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Antiphospholipid syndrome (APS) is an autoimmune disease characterized by the

occurrence of thrombotic or obstetrical events in patients with persistent

antiphospholipid antibodies (aPL). Thrombotic events, the primary pathological

hallmarks and clinical manifestations, are among the leading causes of mortality

in APS. Our understanding of the mechanism underlying APS-related thrombosis

has significantly advanced in recent years. The presence of aPL, particularly anti-

b2-glycoprotein I (anti-b2GPI) antibodies, is a major driver of thrombosis. The

proposed pathophysiological mechanisms of aPL-mediated pro-thrombotic

events can be broadly categorized into three types: disruption of anticoagulant

reactions and fibrinolysis, interference with coagulation cascade cells, and

complement activation. A triggering ‘second hit’ is typically necessary to initiate

thrombosis. The development of animal models of APS has further refined our

understanding of the role of aPL in thrombosis. In this review, we focused on the

role of b2GPI-dependent aPL in thrombosis of thrombotic APS.
KEYWORDS

antiphospholipid syndrome, antiphospholipid antibody, b2-glycoprotein I, thrombotic
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1 Introduction

Antiphospholipid syndrome (APS), first described in the early 1980s (1), is defined by

the presence of antiphospholipid antibodies (aPL) in patients with thrombotic

complications and/or adverse pregnancy outcomes (2). APS is one of the most common

causes of acquired thrombophilia, affecting both arterial and venous circulation,

particularly in young people (3, 4). Thrombotic events are the most frequent clinical

manifestations and the leading causes of mortality in APS (4). The annual incidence and

prevalence of APS in adults are 1-2 and 40-50 per 100,000 individuals, respectively (5). The

10-year survival rate for patients with APS has been reported to be 90.7% (4). Less than 1%

of APS patients may develop catastrophic APS, characterized by life-threatening

microvascular thrombosis in at least three organs, with a mortality rate of up to 50% (6),
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typically occurring within one week (7). Emerging evidence

highlights significant sex-related differences in APS pathogenesis,

with a striking 5:1 female predominance (8). In thrombotic APS,

women tend to present venous thrombosis at a younger age while

men manifest arterial events later in life (9). This happens because

estrogen and progesterone work together in specific ways. First,

estrogen induces a prothrombotic environment through various

effects on the hemostatic pathways (10). Second, progesterone

activates platelets through glucocorticoid receptor signaling,

increasing the likelihood of venous thrombosis when

progesterone levels are high (11). Women with APS are at

substantially elevated risk for pregnancy-related complications,

with pooled analyses demonstrating 12.3-fold increased odds of

severe preeclampsia, 9.1-fold risk of fetal loss, and 6.8-fold higher

perinatal mortality compared to the general obstetric

population (12).

APS can present either as a primary condition (primary APS)

(13) or in association with other systemic autoimmune diseases, most

notably systemic lupus erythematosus (SLE), in which case it

sometimes referred to as secondary APS (8, 14). However, the

expert committee on APS advises against using the term ‘secondary

APS’ (2). This is primarily because there are no significant differences

in the clinical consequences between primary APS and so-called

secondary APS (14, 15). The 2023 ACR/EULAR classification criteria

emphasize a phenotype-based classification framework over

etiological associations (16). It is now generally accepted that APS

manifests in two main clinical variants: thrombotic APS and obstetric

APS (17, 18). In addition to the presence of aPL, thrombotic APS is

characterized by clinical features related to venous, arterial, or

microvascular thrombosis, while obstetric APS is distinguished by

pregnancy complications (17, 19). Over the past 30 years, our

understanding of the mechanism of APS thrombosis has evolved

significantly. However, the exact mechanisms are still not fully

understood, which may explain why current treatment relies

mainly on anticoagulants (17). Although anticoagulants are

somewhat effective in preventing aPL-associated thrombosis

(especially venous), they exhibit limited therapeutic impact on the

microvascular manifestations of APS that affect the heart, kidneys,

skin, and brain (20). Despite existing treatments, mainly including

oral anticoagulants and/or anti-aggregation agents, patients with APS

continue to experience considerable morbidity and mortality (4).

Therefore, it is imperative to intensify efforts to develop therapeutic

strategies to prevent these critical complications. Recently, Meroni

et al. proposed that thrombotic and obstetric APS may represent two

distinct diseases mediated by the same antibodies (18).

The aPL, including anticardiolipin (aCL), lupus anticoagulant

(LA) and anti-b2-glycoprotein (anti-b2GPI) antibodies, recognize
plasma proteins that bind avidly to anionic phospholipid surfaces,

with b2GPI being the primary target (2, 21). While there is general

consensus that aPL detected in patients with APS mediate

thrombosis, the underlying pathophysiological mechanisms

remain under debate (17, 22–24). Herein, we review current

evidence on the role of b2GPI-dependent aPL in thrombosis of
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thrombotic APS. Our aim is to enhance understanding of these

mechanisms, potentially illuminating future therapeutic targets and

strategies to prevent thrombotic events.
2 Murine models of APS thrombosis

Animal models are crucial for investigating the mechanisms of

aPL-induced thrombogenesis. In the 1990s, Pierangeli et al.

developed the femoral vein pinch model, a mouse model for

studying aPL-induced venous thrombosis in vivo (25–27). In this

model, the appropriate dose of IgG-APS was injected

intraperitoneally (i.p.) at 0 and 48h. The surgical procedure was

performed 72 hours after the first injection. The model enabled the

study of thrombus size and growth dynamics in the vein using a

transilluminator equipped with digital video analysis (25–27). Several

research groups have adopted this mouse model to investigate

mechanisms of aPL-mediated thrombosis (28–31). Then,

Jankowski’s laboratory adapted a murine model of arterial

thrombosis induced by a photochemical reaction (32, 33). In this

model, thrombosis was induced in the left carotid artery using filtered

green light irradiation combined with the fluorescent dye rose-bengal

in mice or hamsters (32, 33). Purified human b2GPI mAbs or IgG

from APS patients were infused 15 minutes prior to photochemical

vessel injury. Thrombus formation was continuously monitored by a

transilluminator mounted on the artery and quantitatively analyzed

with image processing software (32, 33). Furie and colleagues later

utilized a laser-induced arteriole injury model in mice and applied

intravital microscopy to image thrombus formation in real time

within the microcirculation (34, 35). Using the laser-induced

thrombosis model and intravital microscopy, the same group

investigated the in vivo roles of platelets and endothelial cells in

anti-b2GPI antibody/b2GPI complex-mediated thrombosis (36, 37).

Seshan et al. developed a mouse model of thrombotic

microangiopathy that replicated the early-stage pathophysiology of

thrombotic microangiopathy induced by aPL in APS patients (38).

This model used smaller amounts of aPL-IgG and enabled the

investigation of mechanisms underlying renal vascular thrombosis

(38). In addition, two research groups employed a ferric chloride-

induced thrombosis model to explore the molecular and cellular

events mediated by aPL in vascular thrombosis in vivo (39, 40).

Deep vein thrombosis represents the most frequently occurring

form of thrombosis in APS (4). Manukyan and colleagues recently

introduced a novel mouse model of flow restriction-induced

thrombosis, termed stenosis, which simulates the clinical features

of deep vein thrombosis in humans (41, 42). In this model, a spacer

was positioned around the exposed inferior vena cava (IVC), and a

permanent ligature was tightened below the left renal vein to create

narrowing. The wire was then removed to prevent complete vessel

occlusion. Antibodies were administered one hour before inducing

flow restriction (41). Building on this thrombosis model, Knight’s

group developed a murine model of APS-induced thrombosis via

flow restriction or stenosis of the IVC (43, 44). However, most
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existing murine models of APS-related thrombosis have been

confined to microscopic vascular beds. To better replicate large-

vein thrombosis, Knight and colleagues recently developed an

electrolytic IVC model of aPL-accelerated thrombosis (45, 46). A

30-gauge silver-coated copper wire was attached to a 25-gauge

needle, which was inserted into the exposed IVC. A mild direct

current of 250 mA was applied for 15 minutes. The mouse was then

treated with 500 mg of aPL-IgG and allowed to recover. Thrombus

size and content were assessed after 24 hours (46).

Patients with APS continuously produce aPL, leading to

vascular thrombosis in both small and large vessels across venous

and arterial beds (17, 47). However, existing animal models have

demonstrated that a single, temporary aPL injection is insufficient

to induce a pro-thrombotic phenotype. These models are often

restricted to studying thrombosis in only one type of blood vessel.

Furthermore, the aPL dosage, injection intervals, and choice of

stimulating factor vary widely among these models.
3 Antiphospholipid antibodies and
b2-glycoprotein I

The aPL included in the 2006 Sydney classification criteria are

LA, IgG and/or IgM aCL antibodies, and anti-b2GPI antibody of

IgG and/or IgM isotype (2). A diagnosis of APS requires persistently

positive aPL (detected on two occasions ≥12 weeks apart) and at

least one of two clinical manifestations: vascular thrombosis or

pregnancy morbidity (2, 16). However, some individuals exhibit a

clinical profile highly suggestive of APS but consistently test

negative for ‘criteria’ aPL (48). The term ‘seronegative APS’ has

been proposed to describe this subset of patients (49, 50).

Seronegative APS patients are not entirely without autoantibodies

but instead present with ‘extra-criteria’ autoantibodies. Notably, the

clinical validity of these non-criteria antibodies varies significantly:

while anti-phosphatidylserine/prothrombin (aPS/PT) and anti-

b2GPI-domain I antibodies show strong mechanistic evidence

and are under consideration for inclusion in future classification

criteria (51–53), others such as anti-annexin antibodies and anti-

phosphatidylethanolamine lack robust clinical validation (51). It is

likely that all subpopulations of ‘criteria’ or ‘extra-criteria’

autoantibodies in patients with APS can influence their

hemostatic balance. Nonetheless, it is widely accepted that APS-

related thrombosis is driven by aPL, with antibodies against b2GPI
being the most significant (17).

Initially, it was thought that aPL could directly recognize

anionic phospholipids. However, some studies conducted in the

1990s confirmed that these antibodies do not bind phospholipids

directly but instead interact with phospholipids via the plasma

protein b2GPI (21, 54, 55). In APS, phospholipid-bound b2GPI is
the primary target of aPL, and anti-b2GPI antibodies are thought to
play a central role in the mechanisms of thrombosis (17, 24, 56).

Multiple studies using animal models have demonstrated that anti-

b2GPI antibodies or b2GPI-dependent antibodies play important

roles in inducing thrombosis (33, 41, 57). Further research, which
Frontiers in Immunology 03
separated the heterogeneous aPL population from APS patients into

different subpopulations, showed that anti-b2GPI antibodies

significantly enhanced the thrombotic response in a mouse

model (36).

b2GPI, also known as apolipoprotein H, is a 50-kDa

phospholipid-binding glycoprotein present in plasma at a

concentration of approximately 200 mg/mL (58). The primary

function of b2GPI remains largely unknown, although it has been

reported to have roles in anticoagulant activity, antiangiogenic

activity, complement regulation, and other physiological process

(59–62). b2GPI exists in several conformations, including J-

elongated, S-twisted, and O-circular, with the J conformation

likely being predominant under physiological conditions (63).

Normally, b2GPI circulates in a circular form, but in the presence

of elevated aPL or exposed anionic phospholipids on cell

membranes, it adopts an open conformation, which may

contribute to the pathogenesis of APS and thrombosis (62).

However, the mechanisms underlying these conformational

changes remain unclear. Structurally, b2GPI is composed of 326

amino acids arranged into five homologous domains, with domain

V containing a unique lysine cluster and a C-terminal loop (64–66).

The specific structure of domain V forms a binding site for

negatively charged phospholipids, such as cardiolipin and

phosphatidylserine (67, 68). When b2GPI binds to the surface of

anionic phospholipids, it exposes a hidden epitope that is

recognized by aPL in APS (69–71). These aPL do not recognize

b2GPI in solution and only bind to domain I of b2GPI which has

undergone a conformational change (70, 71).
4 Potential mechanisms of aPL-
mediated thrombosis

The possible pathogenesis of thrombosis mediated by b2GPI-
dependent aPL includes (1) disruption of fluid-phase coagulation by

interfering with protein C, antithrombin, annexin A5, and fibrinolysis

(2), impairment of coagulation cascade cell functions by interacting

with monocytes, endothelial cells, neutrophils, and platelets (3), and

complement activation. It is now widely accepted that a ‘second hit’ is

necessary to trigger thrombotic events (17, 47, 72, 73).
4.1 Disruptions of fluid-phase coagulation

4.1.1 Inhibition of the protein C pathway
Protein C is an important vitamin K-dependent anticoagulant

that becomes activated when thrombin binds to thrombomodulin.

Activated protein C (APC) plays crucial anticoagulant and

antithrombotic roles by binding to and inactivating the

procoagulant factors Va and VIIIa (74). Researchers discovered

that the activation of protein C and the function of APC are

inhibited by purified immunoglobulin fractions from patients

with APS (75, 76). APL can disrupt the protein C system in

several ways, including inhibiting the assembly of the protein C
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complex, interfering with protein C activation, and blocking

thrombin formation (77–79). Murine monoclonal anti-b2GPI
antibodies, in the presence of b2GPI, have been demonstrated to

inhibit the anticoagulant activity of APC in vitro (80). In addition,

anti-b2GPI antibodies and b2GPI-dependent LA can induce APC

resistance, increasing the risk of venous thromboembolism in

patients with APS (81, 82). These studies indicate that protein C

dysfunction caused by aPL is primarily mediated by b2GPI.
Autoantibodies directed against protein C have been detected in

the serum APS patients, and they show a significant correlation with

APC resistance and thrombosis in these individuals (83).

4.1.2 Inhibition of antithrombin activity
Antithrombin is the primary inhibitor of thrombin, as well as

factors IXa and Xa. As early as the 1980s, it was reported that an

APS patient with recurrent thrombosis had normal levels of

antithrombin antigen but reduced functional activity (84). APL

can inhibit the cofactor activity of the heparin/antithrombin III

complex and interfere with the formation of antithrombin III-

thrombin complexes, thereby promoting thrombosis in patients

with APS (85, 86). Two studies have demonstrated that injecting

anti-prothrombin autoantibodies into mice can induce a pro-

thrombotic phenotype, which may be linked to the inhibition of

antithrombin activity (86, 87).

4.1.3 Disruption of annexin A5
anticoagulant shield

Annexin A5 is a protein that binds to anionic phospholipids

with high affinity. It forms a protective crystal shield on vascular

cells, inhibiting phospholipid-dependent coagulation reactions.

Rand et al. were the first to report that aPL reduce the levels of

annexin A5 and promote plasma coagulation on vascular

endothelial cells. This finding suggested a potential mechanism

for thrombosis (88). They hypothesized that aPL might increase

resistance to the anticoagulant effects of annexin A5. Based on this

hypothesis, Rand and colleagues developed a method to detect what

they termed ‘annexin A5 resistance’ in plasma, which they

confirmed in several populations of patients with APS (89).

Subsequently, an in vitro study by the same group showed that

anti-b2GPI antibodies, in complex with b2GPI, can disrupt annexin

A5’s anticoagulant shield (90). This disruption exposes

procoagulant phosphatidylserine, increasing the risk of

thrombosis. Hydroxychloroquine has been found to inhibit the

ability of b2GPI immune complexes to disrupt the protective

annexin A5 barrier on the surface of vascular endothelial cells

(91). This provides new evidence for the therapeutic potential of

this old antimalarial drug in APS patients.

4.1.4 Insufficient fibrinolysis
Fibrinolysis is the process by which fibrin, formed during blood

coagulation, is broken down and liquefied. Fibrinolysis is a crucial

anticoagulant process in vivo. Musiał J et al. discovered that fibrin

clots in thrombotic APS patients are composed of thin fibers and

small pores. This structure makes the clots firmer, quicker to form,

and slower to degrade compared to those in similar VTE cases (92).
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The altered fibrin structure is more resistant to lysis, which

negatively impacts anticoagulation. Annexin A2 acts as a receptor

for b2GPI and tissue plasminogen activator (tPA), playing a

significant role in the process of fibrinolysis (93). Studies have

demonstrated that patients with APS have autoantibodies against

the Annexin A2, with high titers of these antibodies being

significantly correlated with thrombosis (94, 95), as they inhibit

tPA-dependent plasmin generation. Additionally, anti-b2GPI
antibodies in APS patients can neutralize the capacity of b2GPI
to enhance tPA activity, thereby further inhibiting fibrinolysis (96).
4.2 Cell-mediated events

Vascular inflammation is another critical mechanism of

thrombosis in APS. Various types of cells are involved in the

inflammatory process, including endothelial cells, monocytes, and

neutrophils. Anti-b2GPI antibodies bind to membrane-bound

b2GPI, triggering intracellular signaling and thereby promoting

inflammation (Figure 1).

4.2.1 On endothelial cells: expression of adhesion
molecules and procoagulant substances

Quiescent endothelial cells are crucial for maintaining blood

flow by expressing anticoagulant proteins and generating an

actively antithrombotic surface within blood vessels (97).

However, when endothelial cells are disrupted, their membranes

can shift from an anticoagulant surface to a procoagulant

phenotype. This change is mainly characterized by the induction

of tissue factor (TF), plasminogen activator inhibitors, and the

synthesis of specific binding sites for coagulation factors (97). TF is

a single-stranded transmembrane glycoprotein that acts as a key

initiator of the blood coagulation cascade by binding to factor VIIa

(98, 99). Under normal conditions, TF is not expressed by

intravascular cells but can be induced in monocytes and

endothel ia l ce l ls in response to nonphysiological or

pathophysiological stimulation (100, 101). Numerous studies have

shown that aPL, especially anti-b2GPI antibodies, can activate

endothelial cells, promoting thrombosis in APS (102–104).

Endothelial cells activated by aPL display increased expression of

adhesion molecules, such as E-selectin, vascular cell adhesion

molecule-1, and intercellular adhesion molecule-1 (102, 105).

The induction of TF expression in endothelial cells by

antiphospholipid sera was reported in 1993 (106). Subsequent in

vitro studies have confirmed that aPL can induce the expression of

TF in endothelial cells (107, 108). Additionally, aPL-activated

endothelial cells contribute to a prothrombotic state through

mechan i sms such as r e l ea s ing mic ropar t i c l e s w i th

proinflammatory and procoagulant properties (109, 110),

producing proinflammatory cytokines (111), and reducing levels

of endothelial cell-derived nitric oxide (112).

There are multiple pathways through which activated

endothelial cells mediate the prethrombotic state in APS.

Currently, it is accepted that the binding of b2GPI -antibody

complexes to Annexin A2 or toll-like receptor (TLR) on
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endothelial cell surfaces triggers the activation of the p38 mitogen-

activated protein kinase (MAPK) and nuclear factor kappa B (NF-

kB) signaling pathways, which in turn promote the expression of

procoagulant substances (29, 113, 114). Annexin A2 has been

identified as a significant aPL receptor on endothelial cell

membranes and is essential in endothelial cell activation and

thrombosis in APS (95, 115). Research suggested that Annexin

A2 might be part of a larger aPL receptor complex on endothelial

cells, potentially forming co-receptors with TLR2 or TLR4 to

mediate this activation (116, 117). In contrast, Annexin V,

another member of the annexin family, acts protectively by

blocking aPL from binding to phospholipids on the cell
Frontiers in Immunology 05
membrane. These antibodies cannot interact with endothelial cells

unless Annexin V is interrupted (118). Endothelial protein C

receptor (EPCR) serves as a receptor for b2GPI/anti-b2GPI
antibody complexes in APS, playing crucial roles in

anticoagulation and placental development. In APS, anti-EPCR

antibodies can inhibit protein C activation, thereby increasing the

risk of fetal loss and thrombotic events (119, 120). Binding of aPL to

EPCR accelerates the endocytosis of the EPCR- lysobisphosphatidic

acid complex, which leads to thrombin-induced and protease-

activated receptor 1-mediated endothelial cell activation (121,

122). Furthermore, different EPCR haplotypes, particularly the H1

haplotype, can influence APS symptoms, modulating the risk of
FIGURE 1

b2GPI-dependent aPL effects on cells in thrombotic antiphospholipid syndrome. b2GPI-dependent aPL activates monocytes (A), endothelial cells (B),
neutrophils (C), and platelets (D) through various signaling pathways, thereby regulating downstream cellular activities and contributing to
thrombosis in APS. aPL, antiphospholipid antibody;b2GPI, b2-glycoprotein I; ApoER2, apolipoprotein E receptor 2; TLR, toll-like receptor; MyD88,
myeloid differentiation primary response gene 88; MAPK, mitogen-activated protein kinase; mTOR, mammalian target of rapamycin; NF-kB, nuclear
factor kappa B; AKT, protein kinase B; TF, tissue factor; TNFa, tumor necrosis factor-alpha; LBPA, lysobisphosphatidic acid; EPCR, endothelial protein
C receptor; LRP6, LDL receptor-related protein 6; PAR1, protease-activated receptor 1;eNOS, endothelial nitric oxide synthase; ICAM, intercellular
adhesion molecule; VCAM, vascular cell adhesion molecule; ROS, reactive oxygen species; NETs, neutrophil extracellular traps; KLF, krüppel-like
factor 2; PSGL-1, P-selectin glycoprotein ligand 1; IRAK, interleukin-1 receptor-associated kinase; MAC-1, macrophage-1 antigen; CEACAM1,
carcinoembryonic antigen related cell adhesion molecule 1; PF4, platelet factor 4; GPIIbIIIa, glycoprotein IIIbIIIa.
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arterial thrombosis (123). Apolipoprotein E receptor 2 (ApoER2),

also known as LDL receptor-related protein 8 (LRP8), is a member

of the low-density lipoprotein receptor family and plays a crucial

role in the pathogenic mechanism of aPL. Compared to ApoER2+/+

mice, ApoER2-/- mice exhibited prolonged vascular occlusion times

induced by aPL, along with significant reductions in aPL-induced

vascular TF activity, thrombosis formation, and monocyte

activation (30). ApoER2 also participates in the inhibition of

endothelial cell migration and regeneration by aPL. In cell

experiments conducted by Ulrich V. et al., siRNA knockdown of

ApoER2 in endothelial cells restored migration capacity, which had

been suppressed by aPL (124). In APS, ApoER2 facilitates

thrombosis by serving as a scaffold for the assembly of protein

phosphatase 2A, leading to antagonism of endothelial nitric oxide

synthase (eNOS) (125). This mechanism involves the recruitment

of Disabled-2 and Src homology domain-containing transforming

protein 1 to ApoER2, which activates protein phosphatase 2A and

promotes the dephosphorylation of protein kinase B (AKT) and

eNOS, ultimately contributing to aPL-induced thrombosis (40).

4.2.2 On monocytes: induction of tissue factor
Monocytes contribute to thrombosis in APS primarily through

the expression of TF (126). Kornberg et al. demonstrated that

murine monoclonal aCL can induce TF expression in monocytes

and enhance TF procoagulant activity (127). Later, Guadrado et al.

found that monocytes from APS patients with thrombosis showed

significantly increased TF mRNA expression and TF-related

procoagulant activity compared to those without thrombosis

(128). Subsequent studies confirmed that human monoclonal aCL

and IgG from patients with APS promote TF expression and boost

TF activity in monocytes (129, 130). Extensive research has since

established that aPL, especially anti-b2GPI antibodies, can induce

TF expression on monocytes when they form b2GPI/anti-b2GPI
immune complexes (131–134). These complexes interact with

various cell surface receptors, such as phosphatidylserine,

ApoER2, and Annexin A2, as well as coreceptors like TLRs (135).

These interactions activate signaling pathways, including mitogen-

activated protein kinase kinase 1 (MEK-1)/extracellular regulated

protein kinases (ERK), p38 MAPK, mammalian target of rapamycin

(mTOR), and NF-kB, predominantly through the TLR4-myeloid

differentiation primary response 88 (MyD88) pathway (131–134,

136–138). Furthermore, the b2GPI/anti-b2GPI complexes

upregulate inflammatory cytokines through the TLR/MyD88 and

NF-kB pathways, leading to increase TF expression in monocytes

(134, 139). In vitro studies demonstrated that monocytes from

healthy donors incubated with monoclonal aPL or affinity-purified

anti-b2GPI antibodies showed significantly higher secretion of

tumor necrosis factor-alpha (TNFa) compared to those incubated

with control IgG, further amplifying TF expression (134, 140, 141).

The expression of TF is also regulated by tissue factor pathway

inhibitor (TFPI), which inhibits factors VIIa and Xa. One study

revealed that anti-b2GPI antibodies suppress TFPI activity, thereby
enhancing factor Xa generation (142). Notably, recent findings

showed that aPL dissociated TFPI from monocytes, increasing the

risk of thrombosis in APS patients (142). Furthermore, protease-
Frontiers in Immunology 06
activated receptors (PARs), which are triggered by thrombin or

factor X, contribute to the production of pro-inflammatory cytokine

(135). It was reported that the expression of PARs was elevated in

monocytes from APS patients, and inhibition of PAR2 prevents

aPL-induced TF expression (143).

4.2.3 On neutrophil: increased release of
neutrophil extracellular traps

Neutrophils are the most abundant leukocyte subsets in human

peripheral blood and play an important role in innate immune

against the invasion of various pathogenic microbes (144). They

defend against external pathogens through multiple mechanisms,

including the release of neutrophil extracellular traps (NETs), which

are meshwork substances composed of DNA, histones, and

antibacterial proteins (145). The release of NETs is the most

striking phase in a unique cell death process called NETosis,

distinct from apoptosis and necrosis (146). NET formation is a

double-edged sword, playing a role in the pathogenesis of

inflammatory and autoimmune disorders (147, 148).

Compared to the extensive research on the aforementioned cell

types, the interactions between aPL and neutrophils have been less

thoroughly investigated. Initially, only two studies demonstrated

that aPL could directly activate neutrophils (149, 150), a process

that may be amplified by complement C5, thereby promoting blood

coagulation (151). With the growing recognition of the connection

between NETs and thrombosis in non-autoimmune contexts,

increasing attention has been given to the role of neutrophils in

APS-related thrombosis (152, 153). Leffler et al. discovered that APS

sera exhibited an impaired ability to degrade NETs, a dysfunction

associated with specific clinical features (154). In recent years,

Knight’s group has conducted several pivotal studies examining

the role of neutrophils in APS-related thrombosis. In a 2015 study,

they identified elevated levels of NETs in the circulation of APS

patients and demonstrated that anti-b2GPI IgG could promote

NET release in vitro (155). Moreover, these aPL-stimulated NETs

were shown to facilitate thrombin generation in vitro (155),

introducing a novel mechanism of thrombosis in patients with

APS (156). Knight and his team later confirmed the in vivo

relevance of NETs in thrombosis using a mouse model of APS. In

this model, they observed that APS-associated thrombi were

enriched with NETs and that NET-disrupting treatments could

prevent APS IgG-mediated thrombosis (43). To further understand

the mechanism of neutrophil hyperactivity in APS, they conducted

a transcriptome analysis of APS neutrophils. This analysis revealed

a proinflammatory gene expression signature, with overexpressed

genes linked to interferon signaling, cellular defense, and

intercellular adhesion (44). Among the upregulated genes, they

identified a notable group of leukocyte immunoglobulin-like

receptor (LILR) genes, which included all activating members of

the LILR family: LILRA1, LILRA2, LILRA3, LILRA4, LILRA5, and

LILRA6 (44). The role of these LILR members in regulating

thromboinflammation in APS remains unclear. More recently,

Knight’s group has showed that neutrophils in APS exhibit

increased adhesive potential, lowering the threshold for NETosis

and elevating the risk of thrombotic events (157). Additionally, a
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specific neutrophil subgroup known as low-density granulocytes,

which is elevated in APS, exhibits a higher propensity for NET

release (158). Mechanistically, anti-b2GPI antibodies promote

NETs formation in a time- and concentration-dependent manner

by forming complexes with b2GPI, activating TLR4, triggering ROS
production, and inducing NET release via the MyD88-IRAKs-

MAPKs pathway (159). Targeting NET release, for instance, by

activating adenosine receptor, has been shown to reduce thrombosis

in APS mouse models (46).

In APS, neutrophils exhibit an increased tendency to

interact with endothelial cells, driven by the upregulation of

adhesion molecules induced by aPL. The loss of the

transcription factor Krüppel-like factor 2 (KLF2) is a key

factor that transforms neutrophils into a prothrombotic state,

enhancing their migration, adhesion, and release of factors like

P-selectin glycoprotein ligand 1 (PSGL-1), which facilitates

binding to the endothelium (160). Neutrophils in APS exhibit

lower KLF2 levels, resulting in increased clustering of PSGL-1,

elevated NET formation, and higher TF activity. Additionally,

these neutrophils also upregulate other adhesion proteins,

including CD64, carcinoembryonic antigen related cell

adhes ion molecule-1 , b2-glycoprote in , and act ivated

macrophage-1 antigen, all of which contribute to their

heightened thrombotic potential (157).

4.2.4 On platelets: enhanced platelet
activation/aggregation

Platelets are essential for physiological hemostasis, as they

aggregate and adhere to injured vessel walls, become activated,

and release granule, promoting blood clotting and thrombus

formation. Thrombocytopenia is a common clinical feature in

patients with APS, leading to the hypothesis that aPL may bind to

platelets, causing aggregation and thrombosis. The proposed causes

of thrombocytopenia include platelet destruction by autoantibodies

targeting platelet glycoproteins, as well as platelet activation and

depletion initiated by aPL (161). Studies have confirmed that

platelet activation in patients with APS is primarily linked to

b2GPI-dependent antiphospholipid antibodies (33, 162, 163). The

binding of anti-b2GP auto-antibody/b2GPI immune complex to

ApoER2 and glycoprotein Iba can promote platelet activation

(164–167). These receptors cross-link with anti-b2GPI, activating
platelets and promoting the release of thromboxane A2. This

process neutralizes the inhibitory effect of b2GPI on von

Willebrand factor, thereby enhancing platelet adhesion and

aggregation (166–168). Platelet factor 4 (PF4) is a specific protein

released by activated platelets that promotes thrombosis. In patients

with APS, b2GPI can form a stable complex with PF4. The binding

of anti-b2GPI antibody to the complex triggers p38 MAPK

phosphorylation and induces the production of thromboxane B2

(169). In a mouse model using fluorescently labeled b2GPI and

anti-b2GPI autoantibodies, Proulle et al. found that platelets, rather
than endothelial cells, were the first effector cells activated by the

anti-b2GPI antibody/b2GPI complex (37). Moreover, the anti-

b2GPI antibody/b2GPI complex enhances platelet activation, and

the secretion from activated platelets promotes endothelial cell
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activation (37). These findings underscore the critical role of

platelets in the pathogenesis of APS.

4.2.5 Procoagulant signaling in plasma
membrane microdomains: focus on lipid rafts
and heparanase

Although soluble coagulation factors and intracellular signaling

pathways are well understood in APS pathogenesis, recent study

showed that plasma membrane microdomains play an important

role in regulating prothrombotic events. Specifically, lipid rafts and

heparanase, despite working through different mechanisms,

worsens the risk of thrombosis in APS.

Lipid rafts are believed to play an important role in the

development of APS. They are small (10-200 nm) non-

homogeneous regions of the membrane, rich in glycosphingolipids

and cholesterol (170). In APS, studies have shown that anti-b2GPI
antibodies bind to their target antigens, such as b2GPI, annexin A2,

TLR2, and TLR4, within lipid rafts in the plasma membrane of

monocytes or endothelial cells (133). Biochemical analyses revealed

that b2GPI exists in a dimeric form within lipid rafts. This suggests

that b2GPI can only interact with lipid rafts after it dimerizes,

possibly due to conformational changes (171). Further studies

showed that lipid rafts play a key role in the signaling pathway

triggered by anti-b2GPI antibodies. These antibodies activate IRAK
and NF-kB through lipid rafts, leading to the release of TNF-a and

TF, which contribute to a proinflammatory and procoagulant state

(172, 173). Additionally, it has been found that anti-b2GPI antibodies
activate LRP6 and LRP8/ApoER2 signaling in endothelial cells

through lipid rafts (173, 174). Riitano et al. used a raft-disrupting

agent called methyl-b-cyclodextrin (MbCD) to further study the role
of lipid rafts. The results revealed that anti-b2GPI antibodies induce
TF expression in endothelial cells through the LRP8/ApoER2

signaling pathway, which requires intact lipid rafts for efficient

signal transduction (174). These findings underline the importance

of lipid rafts in APS and suggest potential targets for therapeutic

intervention in APS.

Heparanase is the only known enzyme that cleaves heparan

sulfate side chains, contributing to inflammatory disorders by

aiding vascular endothelial cell migration and immune cell

activation (175). It affects coagulation by upregulating TF

expression and interacting with TFPI, increasing coagulation

activity (176). Heparanase also acts as a cofactor for TF, promoting

factor Xa production (177). In APS, inhibiting heparanase, such as

RDS3337, prevents TF expression and platelet aggregation (175),

suggesting that targeting heparanase could be a potential treatment

for APS-related prothrombotic conditions.
4.3 Complement activation

Given the established interactions between the complement and

the coagulation systems, complement components may be directly

involved in thrombosis (178). Supporting this view, injecting IgG aPL

purified fromAPS patients into complement C6-/- rats does not induce

thrombosis in the mesenteric blood vessels but does cause blood clots
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in normal rats (57). A subsequent study replicated these findings in C6

knockout mice (179). Activation of complement components C3 and

C5 can enhance aPL-mediated thrombosis and activate endothelial

cells (28). APL-induced complement activation generates downstream

C5a, which recruits and activates neutrophils, resulting in TF

expression (180, 181). These animal experiments confirmed the

critical role of complement in aPL-mediated thrombosis. Several

studies have shown significantly elevated levels of complement

activation products (fragments Bb and C3a-desArg) in patients with

APS, which correlate with increased aPL titers (182, 183). Nevertheless,

the underlying mechanisms driving complement activation in patients

with APS are not yet fully understood. Recent study indicated that

reduced levels of complement factor H (FH), a key regulatory factor,

may contribute to complement activation in APS (184). A prior study

used ELISA to detected FH autoantibodies in APS patients from

Serbian and Italian cohorts, suggesting these autoantibodies may

contribute to reduced FH levels (185). In 2016, a case report

provided evidence that complement directly impacted human

thrombosis. The report described an APS patient undergo femoral

artery bypass surgery for vascular thrombosis, with complement

deposition observed on the endothelium and vascular wall at the

thrombotic site (186). Treatment with a humanized anti-C5a

monoclonal antibody (eculizumab) effectively prevented thrombosis

following the surgery (186). Furthermore, FXa and thrombin can

activate the complement pathway by cleaving C3 and C5. However,

b2GPI inhibits complement activation by modulating the activities of

thrombin and FXa (187, 188). This interplay between coagulation

factors and b2GPI may indicate a potential mechanism for

complement activation.

Complement activation is considered a significant factor in

early pregnancy loss (189, 190). Shamonki et al. conducted an

immunohistochemical analysis using antibodies against C4d, C3b,

and C5b-9 on placental tissue from APS patients and controls,

highlighting complement’s crucial role in APS-related fetal tissue

damage (191). Elevated levels of Bb and sC5b-9 detected in early

pregnancy have been strongly associated with negative pregnancy

outcomes in patients with aPL (192). Studies indicated that

inhibiting the complement cascade with C3 convertase inhibitors

or blocking C5a receptor interactions could mitigate the harmful

effects of aPL in early pregnancy (193). Further evidence showed

that heparins alleviated early pregnancy complications mainly by

inhibiting aPL-induced complement activation, rather than through

their anticoagulant properties (194). Genetic mutations that cause

immune dysregulation are associated with complement-mediated

diseases (195), and approximately 60% of catastrophic APS patients

have germline variants in complement regulatory genes (196).
5 Two-hit model

Thrombotic events are infrequent, even with the persistent

presence of aPL. Moreover, aPL alone do not seem to induce

thrombotic phenotypes (197). The ‘two hit’ hypothesis, proposed

in 2001, explains these clinical and experimental observations (198).

The presence of aPL (the first hit) increases the risk of
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thrombophilia, while clotting occurs when an additional

procoagulant condition (second hit) is present (Figure 2) (198).

The ‘two-hit’ model was later validated using a photochemically

induced thrombosis model in hamsters (33). A low dose of bacterial

lipopolysaccharide was necessary for b2GPI-dependent aPL to

trigger thrombosis in rat mesenteric microcirculation (57).

Consistent with this finding, infection might act as a second hit,

amplifying the thrombophilic effect of aPL (199).

The presence of aPL is recognized as necessary but insufficient

from thrombosis in APS while an additional ‘second hit’ is required

(18, 22, 23, 47, 72, 200). The second hit often includes but not

limited to inflammatory responses, mechanical trauma, immobility,

venous stasis and estrogen-containing contraceptive (22, 47, 72). In

addition, cardiovascular risk factors, such as arterial hypertension,

diabetes, obesity, smoking, and hyperlipidemia, further increase the

risk of thrombosis (72, 200).
6 Current and potential drugs for APS

The management of thrombotic APS focuses on preventing

thrombotic events and addressing the multifaceted pathogenesis of

the disease. Current strategies emphasize anticoagulation as the

cornerstone of therapy, targeting the hypercoagulable state driven

by aPL. Standard regimens typically include vitamin K antagonists

and low-molecular-weight heparin (LMWH), with close

monitoring of the international normalized ratio (INR) to ensure

an appropriate balance between thromboprophylaxis and the risk of

bleeding. Immunomodulation plays a critical role in suppressing

autoimmune-driven pathways, particularly in patients with

concurrent SLE or refractory cases. Table 1 summarizes the

primary therapeutic agents for preventing thrombotic events

in APS.

While anticoagulants remain foundational, their inability to

prevent non-thrombotic complications underlines the need for

potential therapies. Potential approaches aim to tackle non-

thrombotic complications and specific pathogenic mechanisms

that lead diseases. Among these strategies, statins have shown

dual benefits by not only improving endothelial function through

lipid-lowering effects but also suppressing aPL-induced pro-

inflammatory signaling (e.g., NF-kB and MAPK pathways),

thereby reducing TF expression and monocyte activation (223).

Direct targeting of coagulation activation is exemplified by anti-TF

molecules (e.g., ALT-836), which inhibit thrombin generation by

neutralizing TF upregulated in monocytes (224). In addition,

interventions against NETs, such as DNase-mediated degradation,

PAD4 inhibition, and histone toxicity blockade, aim to mitigate

NETs-driven thromboinflammation and placental damage (225).

To disrupt the core antigen-antibody interaction in APS, anti-

b2GPI domain I monoclonal antibodies competitively block

pathogenic aPL binding to b2GPI, preventing its engagement

with cellular receptors like ApoER2 and subsequent complement

activation (226, 227). Further upstream, lipid raft-targeting agents

(e.g., MbCD) destabilize membrane microdomains essential for

b2GPI anchoring, thereby suppressing platelet activation and
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FIGURE 2

Schematic diagram of two-hit model in antiphospholipid syndrome. The presence of aPL (first hit) and the activation of the coagulation system,
complement, monocytes, endothelial cells, neutrophils, and platelets increase the risk of thrombosis. Clotting occurs in the presence of additional
procoagulant condition (second hit).
TABLE 1 Drugs used in the management of APS.

Drug classes Medication Key mechanism Perspective

Vitamin K antagonist Warfarin Inhibits factors II/VII/IX/X (201) Standard regimen for thrombotic APS (202)

Anticoagulant LMWH Inhibits Xa/IIa (201) In acute thrombosis, obstetric APS (203)

Direct oral anticoagulant Rivaroxaban Inhibits Xa/IIa (201) Rivaroxaban had a higher risk of recurrent arterial
thrombosis compared to warfarin (204)

Antiplatelet agent Aspirin Blocks COX-1/TXA2 (205) Primary prophylaxis in high-risk APS (206)

Antimalarial Hydroxychloroquine Reduces cytokines, inhibits complement activation,
suppresses TLR4 (207)

In SLE-associated APS, pregnancy (206)

Complement inhibition Eculizumab Neutralizes C5a/MAC In catastrophic APS (208, 209)

Triple Therapy Heparin& glucocorticoids&
intravenous immunoglobulin

Neutralizes aPL, anticoagulates, suppresses
inflammation (210)

In life-threatening catastrophic APS (202)

B cell therapy Rituximab Type I anti-CD20 monoclonal antibody, depletes
aPL-producing B cells (211)

In refractory APS, catastrophic APS (202)

Obinutuzumab Type II anti-CD20 monoclonal antibody, depletes
aPL-producing B cells (211)

Alternative option for rituximab in APS (212)

Belimumab Inhibits B-lymphocyte stimulator, reducing
autoreactive B-cell activation (213)

In SLE-associated APS (especially lupus nephritis),
primary APS with high thrombotic risk (213, 214)

mTOR inhibition Sirolimus Inhibits mTOR signaling pathway, reduces the
proliferation of endothelial cells (215)

APS-related vascular lesions (e.g., nephropathy),
refractory thrombotic APS (216, 217)

(Continued)
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complement deposition (173). Beyond thrombotic pathways,

immune modulation is being explored through probiotics and

vitamin D3, which restore gut microbiota balance, regulate Th17/

Treg dynamics, and suppress autoreactive B-cell responses (202,

228, 229). Collectively, these therapies exemplify a paradigm shift

from broad anticoagulation to mechanistically precise interventions

targeting aPL-mediated thrombosis, autoantibody pathogenicity,

and immune dysregulation.
7 Conclusion and future directions

Despite the strong association between aPL and thrombosis, the

exact mechanisms underlying aPL-mediated thrombotic events

remain unclear. Current evidence suggests that aPL triggers

activation of endothelial cells, monocytes, neutrophils, and

platelets. This activation, coupled with the disruption of natural

anticoagulant and fibrinolytic pathways, leads to a pro-thrombotic

state in patients with thrombotic APS. An additional triggering

event, or ‘second hit,’ is ultimately necessary to initiate

thrombus formation.

Despite extensive research efforts, several crucial questions

remain unanswered. One unresolved question is which cell type

serves as the primary target for aPL. Some studies argue that

endothelial cells play a key role in APS-associated thrombosis

(104), while others downplay the role of the endothelium and

emphasize the importance of platelets (37). Recent insights

suggest that anti-inflammatory treatments targeting NETosis may

be more effective than conventional anticoagulation therapy in

reducing thrombosis (230). It is also possible that all of these cell

types contribute, either directly or indirectly, through the release of

prothrombotic microparticles (231, 232). While it is well-

established that a ‘second hit,’ such as mechanical trauma

combined with antibody binding to b2GPI on the endothelium,

plays a key role in initiating clot formation at specific sites (18), it

remains obscure how other types of ‘second hit’ trigger thrombosis.

In addition, b2GPI, the primary antibody target, is a complex

protein with an unclear physiological role (62). Understanding

the precise function of b2GPI could be crucial for unraveling the

mechanism of thrombosis. Finally, a consensus on the optimal

animal model that accurately replicates APS pathophysiology is

urgently needed to improve in vivo experiments. Advances in APS

research will deepen our understanding of the underlying

mechanisms and contribute to future treatments.
Frontiers in Immunology 10
Author contributions

LY: Visualization, Writing – original draft, Writing – review &

editing. RG: Writing – original draft, Writing – review & editing. HL:

Writing – original draft, Writing – review & editing. BC: Visualization,

Writing – review & editing. CL: Writing – review & editing. RL: Writing

– review & editing. SL: Visualization, Writing – review & editing. QX:

Writing – review & editing. GY: Writing – review & editing.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This study is supported by

Sichuan Province Science and Technology Program (2024YFFK0349,

2024YFFK0062), the Postdoctor Research Fund of West China

Hospital, Sichuan University (2024HXBH084), China Postdoctoral

Science Foundation (2024M752245), and Clinical Research

Incubation Project of West China Hospital (2021HXFH018).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
TABLE 1 Continued

Drug classes Medication Key mechanism Perspective

Cytotoxic drug Cyclophosphamide Suppresses B/T-cell proliferation and autoantibody
production (218)

In severe SLE-associated APS organ involvement
(219, 220)

NETs Inhibitors Defibrotide Inhibits NETosis via cAMP signaling, inhibits
endothelial activation (135, 221)

APS-associated hepatic venous thrombosis,
microvascular thrombotic complications (221, 222)
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108. López-Pedrera C, Buendıá P, Barbarroja N, Siendones E, Velasco F, Cuadrado
MJ. Antiphospholipid-mediated thrombosis: interplay between anticardiolipin
antibodies and vascular cells. Clin Appl Thromb Hemost. (2006) 12:41–5.
doi: 10.1177/107602960601200107

109. Betapudi V, Lominadze G, Hsi L, Willard B, Wu M, McCrae KR. Anti-
beta2GPI antibodies stimulate endothelial cell microparticle release via a nonmuscle
myosin II motor protein-dependent pathway. Blood. (2013) 122:3808–17. doi: 10.1182/
blood-2013-03-490318

110. Wu M, Barnard J, Kundu S, McCrae KR. A novel pathway of cellular activation
mediated by antiphospholipid antibody-induced extracellular vesicles. J Thromb
Haemost. (2015) 13:1928–40. doi: 10.1111/jth.13072

111. Hamid C, Norgate K, D’Cruz DP, Khamashta MA, Arno M, Pearson JD, et al.
Anti-beta2GPI-antibody-induced endothelial cell gene expression profiling reveals
induction of novel pro-inflammatory genes potentially involved in primary
antiphospholipid syndrome. Ann Rheum Dis. (2007) 66:1000–7. doi: 10.1136/
ard.2006.063909

112. Mineo C. Inhibition of nitric oxide and antiphospholipid antibody-mediated
thrombosis. Curr Rheumatol Rep. (2013) 15:324. doi: 10.1007/s11926-013-0324-4

113. Montiel-Manzano G, Romay-Penabad Z, Papalardo de Martıńez E, Meillon-
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132. López-Pedrera C, Buendıá P, Cuadrado MJ, Siendones E, Aguirre MA,
Barbarroja N, et al. Antiphospholipid antibodies from patients with the
antiphospholipid syndrome induce monocyte tissue factor expression through the
simultaneous activation of NF-kappaB/Rel proteins via the p38 mitogen-activated
protein kinase pathway, and of the MEK-1/ERK pathway. Arthritis Rheumatol. (2006)
54:301–11. doi: 10.1002/art.21549

133. Sorice M, Longo A, Capozzi A, Garofalo T, Misasi R, Alessandri C, et al. Anti-
beta2-glycoprotein I antibodies induce monocyte release of tumor necrosis factor alpha
and tissue factor by signal transduction pathways involving lipid rafts. Arthritis
Rheumatol. (2007) 56:2687–97. doi: 10.1002/art.22802

134. Xie H, Zhou H, Wang H, Chen D, Xia L, Wang T, et al. Anti-b(2)GPI/b(2)GPI
induced TF and TNF-a expression in monocytes involving both TLR4/MyD88 and
TLR4/TRIF signaling pathways. Mol Immunol. (2013) 53:246–54. doi: 10.1016/
j.molimm.2012.08.012

135. Salet DM, Bekkering S, Middeldorp S, van den Hoogen LL. Targeting
thromboinflammation in antiphospholipid syndrome. J Thromb Haemost. (2023)
21:744–57. doi: 10.1016/j.jtha.2022.12.002
frontiersin.org

https://doi.org/10.1160/TH13-11-0980
https://doi.org/10.1160/TH13-11-0980
https://doi.org/10.1172/JCI19684
https://doi.org/10.1182/blood-2005-07-2636
https://doi.org/10.1182/blood-2008-11-188698
https://doi.org/10.1182/blood-2008-11-188698
https://doi.org/10.1002/art.24262
https://doi.org/10.1182/blood.V91.10.3527
https://doi.org/10.1016/0092-8674(87)90669-6
https://doi.org/10.1038/380041a0
https://doi.org/10.1096/fasebj.9.10.7615158
https://doi.org/10.1055/s-2006-933336
https://doi.org/10.1172/JCI118276
https://doi.org/10.1002/art.1780400322
https://doi.org/10.1111/j.1600-0897.1997.tb00301.x
https://doi.org/10.1111/j.1600-0897.1997.tb00301.x
https://doi.org/10.1046/j.1538-7836.2003.00119.x
https://doi.org/10.1016/S0002-9378(12)90915-1
https://doi.org/10.1016/S0002-9378(12)90915-1
https://doi.org/10.1111/j.1538-7836.2004.00896.x
https://doi.org/10.1111/j.1538-7836.2004.00896.x
https://doi.org/10.1177/107602960601200107
https://doi.org/10.1182/blood-2013-03-490318
https://doi.org/10.1182/blood-2013-03-490318
https://doi.org/10.1111/jth.13072
https://doi.org/10.1136/ard.2006.063909
https://doi.org/10.1136/ard.2006.063909
https://doi.org/10.1007/s11926-013-0324-4
https://doi.org/10.1196/annals.1422.057
https://doi.org/10.1002/art.21009
https://doi.org/10.1002/art.21009
https://doi.org/10.1182/blood-2004-05-1708
https://doi.org/10.1182/blood-2011-03-344671
https://doi.org/10.1182/blood-2011-03-344671
https://doi.org/10.1182/blood-2002-08-2349
https://doi.org/10.1182/blood-2002-08-2349
https://doi.org/10.3389/fimmu.2024.1361519
https://doi.org/10.3324/haematol.13243
https://doi.org/10.1182/blood-2004-03-0793
https://doi.org/10.1182/blood-2004-03-0793
https://doi.org/10.1126/science.abc0956
https://doi.org/10.1093/rheumatology/keab620
https://doi.org/10.1016/j.thromres.2018.07.006
https://doi.org/10.1161/JAHA.114.001369
https://doi.org/10.1172/JCI39828
https://doi.org/10.1177/0961203309360810
https://doi.org/10.4049/jimmunol.153.3.1328
https://doi.org/10.1002/art.1780400509
https://doi.org/10.1002/1529-0131(199808)41:8%3C1420::AID-ART11%3E3.0.CO;2-U
https://doi.org/10.1182/blood-2004-01-0145
https://doi.org/10.1093/intimm/dxh166
https://doi.org/10.1093/intimm/dxh166
https://doi.org/10.1002/art.21549
https://doi.org/10.1002/art.22802
https://doi.org/10.1016/j.molimm.2012.08.012
https://doi.org/10.1016/j.molimm.2012.08.012
https://doi.org/10.1016/j.jtha.2022.12.002
https://doi.org/10.3389/fimmu.2025.1527554
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2025.1527554
136. Lambrianides A, Carroll CJ, Pierangeli SS, Pericleous C, Branch W, Rice J, et al.
Effects of polyclonal IgG derived from patients with different clinical types of the
antiphospholipid syndrome on monocyte signaling pathways. J Immunol. (2010)
184:6622–8. doi: 10.4049/jimmunol.0902765

137. Zhou H, Yan Y, Xu G, Zhou B, Wen H, Guo D, et al. Toll-like receptor (TLR)-4
mediates anti-beta2GPI/beta2GPI-induced tissue factor expression in THP-1 cells. Clin
Exp Immunol. (2011) 163:189–98. doi: 10.1111/j.1365-2249.2010.04291.x

138. Xia L, Zhou H, Wang T, Xie Y, Wang T, Wang X, et al. Activation of mTOR is
involved in anti-b(2)GPI/b(2)GPI-induced expression of tissue factor and IL-8 in
monocytes. Thromb Res. (2017) 157:103–10. doi: 10.1016/j.thromres.2017.05.023

139. Brandt KJ, Fickentscher C, Boehlen F, Kruithof EK, de Moerloose P. NF-kB is
activated from endosomal compartments in antiphospholipid antibodies-treated
human monocytes. J Thromb Haemost. (2014) 12:779–91. doi: 10.1111/jth.12536

140. Colasanti T, Alessandri C, Capozzi A, Sorice M, Delunardo F, Longo A, et al.
Autoantibodies specific to a peptide of b2-glycoprotein I cross-react with TLR4,
inducing a proinflammatory phenotype in endothelial cells and monocytes. Blood.
(2012) 120:3360–70. doi: 10.1182/blood-2011-09-378851

141. Zhou H, Sheng L, Wang H, Xie H, Mu Y, Wang T, et al. Anti-b2GPI/b2GPI
stimulates activation of THP-1 cells through TLR4/MD-2/MyD88 and NF-kB signaling
pathways. Thromb Res. (2013) 132:742–9. doi: 10.1016/j.thromres.2013.09.039

142. Salemink I, Blezer R, Willems GM, Galli M, Bevers E, Lindhout T. Antibodies to
beta2-glycoprotein I associated with antiphospholipid syndrome suppress the
inhibitory activity of tissue factor pathway inhibitor. Thromb Haemost. (2000)
84:653–6. doi: 10.1055/s-0037-1614082
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