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Introduction: Hematogenous disseminated tuberculosis (DTB) has an unclear

etiology that likely involves multiple factors. Understanding the underlying

immunological characteristics of DTB is crucial for elucidating its pathogenesis.

Methods:We conducted single-cell RNA transcriptome and T cell receptor (TCR)

sequencing on samples from seven DTB patients. Additionally, we integrated and

analyzed data from two published profiles of latent TB infection, three active TB

cases, and two healthy controls.

Results: Our analysis revealed a significantly higher proportion of inflammatory

immune cells (e.g., monocytes and macrophages) in DTB patients, along with a

notably lower abundance of various lymphocytes (including T cells, B cells, and

plasma cells), suggesting that lymphopenia is a prominent feature of the disease.

T cell pseudotime analysis indicated a decrease in the expression of most

hypervariable genes over time, pointing to T cell functional exhaustion.

Furthermore, a marked absence of mucosal-associated invariant T (MAIT) cells

was observed in the peripheral blood of DTB patients. In the TCR repertoire,

specific polymorphisms (TRAV9-2, TRAV13-1, TRBV20-1, and TRBV5-1) and

dominant clones (TRAJ49, TRBJ2-7, and TRBJ2-1) were identified. Analysis of

the complementarity determining region 3 (CDR3) showed that the most

frequent combination was TRAV1-2/TRAJ33, with the motif “CAAMD” being

significantly reduced in DTB patients.
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Discussion: These findings suggest that lymphopenia and T cell exhaustion,

along with unique TCR signatures, may play critical roles in DTB pathogenesis.

The reduced “CAAMD”motif and altered TCR clonotypes provide novel insights

into the complex cellular dynamics associated with the disease, potentially

offering new avenues for targeted immunological interventions.
KEYWORDS

hematogenous disseminated tuberculosis, single-cell sequencing, TCR repertoire, T
cell exhaustion, CDR3
GRAPHICAL ABSTRACT

Graphical abstract of this study. This research focuses on DTB, utilizing single-cell transcriptomics to characterize the immune landscape of peripheral
blood mononuclear cells in DTB. Key findings include: substantial enrichment of innate immune cells and reduction in T-cell abundance in DTB patients’
peripheral blood; significant T-cell exhaustion accompanied by a major loss of MAIT cells; and a reduction in specific TCR gene segments in DTB.
1 Introduction

Hematogenous disseminated tuberculosis (DTB), although rare,

represents a severe form of tuberculosis in which Mycobacterium

tuberculosis (Mtb) spreads through the circulatory system

to extrapulmonary sites and the central nervous system.

Symptoms such as fever, night sweats, fatigue, weight loss, and
02
lymphadenopathy are common, and depending on the affected

organs, patients may present with pulmonary symptoms like cough

and dyspnea, abdominal issues such as pain and diarrhea, or

neurological symptoms including headaches and altered

consciousness. DTB typically affects individuals with compromised

immune systems, such as those with HIV, organ transplant

recipients, or those on immunosuppressive medications. Due to its
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diverse clinical manifestations, early diagnosis of DTB is challenging,

highlighting the importance of understanding its immunological

aspects to develop new intervention strategies (1).

A major hurdle in controlling DTB is the absence of accurate

biomarkers (2). Single-cell sequencing (Scs) allows for the profiling

of gene expression across a wide array of cells, facilitating the

identification of novel cell subsets and gene expression patterns (3).

Recent applications of Scs in TB research have revealed variations in

cell populations in peripheral blood between active TB and latent

infections (4), as well as in pulmonary macrophage and monocyte

lineages (5, 6). Yet, the characteristics of DTB at the single-cell level

remain poorly defined. With the increasing prevalence of older

populations, HIV-positive individuals, and patients with diabetes,

diagnosing DTB is becoming increasingly complex, underscoring

the urgent need for novel diagnostic markers.

In this study, we utilized Scs on peripheral blood mononuclear

cells (PBMCs) from seven DTB patients to identify distinct cell

types and explore their properties. We conducted pseudotime

analysis to examine T cell development, subset heterogeneity, and

signs of exhaustion. Our focus also extended to the functional

enrichment and expression patterns of differential genes in T cell

subsets, alongside investigating TCR development across different

DTB patients.

This study uniquely concentrates on DTB, often overshadowed

by classical TB, and aims to identify diagnostic markers that hold

immense clinical significance, striving to profile peripheral blood

cell subpopulations and potential biomarkers at single-cell

resolution to enhance timely clinical diagnosis.
Frontiers in Immunology 03
2 Article types

Original Research
3 Manuscript formatting

3.1 Methods

3.1.1 Ethical statement
This study was approved by the institutional review board of

Shenyang Chest Hospital, China, and informed consent was

obtained from each participant.

3.1.2 Subjects/participants and collection of
clinical samples

Whole blood samples from patients diagnosed with

disseminated tuberculosis (DTB) were collected at Shenyang

Chest Hospital. Inclusion criteria encompassed symptoms and

signs of tuberculosis, pulmonary lesions indicative of miliary

tuberculosis, and imaging evidence of extrapulmonary

tuberculosis, including TB meningitis, renal TB, or bone TB.

Samples from lesion sites such as sputum, cerebrospinal fluid,

urine, bone and joint fluid, and diseased tissue tested positive for

M. tuberculosis via MGIT960 culture and/or GeneXpert testing. All

patients had not undergone previous anti-TB treatment, were HIV

negative, lacked confirmed immune deficiency diseases, and were

not on immunosuppressive drugs. These criteria ensured the

reliability and validity of our study results, as detailed in Table 1.
TABLE 1 Clinical and sociodemographic variables for DTB donors.

Number Gender
Age

(years)
Course

of disease
Symptom Diagnosis

DXC0920 male 63
More than
2 years

Cough, expectoration, lumbago, frequent
urination, urgency

DTB/Pleurisy/Peritonitis/Urogenital TB/TB
of left sacroiliac joint

LGY0920 male 65
More than
1 years

Cough, phlegm, panting, fatigue, swelling and pain of
left knee

TB, DTB, TB of left knee joint

GMF1021 male 35 4 months
Emaciated and weak skin changes, and the number of

urination increases at night
TB, pleurisy, adrenal TB

WXJ1021 male 53 2 months Fever, dizziness and headache TBM, TB, DTB

SMM1021 female 25
More than
50 days

Fever, headache, nausea and vomiting
TBM, TB, DTB,Cervical lymph node TB is

more likely

KQL1021 male 58
More than
40 days

Headache and fever TBM, DTB

CJ1021 male 28 3 months Fever, fatigue, night sweats, headache TBM, DTB
The criteria for including patients with miliary tuberculosis (DTB) in this study are:
1. Presence of symptoms and signs of tuberculosis;
2. Pulmonary lesions consistent with radiological changes of DTB, along with imaging manifestations of extrapulmonary tuberculosis in one or more locations, such as tuberculous meningitis,
renal tuberculosis, osteal tuberculosis, etc.;
3. Tuberculosis culture (MGIT960) positive and/or detection of MTB by Gene-Xpert in samples (such as sputum, cerebrospinal fluid, urine, synovial fluid, diseased tissue, etc.) taken from the
corresponding sites of infection;
4. No anti-tuberculosis treatment prior to inclusion;
5. HIV negative, no immunodeficiency disease, and not using immunosuppressive drugs.
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Data from two latent TB infections (LTBI), three active TB cases

(PTB), and two healthy controls (HC) were integrated for analysis

(Whole blood samples from HC, LTBI, and TB patients were

collected at four hospitals in China between August 2018 and

October 2019. The initial cohort, comprising 2 healthy controls, 2

LTBI patients, and 3 TB patients, underwent 10x Genomics scRNA-

seq). Data sets SRR11038989-SRR11038995 were analyzed

(Supplementary Table S1). The raw data of DTB can be accessed

through the NCBI GEO datasets at the following dataset accession

number: GSE287288. Data were harmonized using Harmony, and

UMAP dimensionality reduction before and after integration

showed effective removal of batch effects while preserving

biological differences. Moreover, the biological differences noted

by the original authors were still evident after integration.

3.1.3 Single cell sequencing and Data analysis
Whole blood samples were subjected to RNA extraction and

single-cell sequencing (Scs) by Shanghai Biotechnology Corporation.

Raw data were processed into a cell expression matrix using the

Cellranger pipeline (v5.0.0). Data analysis and visualization were

conducted using R scripts (v4.2.2) in RStudio. Quality control,

dimensionality reduction, and data integration were performed using

Seurat (v4) (7). Visualization was carried out using the Uniform

Manifold Approximation and Projection (UMAP) method. Samples

from different patients and healthy controls were integrated using the

IntegrateData method, based on the top 2000 variable genes, scRNA

and TCR data for healthy controls were obtained from the 10x

Genomics website (dataset: vdj_v1_hs_PBMC_5gex). Cell type

identification was conducted using SingleR (8). Pseudotime analysis

was conducted using Monocle2, while the Branched Expression

Analysis Modeling (BEAM) method identified genes with branch-

dependent expression (9, 10). TCR analysis was conducted using the

Immunarch package (https://immunarch.com/).
3.2 Results

3.2.1 Transcriptional profiles of peripheral blood
single cells from patients with DTB

To explore the single-cell transcriptional profile during

disseminated tuberculosis (DTB) development in detail, we

collected peripheral blood samples from seven DTB patients and

conducted single-cell RNA sequencing (scRNA-seq) using the 10x

Genomics platform, as depicted in Figure 1A. By analyzing specific

marker gene expressions, we classified these cell clusters into nine

major cell types and fifteen cell subsets. UMAP plots clearly

demonstrate the distinct distribution of cell types among healthy

controls, positive TB, LTBI, and DTB patients. The identified cell

types include B cells, T cells, epithelial cells, innate lymphoid cells

(ILCs), macrophages, monocytes, plasmacytoid dendritic cells

(pDCs), and plasma cells, illustrated in Figures 1B, C.

Subsequently, we conducted a detailed analysis of cell population

proportions and expression levels of the top ten upregulated genes,

illustrated in Figure 1D. Compared to HC, LTBI, and PTB, there

was a significant increase in gene expression of innate immune-
Frontiers in Immunology 04
related macrophages and monocytes in DTB, whereas the levels of

T/B cells and plasma cells decreased.

3.2.2 Gene expression and pseudotime analysis
uncover T-cell differentiation traits in DTB

Defining subpopulations across various samples yielded

intriguing results. Consistent definitions of cell subgroups across

samples indicate stable sequencing results. Surprisingly, the DTB

dataset revealed significant disparities in the UMAP representation of

T-cell subgroups, indicating unique alterations in T-cell gene

expression profiles compared to other samples (Figure 2A). We

analyzed the expression levels of the top ten genes in T-cells from

Figure 1D, such as CAMK4, TRAC, INPP4B, and noted a significant

reduction in the DTB dataset (Figure 2E). We utilized the observed-

to-expected cell ratio (R o/e) to quantify each subgroup’s disease

association (11). R o/e analysis across all major cell classes and

subgroups showed a bias toward DTB in macrophages and

monocytes, while cytotoxic T-cells and memory B-cells displayed

the opposite trend (Figures 2B, C; Supplementary Figures S1A, B).

The fractional abundance of each subset exhibited certain

heterogeneity. Notably, in 2 DTB patient samples, macrophages

significantly increased, while changes in the other five samples were

less pronounced. Analysis of monocytes and cytotoxic T-cells also

revealed a similar trend (Supplementary Figures S1C, D). Significant

variations were evident in R o/e ratio analysis, whereas changes in cell

abundance were less pronounced, possibly due to smaller absolute

number changes in these cell subgroups within samples, while their

proportional changes were more significant. Additionally, this

heterogeneity may reflect the biological complexity of DTB and

individual differences in disease progression, immune responses,

and other clinical parameters among patients. Given the unique

gene expression profile of T-cells in DTB, we conducted a pseudo-

time analysis, defining the progression from naive T-cells to cytotoxic

T-cells as chronological. The transition of T-cell subgroup colors

from dark to light in Figure 2D illustrates this chronological order.

Ultimately, many genes showed high variability along pseudo-time,

with most exhibiting a gradual decrease in expression in DTB as

pseudo-time advanced (Figure 2F; Supplementary Figure S2, and

Supplementary Table S2). This indicates reduced gene expression

with cellular differentiation.

3.2.3 T cell exhaustion in DTB and significant
deficiency of MAIT cells

As previously noted, significant changes in T cell gene

expression among DTB patients have captured our attention.

Most gene expressions gradually decline from naive to cytotoxic

T cells, indicating potential T cell functional exhaustion (12). To test

this hypothesis, we reclassified T cells as CD4-CD8-, CD4+CD8+,

CD4+, and CD8+ using UMAP. Figure 3A shows that all samples

predominantly contain CD4+ and CD8+ T cells, which exhibit

significantly different gene expression profiles in DTB. We then

evaluated exhaustion-related gene levels in all patient T cells, using

healthy controls as a benchmark, as detailed in Supplementary

Table S3. The exhaustion gene profile in DTB is generally higher

than in PTB and LTBI, consistent with previous findings (Figures
frontiersin.org
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3B, C). Specifically, we analyzed these genes in CD4+ and CD8+

cells, observing no significant differences in CD4+ T cells, but

elevated levels in CD8+ T cells in DTB (Figures 3D–G).

Further analysis yielded surprising results. CD8+ T cells

expressed numerous effector molecules targeting M. tuberculosis,

including PRF1, GNLY, NKG7, GZMA, and GZMB (13). The

capacity of CD8+ T cells to release these molecules reflects their
Frontiers in Immunology 05
functionality. Regulatory T cells (Treg), helper T cells (Th),

cytotoxic T lymphocytes (CTL), and other cells express these

molecules at varying levels across samples. However, MAIT cells

only express certain genes in non-DTB samples, as shown in

Figure 3H. Given that over 80% of peripheral blood MAIT cells

are CD8+, we questioned whether this was due to functional

exhaustion or cellular depletion. Subsequent research showed that
FIGURE 1

Study Design and Overall Results of Single-Cell Transcriptomic Analysis of PBMCs in Participants. (A) Schematic of the overall study design. A total of
7 DTB patients were included, along with integrated data from 2 published studies on latent tuberculosis infection (LTBI), 3 studies on positive
tuberculosis (PTB), and 2 healthy controls (HC) for unified analysis. (B) UMAP plots depicting the distribution of nine cell types. (C) Based on the nine
cell subpopulations, cell types were further divided into 15 subgroups. (D) Comparison of the expression levels of the top 10 genes with the highest
expression in each cell type across DTB, PTB, LTBI, and HC.
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MAIT cells are nearly absent in DTB samples, with mature surface

markers also undetectable (Figures 3I, J), indicating a significant

loss of MAIT cells and suggesting marked immune dysfunction in

DTB patients.
Frontiers in Immunology 06
3.2.4 TCR-V(D)J gene rearrangement
MAIT cell development relies on TCR rearrangement and

interactions with MR1 (14). Numerous studies have indicated

that V(D)J rearrangement in T cells occurs in various diseases
FIGURE 2

Specific Gene Expression Profiles of T Cell Subpopulations in DTB. (A) UMAP mapping of all cells from DTB, PTB, LTBI, and HC shows significant
differences in T cell subpopulations in DTB compared to the other three groups. (B, C) The preference of each subpopulation for the disease is
quantified using the ratio of observed to expected cell counts (Ro/e) across different cell subpopulations. (D) Pseudotime trajectory direction for T
cell subpopulations is set according to T cell differentiation, progressing from Naive T cells to cytotoxic T cells. The development direction is
indicated by colors ranging from dark blue to orange. (E) Expression levels of genes related to T cell differentiation among the top 10 expressed
genes in T cells across different patients. (F) Heatmap and functional enrichment of genes that exhibit high variation and are specifically upregulated
in DTB during pseudotime analysis. Expression levels of genes related to T cell differentiation decrease over time. ****: p< 0.0001.
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(15). To explore the clonal relationships between individual T cells

and V(D)J gene clones across different samples, we reconstructed

the TCR sequence and analyzed the V(D)J genes in DTB patients, as

depicted in Figure 4.

We conducted UMAP analysis on various T cell subtypes,

including CD4+ naive T cells, CD4+ central memory T cells, CD8

+ T cells, and gd T cells, as shown in Figures 4A, B. Subsequently, we

examined the proportions of TCR clonotypes across different

samples, as shown in Figure 4C. Intermediate frequency
Frontiers in Immunology 07
sequences, specifically 1001:3000 and 3001:10000, predominated

across all samples. Figure 4D displays the top 30 combinations of

the most frequently used V and J genes in TRA and TRB.

We analyzed the frequency of V and J gene usage in TRA and

TRB. TRAV9-2, TRAV13-1, and TRAV29DV5 were the most

commonly utilized V genes in TRA, while TRAJ49 was the most

frequently used J gene. In TRB, TRBV20-1 was the most frequently

employed V gene, while TRBJ2-7 and TRBJ2-1 were the J genes, as

illustrated in Figure 4E. These combinations, notably TRBV20-1,
FIGURE 3

T Cell Exhaustion and Severe Deficiency of MAIT Cells in DTB. (A) T cells are divided into four subpopulations based on CD4 and CD8 expression.
(B) Expression levels of all genes indicative of T cell exhaustion across different patients. (C) Heatmap comparing the expression of T cell exhaustion
genes in DTB, PTB, and LTBI relative to HC. (D–G) Expression levels and comparative heatmaps of genes indicative of CD4+ T cell and CD8+ T cell
exhaustion across different patients. (H) Dot plot showing the expression of cytotoxicity genes across different patients, indicating a lack of MAIT cell
gene expression in DTB. (I, J) UMAP mapping of MAIT cells, showing the expression levels of major MAIT cell markers across different patients.
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TRBJ2-7, and TRBJ2-1, were the most frequently used V and J genes

in TRB, aligning with the findings shown in Figure 4D. Next, we

compared the usage of the complementarity-determining region 3

(CDR3) across all samples. Across the seven samples, most CDR3

sequences were similar in length, ranging from 10 to 15 amino

acids. The highest number of CDR3 clonotypes was observed in

sample GMF, while sample WXJ displayed the fewest, as indicated

in Figure 5A, likely due to individual variations.
Frontiers in Immunology 08
By segmenting the CDR3 sequence by length (k=5), we obtained

Kmer statistical results for the top 30 most frequent CDR3

sequences in TCR. Figure 5B illustrates that the proportion of the

same fragment across different samples is relatively consistent, with

the “CASSL” fragment being the most prevalent. We also analyzed

the frequency of amino acid types at different sites within the CDR3

motif, with different colors representing distinct chemical

properties of the amino acids, as depicted in Figure 5C. Finally,
FIGURE 4

TCR-V(D)J gene rearrangement. (A) T cell subtypes. In this study, a total of four subtypes of T cells were obtained: CD4+ naive T cells, CD4+
Central_ Memory T cells, CD8+ T cells, and gd T cells. (B) The expression of T cell function related genes in cell clusters. (C) The cloning frequency
of TCR in different samples is different, most of which are intermediate frequency sequences. (D) The most used TRA-TRBV(D)J genome and type
among all samples. (E) The most used TRAV(D)J and TRBV(D)J types in all samples.
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we summarized the common TCR clonotypes observed across

different samples. In TRA, TRAV1-2-TRAJ33 and TRAV13-2-

TRAJ42 coexisted, with TRAV1-2-TRAJ33 being the most

prevalent. In TRB, TRBV5-1 TRBJ2-3 and TRBV9 TRBJ1-1 were

present. MAIT cells express a semi-invariant TCR alpha-chain,

TRAV1-2-TRAJ33 (16, 17). Compared with healthy controls, the

frequency of TRAV1-2-TRAJ33 (CAAMDSNYQLIW) was

decreased in all DTB samples, echoing previous findings, as

detailed in Figure 5D. The relationship between this TCR alpha

chain and MAIT function merits further investigation, as illustrated

in Figure 5D.
3.3 Discussion and conclusion

Hematogenous disseminated tuberculosis (DTB) typically

manifests with acute onset. This disease frequently involves

complications such as tuberculous meningitis, respiratory distress

syndrome, and hemophagocytic lymphohistiocytosis syndrome

(1, 18), which significantly increase patient mortality. Diagnosing

DTB poses significant challenges, and even the most experienced
Frontiers in Immunology 09
clinicians may encounter difficulties in making accurate judgments.

Currently, commonly used diagnostic tools such as ultrasound, CT,

andMRI occasionally fail to detect the disease, potentially leading to

delays in diagnosis (1). Consequently, there is an urgent clinical

need for more precise individual-level diagnostics of DTB.

In this study, we employed scRNA-seq technology to analyze

the profiles of peripheral blood cell subpopulations in seven patients

with DTB. Additionally, we examined the clonal status of TCRs in

DTB patients and explored potential relationships between cell

types, TCRs clones, and disease occurrence.

Evidence indicates that early clearance of M. tuberculosis

infection is linked to a robust innate immune response in resident

macrophages. Additionally, recruited monocytes and monocyte-

derived macrophages (MDMs) are thought to provide protection

during M. tuberculosis infection (19). Bone marrow monocytes can

differentiate intomacrophages that are found in nearly all tissues (20).

Recruited blood monocytes can differentiate intomacrophages within

various tissuemicroenvironments (21).Macrophages create a suitable

niche forM. tuberculosis, facilitating its success as a pathogen (22).M.

tuberculosis exploits macrophage heterogeneity and plasticity to

establish and transmit infection. Under drug-induced pressure, M.
FIGURE 5

CDR3 sequence usage analysis. (A) CDR3 sequence lengths in TRA and TRB were normally distributed. (B) The distribution of CDR3 kmers (n =5) in
different samples, CASSL has a higher distribution in all samples. (C) Frequency of amino acid usage of motif in CDR3. (D) Several TCR clonotypes
present in all samples.
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tuberculosis can maintain a latent infection within macrophages (23–

25). Monocytes play crucial roles in the innate immune response,

with their heterogeneity and ability to differentiate into macrophages

or dendritic cells bridging innate and adaptive immune responses

(26). An elevated ratio of monocytes and their subsets portends more

severe TB symptoms. An elevated ratio of monocytes and their

subsets suggests more severe TB symptoms. Comparing DTB with

systemic infections such as sepsis, we hypothesize that advanced DTB

may cause clinical symptoms and immune profiles similar to those of

sepsis, related to the progression of DTB. Monocytes in sepsis show

significant heterogeneity, and the immune cell profile changes as

sepsis progresses. High immune cell enrichment is observed on day

one of sepsis, followed by multicellular exhaustion after one month.

Miguel Reyes and others also noted significant differences in the state

and abundance of monocytes at different stages of sepsis progression

(27–29). Our study observed an increase in non-classical monocytes

and a decrease in classical monocytes in DTB patients, consistent

with findings by Castano et al (30). Classical monocytes mount an

immune response against M. tuberculosis during TB infection by

enhancing in vitro migration to M. tuberculosis-derived products,

increasing ROS production, lung migration indices, and inducing

robust lung infiltration. Immediate infiltration and ROS production

by these subsets lead to reduced bacterial growth. In contrast, non-

classical monocytes promote bacterial adaptability, exhibit a lower

respiratory burst, and lack sufficient CCR2 expression, failing to

migrate early to the infection site. Early studies reported an

upregulation of CCR2 expression in non-classical monocytes

during severe disease to enhance migration to the infection site.

Upregulation of CD11b in non-classical monocytes suggests

intracellular M. tuberculosis survival potential, while loss of HLA-

DR leads to inefficient antigen presentation and increased disease

severity (31, 32). Disease exacerbation results in changes in the TCR

repertoire and affects T cell differentiation, which may have

significant clinical implications.

T cells, distributed throughout the body, actively participate in

the clearance of foreign substances. CD4+ T cells play a crucial role in

maintaining CD8+ T cell responses and in preventing T cell

exhaustion (33, 34). The initiation of CD4+ T cell responses to M.

tuberculosis is notably slow, with CD4+ T cells only reaching the

lungs of infected mice several weeks after exposure (35). During host

resistance to M. tuberculosis, T cells form a complex activation

network involving various cell types, including dendritic cells (36),

migratory CCR2+ monocytes (37), neutrophils (38–40), and both

protective and pathogenic CD4+ T cells. his network also plays roles

in Th1 responses (41, 42), the negative regulation of T cell responses,

T cell migration, among other functions (43). Theoretically, whenM.

tuberculosis spreads through the bloodstream, free macrophages or

phagocytic monocytes rapidly react by phagocytosing the bacteria,

presenting antigen epitopes to T cells, and releasing various

chemokines to initiate T cell-mediated immune responses. We

observed an increase in monocytes and macrophages, while T cells

decreased. Cell communication analysis showed active intercellular

signaling, playing a crucial role in regulating immune responses and

maintaining immune balance (Supplementary Figure S3). However,

this does not directly prove that the reduction in T cells is directly

caused by changes in cell communication. Nonetheless, we
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hypothesize that changes in cell counts might be related to

alterations in cell communication. For instance, due to the pro-

inflammatory and anti-inflammatory functions of monocytes and

macrophages in chronic inflammatory responses, their increase could

indirectly lead to a reduction in T cell counts by secreting specific

cytokines that affect T cell survival and function.

In addition to the classical T-helper 1 and T-helper 2 subsets,

other subsets such as T-helper 17, regulatory T cells, follicular

helper T cells, and T-helper 9 also exist (44). After clearing

infectious pathogens, most effector Th cells undergo apoptosis,

with the remaining cells contributing to the CD4+ memory T cell

pool (45). All memory CD4+ T cell subsets play a crucial role in

defense against pathogens (46). CD4+ T cells interact with antigens,

which leads to the secretion of cytokines that stimulate CD8+ T

cells, thereby facilitating their optimal proliferation and activation

(47). CD8+ T cells, functioning effectively, specifically secrete

various cytokines to exert immune effects and acquire the ability

to lyse cells (48). However, sustained or excessive exposure to

antigens can lead to a state of immune exhaustion in T and NK

cells, primarily characterized by decreased cytokine secretion,

weakened cellular differentiation capacity, alterations in

transcriptional profiles, and changes in metabolic pathways (49).

In our study, the transcriptional profile of T cells in DTB showed

significant alterations, with the expression levels of highly variable

genes gradually decreasing over the pseudotime series. Subsequent

gene functional enrichment analysis indicated that these genes are

primarily involved in various cellular differentiation processes and

cytokine signaling pathways, suggesting the potential for T cell

exhaustion in DTB.

Comparing the expression trends of highly variable genes in

Figure 2E with the exhaustion genes in Figure 3E, we were surprised

to find that most exhaustion-related genes are significantly

upregulated in DTB, with their expression levels gradually

increasing over the pseudotime series (only a subset of highly

variable genes shown), such as CD8A and UBC. A small subset of

downregulated exhaustion genes also showed a gradual decrease,

such as FYB. It is evident that compared to healthy controls (HC),

gene expression levels characterizing T cell exhaustion exhibit

systematic variations in DTB, PTB, and LTBI. Genes upregulated

in DTB show no significant differences in expression in PTB but are

significantly downregulated in LTBI, including ISG15 and CCL5.

Conversely, genes downregulated in DTB are both upregulated and

downregulated in PTB but are mostly upregulated in LTBI, such as

CXCR6 and CD3G, indicating a pattern of change possibly

correlated with disease severity. We conducted functional

enrichment analysis on these signatures, revealing that genes

upregulated in DTB are predominantly associated with

chemokine expression activation and receptor interactions, while

downregulated genes are involved in T cell differentiation

(Supplementary Tables S4, S5), underscoring the occurrence of T

cell functional exhaustion in DTB.

MAIT cells are nearly depleted in the peripheral blood

mononuclear cells of DTB patients, a phenomenon confirmed in

many severe tuberculosis cases, though not as pronounced as in this

study. MAIT cells migrate from the bloodstream to lung tissues and

the pleural cavity, suggesting they may move from peripheral blood
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to local infection sites to exert antimicrobial functions during

tuberculosis infections (50). Many tuberculosis infection models

demonstrate that MAIT cells rapidly accumulate at infection sites

early in the infection, produce inflammatory cytokines, drive the

differentiation of dendritic cells derived from monocytes, kill

infected cells, and enhance macrophages’ ability to inhibit

intracellular MTB proliferation, providing early protective

immunity against MTB infection (51, 52). The significant

depletion of MAIT cells also indicates that DTB is more severe

compared to LTBI and PTB. Combining the expression trends of

highly variable genes over pseudotime, the levels of genes related to

T cell differentiation gradually decrease over time, leading to an

inability to sustain MAIT cell numbers in DTB, and the loss of

MAIT cells further impedes the conventional activation pathways of

T cell responses. Therefore, the severe depletion of MAIT cells in

the peripheral blood of DTB patients may be one of the important

immunological characteristics and a significant therapeutic target.

MAIT cells, which possess unique markers, have potential clinical

value in the diagnosis of DTB. In DTB, the significant reduction of

MAIT cells correlates with disease progression, and monitoring

these cells can aid in the diagnosis of DTB. Additionally, adoptive

immunotherapy, typically used for cancer treatment, can also be

applied to treat severe tuberculosis. Within this framework, the

strategy of ex vivo expansion and reinfusion of MAIT cells into

patients offers a new approach to DTB treatment, utilizing the

immune activation capabilities of MAIT cells to combat pathogens,

demonstrating a new direction for clinical translation.

The TCR of MAIT cells consists of a conserved Va7.2 chain,

paired with a limited number of TCRb chains. The depletion of

MAIT cells reflects a deficiency in TCR clonotypes. As previously

mentioned, the clonal status of TCRs often yields valuable insights

into certain diseases. Monoclonal rearrangements of TCR genes are

frequently associated with tumors originating from T lymphocyte

lineages, such as T-ALL and T/B cell lymphoma (53, 54).

Addit ional ly , EBV infect ion can lead to monoclonal

rearrangements of TCR genes, and certain autoimmune diseases

may exhibit monoclonal rearrangements of BCR/TCR genes (55).

Based on our analysis, the dominant TCR clonotypes observed in

the peripheral blood of DTB patients included TRAV9-2, TRAV13-

1, TRBV20-1, TRBV5-1, TRAJ49, TRBJ2-7, and TRBJ2-1. Previous

studies have indicated a strong association between high expression

of TRAV9-2 and Ni2+-mediated allergic contact dermatitis (56, 57),

as well as its involvement in celiac disease, a chronic inflammatory

disease mediated by T cells (58). Importantly, in active tuberculosis,

glycolipid-specific T cells highly express receptors, including

TRAV9-2 (59). Notably, TRBV20-1 plays a crucial role in the

proliferation of pleural effusion monocytes (PEMCs) and exhibits

high expression in TCRs in pleural tuberculosis (60), suggesting that

TRBV20-1 may be a prevalent TCR clonotype in TB patients. Other

clones have also been reported in various infectious diseases.

The CDR3 region, the most variable region in TCR/BCR, largely

determines their specificity. Our analysis across all patients revealed

that the motif “CASSL” in TRBV5-1 exhibited a relatively high

frequency. Further discussion is necessary to determine if this motif

corresponds to a significant tuberculosis antigen. Among all

patients, the most frequently utilized TCR was TRAV1-2-TRAJ33.
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(MAIT) cells, is activated by vitamin B metabolites bound by MR1,

a molecule related to the major histocompatibility complex (MHC)

class I (61). MAIT cells are abundant in human peripheral blood,

comprising approximately 10% of CD3+ cells (62). Previous studies

have shown that activation of blood MAIT cells by innate

inflammatory cytokines is a primary mechanism in response to in

vitro stimulation with tuberculosis whole-cell vaccines or

mycobacteria (17). Additionally, CD4+ MAIT cells that express

IFN-g and GZMB play a role in anti-TB immunity (63). Our data

suggest that CD4+ MAIT cells may be crucial for combating M.

tuberculosis infection in DTB. Interestingly, TRAV1-2-TRAJ33 is

consistently found in both healthy individuals and all patients.

However, we observed a significant decrease in the proportion of

the specific motif “CAAMDSNYQLIW” within TRAV1-2-TRAJ33

in all DTB patients. It is worth noting that many studies have found

that the majority of human MAIT cells express TRAV1-2-TRAJ33.

The loss of MAIT cells inevitably affects the levels of TRAV1-2-

TRAJ33. Although the specific peptide composition expressed by

MAIT cells is not yet clear, our research suggests that

“CAAMDSNYQLIW” (TRAV1-2-TRAJ33) may correspond to the

deficiency of MAIT cells. Therefore, we speculate that the depletion

of the “CAAMDSNYQLIW” (TRAV1-2-TRAJ33) sequence may

serve as a potential biomarker for DTB in peripheral blood. In our

previous research, we investigated how key sequences of the TCR

receptor specifically recognize the Mycobacterium tuberculosis

antigen (Mpt). The variability of TRAV1-2-TRAJ33 and its

correlation with antigen recognition merit further exploration.

Studies like this are expected to advance vaccine development,

particularly in the prevention and treatment of tuberculosis.

In conclusion, our study is the first to analyze peripheral blood

cell subpopulations in DTB patients at the single-cell level, offering

novel insights into the TCR landscape of peripheral blood

(Graphical Abstract). However, this study also has certain

limitations, such as the small number of PTB and LTBI cases

included and significant age discrepancies, which could introduce

heterogeneity among participants. Due to the rarity of DTB in

clinical settings and strict inclusion criteria, our sample size was

limited. This limitation might impact the generalizability of our

findings. To mitigate this effect, we employed advanced algorithms

to minimize heterogeneity across samples. Moreover, by comparing

our results with other single-cell tuberculosis data, our findings

were further validated, enhancing the significance and relevance of

our study. Age differences partially influence the immunological

characteristics of human peripheral blood; notably, the loss of naïve

CD8+ T cells in elderly individuals (aged 55-65) is a hallmark, yet

this is unrelated to innate immune-mediated systemic

inflammatory responses. It is noteworthy that MAIT cells are

almost nonexistent in the early years of life (<0.08%), increase

significantly to about 2.3% in the 5-9 age group, peak at nearly 4.3%

among adults aged 19-30, and decrease in individuals over 60 years

old (~0.9%) (64). Despite strict inclusion criteria involving older

individuals in this study, there were only two participants over 60,

and neither was older than 65 years. We believe this age disparity

does not significantly impact the overall MAIT cell levels in DTB.

Additionally, there are also two individuals over 50 in the LTBI
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group, which seems not to affect the MAIT levels in LTBI either.

Overall, the age heterogeneity in this study does not mislead the

research findings. Our main findings are well-supported by other

studies, and age disparities seem not to impact these outcomes

significantly, it is undeniable that these limitations may have

adverse effects (65). Ultimately, This research provides valuable

resources for a deeper understanding of peripheral cell subsets in

DTB patients and lays the foundation for the rational design of new

therapeutic strategies and the discovery of specific vaccines.
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SUPPLEMENTARY FIGURE 1

Fractional abundance of subset. (A). Heatmap of Upregulated Genes in

Classical Monocytes in DTB. (B). Heatmap of Upregulated Genes in Non-

classical Monocytes in DTB. (C, D). Fractional abundance of subset at
different resolutions.

SUPPLEMENTARY FIGURE 2

T cells DEGs GO enrichment in DTB patients. (A). GO enrichment analysis
for genes that are upregulated in T cells from DTB patients. (B). GO

enrichment analysis for genes that are downregulated in T cells from

DTB patients.

SUPPLEMENTARY FIGURE 3

Cell communication and Ligand-Receptor analysis. Outer circle represents

cell types, inner circle represents ligand-receptor pairs; blue represents
ligands, red represents receptors, with signals traveling from ligands to

receptors as indicated by arrows.
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