). Notably, the proportion of hepatocyte infiltration in

the adjacent normal tissue was remarkably low, likely due to

fibrosis, extracellular matrix remodeling, and chronic

inflammation in the surrounding tissue, which may have

contributed to hepatocyte degeneration. This observation was

further corroborated by an additional HCC study (50) (Figure 2C,

Supplementary Figure 1D). We focused on the macrophages.

Compared to normal tissues, the infiltration of macrophages was

increased in tumor tissue (Figure 2C). We re-clustered the
FIGURE 2

Construction of the TAMs transcriptional atlas across multi-region samples. (A) Datasets with multi-regional samples were merged in this study,
batch effect was corrected and projected onto the bidimensional UMAP space. (B) UMAP shows the distribution of major cell types, colored by
subtypes. (C) The proportion of major cell types showing in bar plots in different tissues (left), and total cell number of each cell type (right) are
shown. (D) UMAP visualization of macrophages subtypes, colored by subtypes. (E) UMAP visualization of macrophages subtypes across sampling
regions. (F) Pie charts showing the proportion of cells per tissue in each TAM clusters.
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macrophage population and employed specific cellular signature

markers reported before performing an in-depth annotation

(Figure 2D, Supplementary Figure 1E). The subsets were classified

into three broad categories, (1) monocyte-derived macrophages

(TAMs, cluster 1-7), (2) resident liver macrophages (Kupffer cells,

cluster 8), and (3) myeloid-derived suppressor cell precursors

(MDSCs, cluster 9-12). Resident liver macrophages, also known

as Kupffer cells, were marked by high expression of the classic

marker MARCO, which played a vital component in the innate

immune system (51). MDSCs are a heterogeneous population of

myeloid cells that are derived from the bone marrow, characterized

by high expression of FCN1 (52).

TAMs consisted of seven subclusters with dominant subset-

specific genes, respectively, including SPP1+, CXCL9+, SLC40A1+,

TREM2+, CLEC10A+, HSP+ and STMN1+ TAMs (Figure 2D).

Representative genes of each subclusters were summarized

(Supplementary Table 2). SPP1+ TAMs showed high levels of

secreted phosphoprotein 1 (SPP1) expression, a key component

of the epithelial-mesenchymal transition pathway, and were

involved in extracellular matrix receptor communication (53).

CXCL9+ TAMs expressed a variety of genes within the

chemokine family (e.g. CXCL9, CXCL10) associated with positive

responses to immune checkpoint blockade in antitumor immunity

(54). SLC40A1+ TAMs expressed ferroprotein SLC40A1, the only

known cellular iron exporter in mammals (55). In TREM2+ TAMs,

gene expressions were characterized that are primarily involved in

the transmembrane receptor of the immunoglobulin superfamily,

which is widely implicated in immunoinflammatory responses seen

in the pathobiology of several diseases (56). CLEC10A+ TAMs

expressed high levels of the CLEC10A gene, which could recognize

and act on tumor-associated antigens and effectively present the

antigens to T cells (57). HSP+ TAMs expressed several heat shock

protein genes associated with cellular heat response and

angiogenesis regulation (58). And STMN1+ TAMs exhibited high

expression of genes associated with cell proliferation (59).

We compared the degree of infiltration for each TAMs subtype,

revealing an uneven distribution of relative abundance (Figures 2E, F).

We observed that SPP1+ TAMs (tumor core: 41.95%, peri-tumor:

23.43%), CXCL9+ TAMs (8.88%, 22.65%), TREM2+ TAMs (13.53%,

13.42%) and SLC40A1+ TAMs (11.02%, 18.93%) mainly existed in

tumor region, while the other subtypes, like CLEC10A+ TAMs

(normal: 41.82%) were notably present in normal tissues, which

may reflect the functional heterogeneity of the subsets in the TME.
3.2 SPP1+ TAMs represent a predominant
subset associated with poor prognosis

To identify the specific TAMs subsets that significantly

influence HCC progression, we performed three methods to

comprehensively evaluate the predominant macrophage subtype

in HCC tumorigenesis, including (1) cell-type prioritization, (2)

tissue enrichment analyses and (3) prognostic assessment. The

strategy assumed that if a specific cell type exerts a significant

influence on tumor progression, it would be responsive to biological
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perturbations during the disease and exert function by migrating

toward the tumor cells, thereby influencing the prognosis

in patients.

Firstly, to evaluate the responses of TAMs to tumorigenesis, we

performed Augur analyses to prioritize the perturbation of the

TAMs subtypes. We found that SPP1+ TAMs exhibited the most

profound change, with the highest AUC of 0.961. The STMN1+

TAMs (AUC=0.913) and CXCL9+ TAMs (AUC=0.869) also

responded to tumorigenesis, but to a lower extent (Figure 3A).

Secondly, we performed a c2 test comparing the observed and

expected cell numbers in each cluster (RO/E). Specially, SPP1
+

TAMs and STMN1+ TAMs were enriched in tumor core region,

and SPP1+ TAMs showed the highest RO/E value of 4.74. The

CXCL9+ TAMs and SLC40A1+ TAMs were enriched in peri-tumor

region, and CXCL9+ TAMs showed the highest RO/E value of 3.41

(Figure 3B). Lastly, the Scissors analysis was performed to identify

TAMs subtypes associated with the survival outcomes from HCC

patients. We identified 1,351 Scissor+ TAMs that were associated

with worse survival and 215 Scissor− TAMs that were associated

with better survival (Figure 3C, Supplementary Figure 3A). Notably,

SPP1+ TAMs, TREM2+ TAMs and STMN1+ TAMs showed worse

survival correlation, and SPP1+ TAMs accounted for the highest

proportion among Scissor+ TAMs (32.48%). CXCL9+ TAMs,

SLC40A1+ TAMs and CLEC10A+ TAMs showed better survival

correlation, and CXCL9+ TAMs accounted for the highest

proportion in Scissor− TAMs (15.75%) (Figure 3C). To further

investigate the relationship between the SPP1+ TAMs and tumor

progression, we employed the deconvolution algorithm to infer the

cell proportion for each sample from the bulk RNA-seq data. Our

findings revealed that the infiltration of SPP1+ TAMs was markedly

elevated in tumor tissues relative to normal tissues (Figure 3D), and

the proportion of SPP1+ TAMs increased with the advancement of

tumor stage (Figure 3E). Furthermore, a high abundance of SPP1+

TAMs was associated with a reduced overall survival rate for HCC

patients (Figure 3F). Altogether, these results suggested that SPP1+

TAMs maybe a predominant subset associated with poor prognosis

in HCC tumorigenesis.

The cell-cell interaction (CCI) networks among cell populations

exert a profound impact on the development and metastasis of

HCC (60). We compared the strength of inferred interactions and

found that the CCI network of cell types in HCC exhibited a higher

level of interaction strength compared to that of normal tissue

(Figure 3G). We found that macrophages, which served as the

source cells of tumor, showing stronger interaction strength with

other cell types, especially fibroblasts and hepatocytes (Figure 3H),

and the SPP1, PTN, CCL, TGFB1 and PLAU pathways were more

enriched in tumor regions (Figure 3I). The SPP1 pathway was the

most enriched pathway in tumor region, which has been reported to

lead to immunosuppression in the TME by binding to its receptor

CD44 (61). In the SPP1 signaling network, macrophages were the

primary source for cell communication (Figure 3J), and compared

to other TAMs subtypes, the strength of SPP1-mediated

interactions sourcing from SPP1+ TAMs was markedly higher

(Figure 3K). Taken together, these results demonstrate that the

SPP1 signaling was a critical mediator of cell communication in
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FIGURE 3

SPP1+ TAMs represent a predominant worse prognosis subset in HCC tumorigenesis. (A) Bar plot displaying the AUC of cell type prioritizations
calculated by Augur. (B) Heatmaps showing the RObserved/Expected (Ro/e) of TAM subtypes occurring in each tissue. (C) Bar plot showing the
visualization of Scissor analysis of TAMs subtypes. The cellular proportion of cells related to poor or good prognosis in each TAMs subtype.
(D) Significant higher ratio of SPP1+ TAMs in tumor than normal tissue in TCGA-LIHC cohort. (E) SPP1+ TAMs infiltration is upregulated as tumor
stage increases. (F) Higher SPP1 TAMs infiltration was associated with worse overall survival. (G, H) Circle plots (G) and heatmap (H) showing the
change in cell communication intensity between major cell types in HCC tumor compared to normal tissues. Lines and squares in red indicating
increased cell communication in HCC tumors, and in blue decreased. (I) Significant signaling pathways ranked based on differences in the overall
information flow within the inferred networks between the tumor and normal groups. The red bar indicated top pathways enriched in tumor group,
and blue indicated enriched in normal group. (J) The inferred SPP1 signaling networks between major cell types in tumor compared to normal
tissue. Different shades of colors indicated the communication probability. (K) The inferred SPP1 signaling networks between TAM subtypes and
other cell types. The darker the color the more communication probability is inferred in tumors. The top-colored bar plot represents the sum of
column of values displayed in the heatmap (incoming signaling). The right-colored bar plot represents the sum of row of values (outgoing signaling).
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HCC tumorigenesis and that SPP1+ TAMs may play an important

role in this process.
3.3 SPP1+ TAMs and CAFs synergistically
contribute to pro-tumorigenic micro-
environment in HCC

We further conducted functional enrichment analysis on TAMs

subtypes (Figure 4A). Compared to other subtypes, SPP1+ TAMs

were uniquely and significantly enriched in extracellular matrix

(ECM). Recognizing the critical role of ECM in tumor progression

through dynamic remodeling (62), and identifying cancer-

associated fibroblasts (CAFs) as key cellular components in ECM

remodeling (63, 64), we hypothesized that SPP1+ TAMs may

synergize with CAFs to facilitate tumor progression.

To validate this assumption, we selected the CAFs in the

fibroblast population, which was labeled by COL3A1 and

COL1A1 (Figure 4B). We observed that CAFs mainly existed in

tumor regions, especially in tumor core region (58%), which is

consistent with the observation on SPP1+ TAMs (Figure 4C).

Pathway analysis of differentially expressed genes revealed CAFs

were related to ECM organization (Supplementary Figure 3B). We

performed deconvolution analysis to assess the infiltration of TAMs

and CAFs subsets in the TCGA-LIHC cohort. We calculated the

pairwise correlations within the infiltrations of these subsets and

found that the CAFs and SPP1+ TAMs were the most highly

correlated populations in the examined cohort (Figure 4D). In

addition, the infiltration proportion of CAFs was significantly

increased in tumors compared to normal tissues, and patients

with higher infiltration of CAFs had shorter overall survival

(Figures 4E, F). Consistently, the interaction strength of cellular

communications from SPP1+ TAMs to CAFs was markedly higher

than that from other TAM subsets (Supplementary Figure 3C). The

SPP1 signaling, by interacting with the relevant receptors (ITGAV,

CD44) on CAFs, induced the formation of the ECM. Furthermore,

the MIF/CD74 axis may represent the primary signaling pathway

that promotes the infiltration of SPP1+ TAMs (Figure 4G).

We further examined whether CAFs and SPP1+ TAMs co-

localized in HCC tissues. Using spatial transcriptomics data, the

signature scores in CAFs and SPP1+ TAMs highlighted co-

localization in the same spot (Figure 4H, Supplementary

Figure 4A). In addition, the scores showed a significantly positive

corre la t ion (Supplementary Figure 4B) . Mult ip lexed

immunofluorescence (mIF) staining demonstrated that SPP1-

positive and aSMA-positive cells were in close proximity in HCC

slides (Figure 4I, Supplementary Figure 4D). We further

investigated the synergistic effect of SPP1+ TAMs-CAFs on tumor

cells. Based on the originally defined cell types in each spot from the

previous research (30), we further compared the activation levels of

oncogenic pathways, and found that the TGF-b and hypoxia

pathways were more activated in SPP1+ TAMs-CAFs (Figure 4J).

In addition, we explored the mediators and downstream targets of

the SPP1+ TAMs/CAFs-tumor cell axis. In detail, we selected

hepatocyte or tumor cell spots in normal or tumor sections,
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respectively. We then selected fibroblast or SPP1+ TAMs-CAFs

spots, accordingly, ensuring that these spots were within a distance

no greater than 2.5 times that of the hepatocyte or tumor cell spots

(Figure 4K). We inferred the communication network between

those spots. Interestingly, compared to normal tissues, SPP1+

TAMs-CAFs regulated tumor cells through the regulation of

genes related to HCC tumorigenesis, including CCND1, MYC,

CTNNB1, and BAX (Figure 4L). Moreover, these genes are

involved in processes such as liver development, cell proliferation,

and telomere organization, suggesting that SPP1+ TAMs-CAFs may

participate in a synergistic action through these processes. This

regulatory network could potentially enhance the malignant

potential of tumor cells by influencing critical cellular functions

and pathways. Collectively, these results suggest the pro-

tumorigenic micro-environment may be regulated by the

interaction of CAFs and SPP1+ TAMs.
3.4 CXCL9+ TAMs display distinct
differentiation trajectories to SPP1+ TAMs
and exhibit immunostimulatory activity and
better prognostic implications

To better understand the dynamics of SPP1+ TAMs, we

performed pseudotime trajectory analysis to estimate individual

cell states to allow causal inference of terminally differentiated cells.

The result showed a gradual transition of the MDSCs, acting as

precursors to macrophages, leading to the emergence of two distinct

branches 1 and 2 (Figure 5A). The proportions of cell types differed

between the branches. SPP1+ TAMs were enriched at the end of

branch 1 with the highest proportion of cells (39.86%), while

CXCL9+ TAMs were enriched in branch 2 (30.39%) (Figure 5B).

The expression of key markers was coupled with the transition.

Interestingly, we observed the divergent prognostic effects in the

two branches (Figure 5C). The better effect was observed in branch

2, which is consistent with the prognostic value of CXCL9+ TAMs

(Figure 3C). This preliminary observation stimulated our interest in

exploring the role of CXCL9+ TAMs.

Based on enrichment analysis (Figure 4A), CXCL9+ TAMs were

uniquely and significantly enriched in lymphocyte chemotaxis and

T cell proliferation, which was associated with immunostimulatory

activity. Based on spatial transcriptomics data, enrichment score

with T cell and CXCL9+ TAMs signatures highlighted co-

localization in the same spot (Figure 5D, Supplementary

Figure 4A). Furthermore, the signature score of T cell and

CXCL9+ TAMs signatures in spots showed a significantly positive

correlation (Supplementary Figure 4C). mIF staining demonstrated

that CXCL9-positive and CD8-positive T cells were in close

proximity (Figure 5E, Supplementary Figure 4E). To further

validate the immunostimulatory role of the CXCL9+ TAMs, we

analyzed a scRNA-seq dataset of HCC patients receiving

immunotherapy with di fferent ia l response outcomes

(Supplementary Figures 3F–I). We predict receptor-ligand

interactions between subtypes of TAMs and T cells. We focused

on the CXCL signaling pathway network because chemotactic
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FIGURE 4

SPP1+ TAMs and CAFs synergistically contribute to pro-tumorigenic micro-environment in HCC. (A) Bar plot showing the GO enrichment analysis
based on the top 50 significantly expressed genes of each TAMs subset. (B) Left: UMAP showing the distribution of fibroblasts, the CAFs were
colored by orange. Right: Expression of canonical markers for CAFs. (C) Pie chart indicating the percentage of tissue distribution on CAFs and non-
CAFs. (D) Heatmaps exhibit the correlation between Cancer-associated fibroblast and TAM subtypes in TCGA-LIHC cohort, the correlation between
CAF and SPP1 TAM marked with a black dotted box. (E) Significantly higher ratio of CAFs in tumor than normal tissue in TCGA-LIHC cohort.
(F) Higher CAF infiltration was associated with worse overall survival. (G) Circos plot shows cell communication from SPP1+ TAMs to CAFs, and from
CAFs to SPP1+ TAMs. (H) Scores of the CAF and SPP1+ TAMs signatures enrichment in each spot on ST sections. (I) Representative mIF staining of
liver tissues from the HCC mouse model. DAPI (blue), CD68 (yellow), SPP1 (green), a-SMA (red) are shown, along with individual and merged
channels. Scale bar, 50 mm. (J) Activation levels of oncogenic pathways in defined cell types of each spot. (K) Schematic representation of the
selection of fibroblasts/SPP1+ TAMs-CAFs spots near hepatocytes/malignant cells spots in normal and tumor tissue sections. (L) Left: Heatmap
displaying the expression levels of ligands highly expressed in SPP1+ TAMs-CAFs. Right: the expression levels of corresponding target genes on
tumor cells.
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FIGURE 5

CXCL9+ TAM Display Opposing differentiation Trajectories to SPP1+ TAMs and Exhibit immunostimulatory Activity and better Prognostic Implications.
(A) Semisupervised pseudotime trajectory of TAM subtypes by Monocle2. Left: The trajectory is colored by pseudotime (top), and the pie charts indicating the
proportion of cells in two developmental branches (bottom). Right: Ridge plot of densities of cell numbers in macrophage subtypes over pseudotime.
(B) The trajectory is colored by CXCL9 TAMs and SPP1 TAMs clusters (top left), and expression dynamics of two marker genes CXCL9 and SPP1 (bottom).
The cell proportion of SPP1 TAMs and CXCL9 TAMs in the two branches was shown by bar plot (top right). (C) Forest plot showing the clinical relevance of
TAM clusters revealed by cox regression based on overall survival. (D) Scores of the CD8+ T cells and CXCL9 TAMs signatures enrichment in each spot on ST
sections. (E) Representative mIF staining of liver tissues from the HCC mouse model. DAPI (blue), CD68 (yellow), CXCL9 (red), CD8 (green) are shown, along
with individual and merged channels. Scale bar, 50 mm. (F) Hierarchy plot of the CXCL signaling pathway, depicting cell-cell interactions between TAM
subtypes (source) and T cell subtypes (target cells) in immunotherapy-responding (left) and immunotherapy-non-responding patients (right). The width of
edges represents the strength of communication. (G) Left: Relative contribution of each ligand-receptor pair to the overall communication network of CXCL
signaling pathway. Right: Dot plot of CXCR3 expression in T cell subtypes. (H) Venn diagram showing specific therapeutic targets of CXCL9-SPP1 TAMs
conversion based on pseudotime analysis and regulons analysis (top). Heatmap of the therapeutic targets expression changes with pseudotime in CXCL9-
SPP1 TAMs conversion (bottom). (I, J) Left: Bar chart illustrating the numbers of marker genes positively regulated by TFs in CXCL9+ TAMs (I) and SPP1+

TAMs (J), with a threshold of R > 0.2 and P < 0.05. Right: heatmap displaying the representative biological pathways involving TFs and their regulated genes
in CXCL9+ TAMs (I) and SPP1+ TAMs (J). Tiles in blue and red indicate TFs, and in gray indicates the genes regulated by these TFs. *<0.05,
**<0.01, ***<0.001.
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signals (CXCL signal) regulate the recruitment and paracrine signal

transduction for immune cell development (65, 66). As a result,

compared to non-responders, responded tumors displayed more

predicted interactions between CXCL9+ TAMs and the T cell

compartment (Figure 5F), and the CXCL9/10/11 and CXCR3

ligand-receptor pairs were significantly enriched in responders

(Figure 5G), and CXCR3 was prominently expressed in several

activated T cell subtypes to function immunostimulatory

role (Figure 5G).

Finally, we investigated the key regulators affecting the formation

of CXCL9+ TAMs and SPP1+ TAMs. Based on the intersection of the

results on pseudotime analysis and regulons analysis, 19 differentially

expressed regulators were enriched during the conversion of CXCL9-

SPP1 TAMs, which could be potentially therapeutic targets for TAMs

therapy (Figure 5H). In these factors, like Interferon Regulatory

Factor 1 (IRF1) and Nuclear factor, erythroid 2 like 2 (NFE2L2)

have been reported to function in the anti-tumor capacity (67, 68),

while HIF-1 alpha (HIF1A) and Signal transducer and activator of

transcription 3 (STAT3) to support tumor growth and immune

evasion (69, 70). We further investigated the expression correlation

between these transcription factors and marker genes specifically in

CXCL9+ TAMs and SPP1+ TAMs. Our results showed that in

CXCL9+ TAMs, STAT1 and IRF1 positively regulated a greater

number of genes and were primarily involved in functions such as

macrophage differentiation and IFN-g signaling (Figure 5I).

Conversely, in SPP1+ TAMs, EGR1 and NFKB1 were

predominantly involved in regulation and were associated with

macrophage activation and transcriptional activity. And these

factors also play a role in modulating hypoxic processes (Figure 5J).

The differential regulation underscored the distinct roles of TAM

subsets in the tumor ecosystem and highlighted the complexity of

their interactions with the tumor micro-environment. In summary,

CXCL9+ TAMs display opposing differentiation trajectories to SPP1+

TAMs and exhibit immunostimulatory activity and better

prognostic implications.
3.5 CXCL9:SPP1 (CS) polarity exhibits
diverse anti/pro-tumor micro-environment

Recent research has highlighted that the CXCL9:SPP1 (CS)

polarity dictates the anti-tumor or pro-tumor phenotype of TAMs.

To broaden this understanding, we explored the applicability of CS

polarity in HCC tumors. We tested the expression of M1 and M2

markers, which are widely used for the classification of TAMs. The

M1 and M2 signature genes were co-expression in TAMs

(Figure 6A), and a significant positive correlation between the

signature expression was observed (Figure 6B), which was

consistent with recent reports showing individual TAMs from

human tumors generally express both M1 and M2 genes (24, 71).

Furthermore, by examining the blend expression of CXCL9 and

SPP1 within each TAMs cluster, we found the mutually exclusive

expression pattern of CXCL9 and SPP1 in TAMs (Figure 6C,

Supplementary Figures 5A, B), which was confirmed by

quantitative analyses in tumors (Figure 6D). mIF staining
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validated that SPP1+ macrophages with colocalization of CD68

and SPP1 protein expression, CXCL9+ macrophages with

colocalization of CD68 and CXCL9 protein expression and were

enriched in HCC tumors (Figures 6E, F, Supplementary Figures 5C,

D). Importantly, TAMs subtypes expressed both CXCL9 and SPP1

at different levels (Supplementary Figure 5E). Additionally, all

subtypes displayed negative correlations between CXCL9 and

SPP1 expression, indicating that the CS polarity could be broadly

generalizable in HCC (Supplementary Figure 5F).

To further understand the role of CS polarity in the TME, we

introduced an individual-based method (25) to determine the

relationship between CS polarity, the gene expressions and

biological function in diverse cell types (Figure 6G). The method

treats each patient as a distinct statistical unit, calculating the

aggregated expression of the CXCL9 and SPP1 genes across

various cell types within each unit. By ranking the patients based

on the aggregated CXCL9:SPP1 expression ratio of TAMs, we

explored the variation in gene expression of other cell types

under this ordering scheme. Initially, we found that not only

TAMs but also T cells, NK cells, dendritic cells, monocytes and

fibroblasts could express CXCL9 (Figure 6H). Importantly, all these

cell types coordinate with TAMs. For example, patients with higher

CXCL9 expressions in TAMs also had higher CXCL9 expression in

these other cell types. Similarly, except mast cells, all cell types could

express SPP1, and they did so in a coordinated manner with TAMs

and in the opposite direction to CXCL9 expression (Figure 6H).

Next, we investigated whether the CS polarity affected the

transcription levels in other cell types. For this purpose, we

analyzed the correlations between the CS polarity and highly

variable genes in all TME cell types. We found that 59.1% of

genes were significantly associated with CS polarity. We found

that CS polarity was mainly positively associated with the

expression of cytokines and cytokine receptors for lymphocyte

enrollment and activation, while extracellular matrix-related genes

expressed more strongly in tumors with lower CS polarity, such as

SPP1, RARRES2, C3 and ECM1 (Figure 6I). Furthermore, to

determine if these genes globally contribute to distinct biological

processes, we performed gene set enrichment analyses for each cell

type separately, revealing which cell types these programs are active

in. Immune-related IFNg and IFNa signaling, associated with

higher CS polarity, was active in nearly all cell types. In contrast,

pathways related to lower CS polarity, such as hypoxia and

angiogenesis signaling, were present in almost all cell types

(Figure 6J). Taken together, these findings link CS polarity to

multiple immune and non-immune cell processes, influencing

tumor growth by either promoting or inhibiting it.
3.6 CS polarity served as a potential
biomarker for prognosis and therapy
outcomes reflection in HCC

We further validated the pattern of CS polarity in independent

cohorts. Power analysis confirmed that the chosen sample size in

each cohorts provide sufficient statistical power of 0.8 and a false
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FIGURE 6

CXCL9:SPP1 TAM polarization exhibits diverse anti/pro-tumor micro-environment. (A) Overlay of the expression of common M1 and M2 signature
scores in the TAM subtypes. (B) Scatter plots showing the correlations between common M1 and M2 signature scores. (C) UMAP shows mutually
exclusive expression of CXCL9 and SPP1 in TAMs. (D) Scatter plot of CXCL9 and SPP1 expressions in TAMs and a contingency table based on
dichotomized expression with odds ratio and Fisher’s exact test to indicate mutual exclusion. (E) Representative mIF staining for CXCL9+ TAMs (red)
and SPP1+ TAMs (green) in liver sections from mice belonging to normal and HCC tumor groups. Scale bar, 50 mm. (F) Comparative quantification of
CXCL9+ TAMs (***P = 0.0002) and SPP1+ TAMs (**P = 0.0013) densities(cells/mm2) in the liver tissues of normal and tumor groups (n = 3 per
group). (G) Patient ranking according to the CS TAM ratio. (H) Association between CS TAM polarity and the expression of CXCL9 (left) and SPP1
(right) in major cell types. Each dot represents the value for one sample, with the dot size being representative of the cell number contributing to
that value. (I) Left: Heatmap summarizing the correlation analysis of top 200 highly variable features (HVGs) in major cell types. Right: Bubble plot
showing enrichment result of the genes of interest marked in the heatmap. (J) Heatmap of gene set enrichment analysis results across major cell
types based on genes ordered by CS ratio. *<0.05, **<0.01, ***<0.001.
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discovery rate of 0.05 for detecting differential expression between

patients with high and low CXCL9/SPP1 polarity (Supplementary

Figures 2C, D). Considering the coordinated display of the CS

polarity in the micro-environment, we used the CXCL9/SPP1 gene

expression ratio to represent this polarity in patients. Differential

expressions of CXCL9 and SPP1 were observed in a variety of

cancers (Supplementary Figure 6A). In HCC, the CS polarity

differed significantly between tumor and normal tissue, which is

further confirmed at cell-free RNAs (Figure 7A). A significant

positive correlation was observed between the CS polarity and the

ratio of CXCL9+ and SPP1+ TAMs infiltration level (Figure 7B).

Consistently, except for endothelial cells, all major cell types showed

correlation with the CS polarity (Figure 7C), indicating that the CS

polarity could reflect the TME infiltration. We divided the patients

into CShigh and CSlow groups based on the median of the CS polarity

(Supplementary Figure 6B). The 353 differentially expressed genes

were identified, and the T-cell related genes (CD8A, CD5L) and

chemokines genes (CXCL9, CXCL10, CXCL13) were highly

expressed in the CShigh group, while mucin gene (MUC13),

extracellular matrix remodeling genes (SPP1, MMP7, GPX2) in

the CSlow group (Supplementary Figure 6C). Enrichment analysis

reveals significant enrichment in the CShigh group involved in T-cell

activation, inflammatory, and cytokine production, while

fibroblast-related extracellular matrix and WNT signaling were

enriched in the CSlow group (Supplementary Figure 6D).

Molecular subtyping is an effective strategy to identify patients

with the poorest prognosis and to design therapeutic strategies for

precision medicine (72). We compared the differences in the

distribution of consensus subtypes between the groups. As a result,

we found that the CShigh group had a greater proportion of immuno-

enriched (IE) tumors in the TME subtyping and a higher proportion

of immunostimulatory (C2) and inflammatory (C3) tumors in the

PanImmune subtyping, which is associated with increased T cell

activity and longer overall survival. In contrast, CSlow group exhibited

a higher proportion of fibroblast-enriched (F) tumors in the TME

subtyping and a higher proportion of immunodepleted (C4) tumors

in the PanImmune subtyping, which showed an elevated expression

of angiogenesis and fibroblast pathways with poorer survival

outcomes (Figures 7D, E, Supplementary Figures 7A, B). To

support this observation, we calculated the correlation between the

TME scores and the CS polarity levels across samples. As a result, the

anti-tumor immune infiltration and angiogenic fibroblast pathways

were significantly correlated with the scores (Supplementary

Figure 7C). Consistently, a higher score indicated a more active

anti-tumor immune state, while a lower score made patients a more

pro-tumor state facilitated by fibroblasts through the formation of the

extracellular matrix. In addition, single-cell analysis confirmed that

the patients with the lower CS polarity exhibited ineffective treatment

outcomes, while those with polarity exceeding 1.0 exhibited

efficacious responses to immunotherapy, and cytotoxicity is

positively correlated with the CS polarity in patients (Figure 7F,

Supplementary Figures 7D, E). The expression levels of immune

checkpoint genes (CD274, CTLA4, LAG3) were significantly higher

in patients in CShigh group (Figure 7G).
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Finally, we analyzed the relationship between CS polarity and

the prognosis in HCC patients. The CShigh group showed a better

prognosis both in the individual cohorts and the combined cohort

(Figure 7H, Supplementary Figure 7F), and the meta-analysis

demonstrated that the CS polarity were the robust favorable

prognostic marker (Figure 7I), which was further validated by

multivariate Cox regression analysis (Figure 7J). Taking together,

these results showed that the CXCL9/SPP1 polarization level could

serve as a valid biomarker for prognosis and therapy outcomes

reflection in HCC.
3.7 CS polarity could be measured by CT-
based radiomics model

Given that the CS polarity effectively reflected the micro-

environmental status and the prognostic outcome, it was valuable

to explore non-invasive strategies for predicting CS polarity. Two

radiomics cohorts (TCIA-LIHC, n=41, TCIA-HCC-TACE-Seg,

n=64) were used to construct the prediction model. CE-CT

images from the arterial and venous phases were selected as

training data. After image quality control, the TCIA-LIHC (n=41)

dataset was used as the training set, and the HCC-TACE (n=64)

dataset was used as the external validation set. The radiomics

analysis process is outlined in Figure 8A, which includes tumor

segmentation, feature extraction, RCSP (Radiomics-based CXCL9/

SPP1 Polarity) model building, and prediction on the validation set.

After feature extraction and normalization, out of 400

radiomics features, 66 features were found to have significant

correlations with the CS polarity of patients in the training set

measured by the transcriptome based on Pearson’s correlation (r >

0.3, P < 0.05) (Figure 8B). Using LASSO regression for dimension

reduction, a final set of 22 radiomics features was selected to

establish a predictor (RadScore) to the CS polarity in patients

(Figure 8C, Supplementary Figures 8A, B). Most of the features

were texture features, primarily from the arterial phase

(Supplementary Figure 8C). The CS polarity predicted by the

RadScore showed significantly positive correlations with its levels

measured by the transcriptome in the training set (r=0.958,

p=1.3×10–9, Figure 8D). The ROC value for predicting patient CS

polarization groups based on radiomics reached 0.879 (Figure 8E),

indicating that the RadScore accurately reflected the CS polarity of

patients well.

To further enhance prognostic robustness and clinical value, we

combined RadScore with clinical indicators to construct the RCSP

model. After univariate Cox regression analysis, tumor grade was

the clinical variable that met the inclusion criteria, along with

RadScore (Supplementary Table 3). These variables were

incorporated into a Cox proportional hazards regression model to

calculate a risk score (RiskScore) for each patient. Survival analyses

showed that RiskScore tended to stratify the overall survival of HCC

patients (log-rank P = 0.004) (Figure 8F). The validation cohort

confirmed the applicability of the RCSP model. Patients classified as

high-risk showed markedly poorer survival outcomes (log-rank P =
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FIGURE 7

CXCL9/SPP1 polarization level served as valid biomarker for prognosis and therapy outcomes reflection in HCC. (A) Left: Violin plots compare CS
ratio level in tumor and normal adjacent tissue in TCGA-LIHC cohort. Right: CS ratio level across tumor and normal samples in cfRNA cohort.
(B) Scatter plot to compute correlation between the CS level and the ratio of CXCL9+/SPP1+ TAMs scores. (C) Correlations between the CS level and
major cell types. (D, E) The correlation between the overall survival times (yellow bar) and the CS ratio (gray lines with green dots) in micro-
environment subtyping (D) and PanImmune subtyping (E). (F) Association between CS ratio and response to immunotherapy treatment, with
significant Fisher’s exact test. (G) The expression of immune checkpoint genes in CShigh and CSlow groups. (H) Kaplan-Meier survival curves
displaying the OS between groups in combined cohorts. (I) Forest plot of meta-analysis on CS ratio levels. (J) Patient with higher CS ratio levels
display greater survival based on multivariate cox regression analysis.
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0.016) (Figure 8G), confirming the prognostic value of the RCSP

model. These findings demonstrate not only that the macroscopic

effects of CS polarization can be observed using CT but also that the

RCSP model provides a non-invasive method for predicting CS

levels and patient prognosis.
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Finally, a radiomics tool was developed to implement RCSP

model (https://github.com/YuGu-CN/RCSP) based on the R

programming language. It encompassed essential functions

including image format conversion, tumor section preview, and

radiomics feature extraction. Additionally, the package integrated
FIGURE 8

CT-based radiomics model predicts CS ratio levels in HCC. (A) Schematic diagram of the radiomics analysis process. (B) Volcano plot of the
correlation coefficients between radiomics features and the level of CS ratio in HCC patients. Red represents positive correlation, and purple
represents negative correlation. The larger dots indicate more significant P-values. (C) Distribution of coefficients for variables after LASSO
regression selection. (D) Pearson correlation between the RadScore based on radiomics features and the CS ratio values measured from
transcriptome data in the training set. (E) ROC curve for predicting the CS ratio status of training set samples based on RadScore. The CS ratio status
of samples is grouped by the median of CS ratio in TCGA-LIHC samples. (F) Kaplan-Meier curves of overall survival for training set samples grouped
by the median of RCSP RiskScore. (G) Left: Example of predicted RCSP RiskScore for external validation set samples. Right: Kaplan-Meier curves of
overall survival for validation set samples grouped by the median of RiskScore.
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the RCSP model that estimated the CS polarity in HCC patients

based on extracted radiomics features. Users could prepare CE-CT

images, and the package would automatically handle format

conversion and feature extraction, subsequently generating a

concise report file (Supplementary Figure 8D).
4 Discussion

Altering TAMs phenotype is a new potential therapeutic

approach to activate anti-tumor immunity. TAMs are

heterogeneous cell populations with different phenotypes that

promote immune evasion, tumor growth, and metastasis. Simple

M1/M2 dichotomization of macrophage subtypes cannot perfectly

profile the diversity of TAMs phenotypes, highlighting the necessity

for a more rational classification of TAMs populations (73). Some

studies have identified TAMs subtypes with distinct tendencies

toward tumor suppression or promotion. In this study, we focused

on multi-regional scRNA-seq data and employed an integrated

analysis approach to identify key cell types that impact the

progression of HCC. We characterized seven TAMs populations

in HCC tissues. Based on three computational methods, we

identified SPP1+ TAMs as a critical subset in the progression of

HCC. Compared to other subsets, SPP1+ TAMs are extensively

increased in tumor tissues and are more likely to be enriched in the

tumor core, suggesting that they may play a key role in promoting

tumor growth. SPP1, a secreted non-collagenous glycoprotein, is an

important adhesion protein and cytokine (74). Recently, SPP1 has

been shown to be expressed and secreted by TAMs in various

cancers, promoting macrophage polarization, migration, sustained

activation, and affecting the cytokine profile of macrophages

(75, 76). Based on TCGA-LIHC cohort, we validated that the

SPP1+ TAMs subset is associated with tumor progression and

poor prognosis in HCC.

Accumulating evidence indicates that fibroblasts could interact

with various immune components by secreting a variety of

chemokines, cytokines, and other biomolecules. This leads to the

formation of an immunosuppressive niche that promotes tumor

immune evasion (77, 78). Through functional analysis, we found

that SPP1+ TAMs did not perform common antigen-presenting

functions but are involved in the extracellular matrix (ECM)

remodeling, which makes us suspect their functional promotion

with cancer-associated fibroblasts (CAFs). We identified CAFs

associated with poor outcomes in HCC patients and showed the

strongest infiltration correlation with SPP1+ TAMs. Furthermore,

through cell communication and spatial transcriptomics analysis, we

demonstrated that these cells form spatial co-localization based on

ligand-receptor interactions and promote the formation of ECM

structures. Consistently, previous studies have found that the

interaction between SPP1+ TAMs and fibroblasts contributes to the

formation of a tumor immune barrier, promotes the accumulation of

ECM structures, and is important for the efficacy of immunotherapy

(30). These findings also prove that the interaction between SPP1+
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macrophages and CAFs is an important factor affecting the

phenotype of malignant tumors and leading to worse outcomes.

Through pseudotime trajectory analysis, we identified the

cellular states of TAMs subpopulations and delineated the

evolutionary dynamics of these subpopulations. We discovered

that the TAMs subpopulations formed two distinct branches,

with CXCL9+ TAMs displaying opposing differentiation

trajectories to SPP1+ TAMs. The CXCL9+ TAMs were associated

with survival advantages, suggesting that CXCL9 might be an

integral component of antitumor activity. The role of CXCL

signaling in T cell recruitment has been described in other cancer

types (54, 79). Using spatial transcriptomics data, we found

significant spatial colocalization between CXCL9+ TAMs and T

cells. Cell communication analysis based on single-cell data from

immunotherapy revealed that the CXCL signaling was

highly expressed in CXCL9+ TAMs of patients responding to

immunotherapy, and the main targets of CXCL9/10/11, CXCR3,

were expressed in T cells, which are the proposed effectors of direct

antitumor cytotoxicity within the TME (80). A growing body of

evidence points to the CXCR3 chemokine pathway as a significant

axis of anti-PD(L)-1 therapy response, regulating the recruitment

and positioning of effector T cells within the TME (80, 81).

Interferon (IFN)-induced CXCR3 ligands, CXCL9/10/11, regulate

tumor angiogenesis, enhance T cell infiltration, and further position

activated T cells near antigen-presenting cells within the TME,

which may provide additional cues to T cells that facilitate

antitumor immunity (82).

The early dichotomy paradigms of TAMs polarization,

characterized by pro-inflammatory M1 and anti-inflammatory

M2, were identified by similar surface marker expressions. Using

scRNA and ST technique, novel identified subsets of TAMs have

exhibited phenotypes not belonging to M1 and M2 classifications or

simultaneously expressed those markers (23, 24). Therefore, a more

complete mechanistic understanding of TAMs polarization is

needed in cancer. Seminal findings by Pittet et al. highlight the

superior utility of CXCL9:SPP1 polarity compared to the M1 and

M2 markers (25, 26). To better understand the phenomenon, we

explored for the first time the applicability of CXCL9:SPP1 polarity

in HCC tumors. The expression of CXCL9 and SPP1 was observed

to be mutually exclusive across all TAMs subsets in HCC, with co-

expression being a rare occurrence, suggesting that each subset

more-or-less retained the potential of shaping opposite phenotypes

of CXCL9+ and SPP1+ TAMs. We introduced a population-centric

approach to analyze how CS polarity influences the overall gene

expression landscape and biological functions within TME. Nearly

59.1% of highly variable genes within TME exhibited significant

correlations with CS polarity. Further functional analyses revealed

highly correlation between CS polarity and immune-related (IFNg,
IFNa and cytokines) along with oncogenic signaling (hypoxia and

angiogenesis), suggesting an anti-tumor or pro-tumors status

globally. Importantly, we sought to detect several key

transcription factors involved in shaping CS polarity in HCC. It is

possible that STAT1, IRF1, PPARG, EGR1, NFKB1 and JUN may
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play an essential role in this process, as they regulate more markers

related to CS polarity compared to other regulators. These

transcription factors are implicated in macrophage differentiation

or activation, playing a dual role in regulating either a pro-tumor or

anti-tumor response. Interestingly, these factors are not entirely

within the known range of transcription factors that intervene in

M1 or M2 polarization, which could provide new therapeutic

targets or new insights for the reprogramming of targeted

macrophages (83). Of course, this conjecture requires further

experimental confirmation.

Our findings suggest that CS polarity plays a critical role in

shaping the tumor microenvironment and influencing HCC

prognosis. Patients with high CS scores have better prognosis and

respond better to immunotherapy. However, we observed that

patients with low CS scores exhibited a higher abundance of

SPP1+ TAMs, which are associated with an immunosuppressive

microenvironment and tumor progression. According to the

microenvironment subtyping proposed, tumors classified as

fibrotic subtype are characterized by a dense fibrotic stroma and

are recommended for anti-angiogenic and anti-fibrotic therapies. In

our study, we found that patients with low CS scores were more

frequently classified into this fibrotic subtype (Supplementary

Figure 6A), further supporting the potential applicability of these

treatment strategies in this patient subgroup. Beyond existing

therapeutic approaches, our findings highlight the need for
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targeting SPP1+ TAMs as a potential intervention for patients

with low CS scores. Future studies could explore strategies aimed

at modulating the epigenetic regulation of these TAMs, such as

inhibiting key transcription factors or disrupting regulatory

networks that sustain their polarization. Additionally,

reprogramming SPP1+TAMs into CXCL9+ TAMs may offer an

alternative approach to enhance anti-tumor immunity and reshape

the immune landscape in HCC. Further investigation into these

regulatory mechanisms may provide novel therapeutic avenues for

patients with unfavorable CS polarity.

In recent years, radiomic technology has become an important

direction in HCC research. Radiomics uses high-throughput

methods to analyze medical imaging data, which can reveal the

micro and macro characteristics of tumors, thereby helping to

better understand and treat HCC (84, 85). Previous studies have

developed many CT-based or MRI-based radiomics biomarkers for

immune infiltration, although the reported radiomics features are

heterogeneous and have limited reproducibility (86–88). We

validated the widespread presence of CXCL9/SPP1 in bulk data

across multiple cohorts, proving that the CXCL9/SPP1 ratio may

serve as a biomarker reflecting the state of the micro-environment

and different prognostic outcomes in HCC patients. Here, we

attempt to establish the first radiomics biomarker for the tumor-

infiltrating CS polarization state, thereby demonstrating its

extensive impact on the TME. Under the condition of limited
FIGURE 9

Graphical abstract for the dual role of CXCL9/SPP1 polarized tumor-associated macrophages in modulating anti-tumor immunity in
hepatocellular carcinoma.
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patient numbers in the imaging genomics data, we used a

conservative algorithm based on linear correlation and L1 norm

for feature selection to reduce the risk of overfitting. The results

show that the selected CT radiomic features can serve as indicators

of the CS polarity in patients, thereby implying that the CS polarity

has a significant impact on the tumor and its micro-environment.

In addition, we have developed a package that can predict the CS

polarization state and further reflect the survival status of patients

using CT imaging data. This helps to identify high-risk individuals

and achieve precise diagnosis and personalized treatment.

Our findings highlight the potential of CS polarity as a

prognostic and therapeutic biomarker in HCC. However, its

clinical application requires further exploration. Several aspects

warrant discussion. (1) Potential as a Biomarker for

Immunotherapy Stratification. Given the distinct functional roles

of CXCL9+ and SPP1+ TAMs in shaping the tumor

microenvironment, CS polarity could serve as a potential

biomarker for stratifying patients in immunotherapy. CXCL9+

TAMs a r e a s so c i a t ed w i th an immunos t imu l a t o r y

microenvironment, while SPP1+TAMs contribute to an

immunosuppressive niche. Future studies could assess whether

patients with a predominant CXCL9+ TAM profile may benefit

more f rom immune checkpoint inh ib i tors or other

immunotherapies. (2) Development of Targeted Therapeutic

Strategies. The differential functions of SPP1+ and CXCL9+ TAMs

suggest that targeting these macrophage subsets could be a viable

therapeutic approach. Potential strategies may include targeting key

transcription factors involved in CS polarity regulation or

disrupting super-enhancer-mediated transcriptional programs

governing TAM polarization. Further investigations into these

mechanisms could facilitate the development of therapies aimed

at reprogramming macrophage polarization toward an anti-tumor

phenotype. (3) Future Directions in Epigenetic Regulation of CS

Polarity. The regulatory landscape of CS polarity remains

incompletely understood. Future research could focus on

epigenetic modifications, such as histone modifications and DNA

methylation patterns, that dictate SPP1 or CXCL9 expression in

TAMs. Single-cell epigenomic profiling and CRISPR-based

functional screens may help uncover key regulatory elements

controlling CS polarity and identify novel therapeutic targets. (4)

Challenges and the Need for Large-Scale Clinical Validation. While

our study provides novel insights into CS polarity, its clinical

translation remains in its early stages. Recent research has begun

to explore the relevance of macrophage polarity in cancer prognosis

(27), but further validation in large-scale, multi-center cohorts is

required. The integration of radiogenomics tools like RCSP into

clinical workflows will also necessitate extensive validation to

ensure robustness, reproducibility, and clinical feasibility.
5 Conclusions

In summary, our research sheds light on the regulatory roles of

SPP1+ TAMs and CXCL9+ TAMs in the micro-environment and
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provides new therapeutic targets or insights for the reprogramming

of TAMs in HCC. The identification of the CS ratio as a biomarker

and the development of a radiomics model for non-invasive

diagnosis highlight the clinical potential of targeting TAMs in

HCC treatment strategies (Figure 9).
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