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Colorectal cancer (CRC) is one of the most common malignant tumors of the

digestive tract, with increasing incidence and mortality rates, posing a significant

burden on human health. Its progression relies on various mechanisms, among

which the tumor microenvironment and tumor-associated macrophages (TAMs)

have garnered increasing attention. Macrophage infiltration in various solid tumors

is associatedwith poor prognosis and is linked to chemotherapy resistance inmany

cancers. These significant biological behaviors depend on the heterogeneity of

macrophages. Tumor-promoting TAMs comprise subpopulations characterized

by distinct markers and unique transcriptional profiles, rendering them potential

targets for anticancer therapies through either depletion or reprogramming from a

pro-tumoral to an anti-tumoral state. Single-cell RNA sequencing technology has

significantly enhanced our research resolution, breaking the traditional simplistic

definitions of macrophage subtypes and deepening our understanding of the

diversity within TAMs. However, a unified elucidation of the nomenclature and

molecular characteristics associated with this diversity remains lacking. In this

review, we assess the application of conventional macrophage polarization

subtypes in colorectal malignancies and explore several unique subtypes defined

from a single-cell omics perspective in recent years, categorizing them based on

their potential functions.
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GRAPHICAL ABSTRACT

The distinctions between classical subtypes and new variants.
1 Introduction

Colorectal cancer (CRC) is one of the most prevalent malignant

tumors of the digestive tract and the second leading cause of cancer-

related mortality worldwide (1). Both its incidence and mortality

rates are rising annually (2), In 2020, it was estimated that there

were over 1.9 million new cases of CRC and approximately 930,000

deaths attributed to the disease. The burden of CRC is projected to

rise significantly, with an anticipated increase to 3.2 million new

cases and 1.6 million deaths by the year 2040. Most of these cases

are expected to occur in countries classified as having a high or very

high Human Development Index (3), posing a significant challenge

to public health. Early-stage CRC is typically managed with surgical

resection combined with chemotherapy. However, due to its high

malignancy and substantial risks of metastasis and recurrence,

traditional treatment outcomes are often unsatisfactory (4).

Identifying new therapeutic targets is, therefore, crucial for

improving the prognosis of patients with CRC.
Abbreviations: CRC, colorectal cancer; TAM, tumor-associated macrophage;

scRNA-seq, single-cell RNA sequencing; MMP, matrix metalloproteinase.
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Current research has identified that the mechanisms underlying

colorectal cancer (CRC) are diverse, including factors such as gut

microbiota (5, 6) and epigenetic alterations (7, 8). However, the

complex molecular mechanisms remain to be further elucidated.

There is substantial evidence indicating that immunoediting plays a

significant role in tumors (9, 10). In CRC patients, immune balance is

disrupted (11), and the interactions between tumor cells and the tumor

microenvironment (TME) facilitate further tumor progression (12, 13).

Macrophages, crucial immune components of the TME, play a

significant role in recognizing and phagocytosing pathogens as well as

necrotic cells, thereby contributing to immune regulation and

maintaining tissue homeostasis (14, 15). Under various physiological

and pathological conditions, macrophages can differentiate into distinct

phenotypes based on their gene expression profiles. These diverse

subpopulations coordinate tumor progression, metastasis, and

invasion by secreting specific cytokines and chemokines (16).

Macrophage heterogeneity offers new insights into the diagnosis,

treatment, and prognosis of CRC.

Tumor-associated macrophages (TAMs) are among the most

abundant immune cells in tumor tissues. Traditionally,

macrophages have been classified into two subtypes: M1
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(classically activated or proinflammatory) and M2 (alternatively

activated or anti-inflammatory) (17). The M1 subtype is

characterized by tumoricidal properties, while the M2

macrophages exhibit anti-inflammatory characteristics that can

indirectly promote tumor growth (18, 19). Although this binary

classification has been widely utilized in the past, technological

advancements have expanded our understanding of the complex

state of the TME. Consequently, this dichotomy fails to accurately

capture the diversity of macrophage phenotypes present in vivo,

particularly within complex TME contexts (20–22). Furthermore,

the gene expression profiles associated with these two phenotypes

are not entirely oppositional (23). With advances in single-cell RNA

sequencing (scRNA-seq), researchers can now identify cellular

subpopulations with greater precision. This technology enables

the discovery of unique macrophage subpopulations by capturing

transcriptomic variations in macrophages under different

pathological conditions and disease stages, thereby distinguishing

various functional subsets (24, 25). Additionally, the integration of

scRNA-seq with spatial transcriptomics has enhanced the ability to

detect finer details within heterogeneous cell populations (26, 27).

This article focuses on non-classical classifications of TAMs

identified through single-cell omics research on colorectal

malignancies and explores their potential roles in tumorigenesis

and development.
2 Overview of tumor-associated
macrophages

Macrophages are phagocytic cells widely distributed in various

human tissues and organs. They play crucial roles in recognizing,

phagocytosing, and degrading apoptotic cells, tissue debris, and

pathogens, thereby contributing significantly to immune responses.

It is currently understood that macrophages within tissues have two

primary sources (28): during prenatal development, they originate

from yolk sac progenitors or hematopoietic stem cells. These

progenitor cells retain proliferative potential and can undergo

self-renewal. During organ development, they differentiate into

specific tissue subpopulations (29, 30), such as microglia in the

central nervous system and Kupffer cells in the liver. This

differentiation establishes stable communication and connections

with specialized tissue cells (31, 32). In contrast, adult macrophages

arise from infiltrating monocytes and are involved in a wide range

of physiological and pathological processes within the body. They

play central roles in various processes, including inflammation

regulation and tissue repair (33). Both types of macrophages can

coexist within specific tissues, and their respective abundance

reflects the characteristics and history of these tissues (34).

Macrophages are highly plastic cells (35) and the generation of

TAM is multifaceted. Chemokines and cytokines, such as monocyte

chemoattractant protein-1 (MCP-1) and colony-stimulating factor

1 (CSF1), along with complement cascade products, are the primary

determinants of the recruitment and localization of macrophages

within tumors. Under the influence of these factors, peripheral
Frontiers in Immunology 03
blood monocytes are locally recruited and differentiate into

macrophages, forming TAMs alongside resident tissue

macrophages (36–39). Proinflammatory cytokines produced by

tumor cells contribute to the recruitment of immune cells and

promote macrophage polarization during the early stages of

carcinogenesis. Proper activation of macrophages can exert

certain anti-tumor effects by enhancing phagocytosis and

cytotoxicity against tumor cells. Additionally, macrophages can

induce extracellular killing of tumor cells through antibody-

dependent cellular cytotoxicity (ADCC) (40).However, it is

notable that macrophages in the TME do not appear to exert

protective effects; rather, a substantial body of research indicates

that they seem to promote tumor progression in the vast majority of

circumstances (41, 42).

Based on the functions of TAM, two activation phenotypes, M1

and M2, have been studied extensively. M1 macrophages respond to

various stimuli, such as bacteria, interferon-g (IFN-g),
lipopolysaccharide (LPS), and tumor necrosis factor-a (TNF-a).
They exhibit enhanced antigen presentation and complement-

mediated phagocytosis, contributing to the inflammatory response

(43, 44). Additionally, M1 macrophages activate or recruit adaptive

immune cells and are capable of phagocytosing and killing tumor cell

(45). In this stage, M1 macrophages specifically produce cytotoxic

substances such as nitric oxide (NO) and reactive oxygen species

(ROS), which can damage tumor cells, participate in phagocytosis,

and release proinflammatory cytokines. This process further

stimulates anti-tumor immunity (46–48). Moreover, tumor cells

induce the polarization of macrophages into M2-type TAMs

through various mechanisms, including cytokine production,

metabolic abnormalities, and hypoxia (49–54). M2 macrophages

can be categorized into the subtypes M2a, M2b, M2c, and M2d

based on their activation factors (55). Subtypes M2a and M2b

primarily exert immunoregulatory functions by supporting T

helper cell 2 (Th2)-mediated responses, whereas subtypes M2c and

M2d are involved in immune suppression and tissue remodeling (56).

TAMs of the M2 phenotype predominantly inhibit tumor immune

responses by secreting immunosuppressive factors, thereby

disrupting the immune barrier and leading to an imbalance in

defense mechanisms. Additionally, they secrete growth factors such

as transforming growth factor (TGF) and vascular endothelial growth

factor (VEGF), which promote tumor proliferation and extracellular

matrix (ECM) remodeling. M2-type TAMs play a significant role in

promoting angiogenesis, tissue repair, and tumor progression (47).

In the TME, TAMs typically exhibit an M2 phenotype, which

facilitates tumor malignancy either by directly enhancing malignant

biological behaviors or by engaging in crosstalk with immune cells

present in the TME to promote tumor progression (57). However,

increasing evidence suggests that the polarization state of

macrophages is far more complex than the simplistic M1/

M2 dichotomy.

The elevation of TAMs is associated with poor prognoses in

various cancers (16, 58, 59). M2 TAMs can further promote tumor

progression (14, 57, 60, 61). This correlation primarily arises from

their tumor-promoting characteristics, which include facilitation of
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angiogenesis, immune suppression, and promotion of cancer cell

dissemination. TAMs regulate angiogenesis in the TME by releasing

pro-angiogenic factors like vascular endothelial growth factor

(VEGF), basic fibroblast growth factor (bFGF), chemokines, and

antiangiogenic substances such as thrombospondin-1 (TSP-1).

Consequently, TAMs play a complex role in vascular formation

(42, 62–64). Moreover, TAMs promote tumor progression by

suppressing immune responses (65). They achieve this by

expressing T cell immune checkpoint ligands that attract

regulatory T cells (Tregs) and by producing immunosuppressive

molecules such as transforming growth factor (TGF) and

interleukin-10 (IL-10), which impair the function of cytotoxic T

cells (CTLs) and natural killer (NK) cells (66). TAMs inhibit the

recruitment and function of T-cells via cytokines, surface immune

checkpoint ligands, and exosomes. They play a crucial role in

regulating programmed death receptor-1 (PD-1) and its ligand

PD-L1-mediated immunosuppression (67). Additionally, TAMs

can suppress T cells infiltration into tumor tissues, thereby

promoting tumor growth (39). Furthermore, TAMs secrete

matrix metalloproteinase-9 (MMP-9), which induces epithelial-

mesenchymal transition (EMT) via the transcription factor Snail,

enhancing tumor invasiveness (68). Other studies have shown that

TAMs co-localize with tumor cells undergoing EMT (69); they also

produce chemokines that facilitate distant tumor metastasis (70).

The recruitment of cancer-associated fibroblasts (CAFs) by TAMs

is associated with extracellular matrix remodeling, promoting

tumor invasion (71, 72). In summary, TAMs exhibit dynamic

roles throughout tumor development and engage in complex

interactions within the TME.
3 The constraints of classical
typological frameworks

TAMs exhibit significant heterogeneity not only among

different patients with cancer but also within various malignant

lesions of the same patient and even within specific tumor sites. The

intratumoral heterogeneity of macrophages may pose challenges for

treatment, yet it also underscores the complexity of their functions

(72–77). Due to its low resolution, traditional bulk RNA sequencing

fails to accurately represent subtle variations in cell populations

within the TME (78, 79). In contrast, single-cell RNA sequencing

(scRNA-seq) allows for a comprehensive and detailed

characterization of cellular diversity and heterogeneity at the

single-cell level (78), thereby providing a more nuanced

perspective on the complexity of TAMs. The traditional M1/M2

classification of macrophages faces certain challenges, primarily for

the following reasons: 1. Diversity of Macrophages: Macrophages

exhibit a high degree of heterogeneity in vivo, and their functions

and phenotypes are influenced by various factors and complex

interactions with the microenvironment (80–82). The relatively

simple polarization into M1 and M2 macrophages may not fully

encompass the intricate spectrum of macrophage subtypes present

in the body. For instance, studies have identified other macrophage

subtypes, such as SPP1+ TAMs (83–85) and FOLR2+ tissue-
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resident macrophages (TRMs) (86, 87), which include

populations that are significant for prognosis in patients with

cancer but do not conform to the classical M1/M2 polarization

paradigm. 2. Inaccuracy of Single Markers: The classification of M1

andM2 macrophages often relies on specific markers such as CD68,

CD163, and CXCL10. However, the expression of these markers

may overlap between different subtypes, leading to inaccuracies in

classification; thus, it is essential not to consider these markers in

isolation (88–90). Furthermore, variations in the markers used and

the experimental conditions across different studies may further

impact the classification accuracy. 3. Misunderstanding of the

Dynamic Balance: The simplistic classification of macrophages

into M1 and M2 types may lead to misconceptions regarding the

dynamic balance of macrophages in vivo. Macrophages undergo

phenotypic transitions from one subtype to another in response to

various stimuli. This dynamic change is crucial for inflammatory

responses and immune regulation; however, a binary classification

approach fails to accurately capture the true state of macrophages

(91, 92). Research has evolved from straightforward and convenient

classical M1 and M2 models to more complex models that reflect

the diverse functional spectra of macrophages (93, 94). This

increasing level of detail necessitates the distinction between the

subtypes and functions of TAMs from the perspective of single-

cell sequencing.
4 Identification of novel non-classical
macrophage subtypes at the single-
cell level in malignant
colorectal tumors

Ma et al. (94) summarized seven subgroups of TAMs identified

in various pan-cancer single-cell studies (23, 94) and classified them

based on their functions, signatures, and enriched pathways. These

subgroups include interferon-primed TAMs (IFN-TAMs), immune

regulatory TAMs (Reg-TAMs), inflammatory cytokine-enriched

TAMs (Inflam-TAMs), lipid-associated TAMs (LA-TAMs), pro-

angiogenic TAMs (Angio-TAMs), RTM-like TAMs (RTM-TAMs),

and proliferating TAMs (Prolif-TAMs). Notably, functional

overlaps and shared characteristics are present among these seven

subtypes. In subsequent sections, we outline the unique phenotypes

and functions of specific TAM subpopulations discovered in single-

cell research on CRC. Meanwhile, more concise information can be

more readily accessed in Table 1.
4.1 Pro-angiogenic TAMs

The characteristics of Angio-TAM are marked by the high

expression of angiogenesis-related features, including vascular

endothelial growth factor-A and SPP1, as well as other angiogenic

factors. These growth factors promote angiogenesis in various cancers

(95). The formation of new blood vessels plays a crucial role in tumor

progression and metastasis, where the tumor vasculature regulates

oxygen supply to support tumor growth and facilitates the
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dissemination of cancer cells (96). Additionally, this macrophage

subset may be involved in the process of EMT, another significant

process that contributes to metastasis. During EMT, epithelial cells

lose their attachment to the basement membrane and intercellular

junctions, transforming into mesenchymal cells characterized by

enhanced migratory and invasive properties (97). Furthermore,

complex interactions between this subset and cancer-associated

fibroblasts have been observed. Therefore, Angio-TAM may exert

its influence on tumor progression through multiple mechanisms.

A study (98) conducted single-cell sequencing on matched

specimens from three patients, comparing the invasive margin

(IM) of colorectal liver metastases (CLM) with adjacent normal
Frontiers in Immunology 05
areas (NA). The differentially expressed genes identified in TAMs

compared to Kupffer cells included GPNMB, TREM2, LGALS3, and

FABP4; these genes exhibited distinct expression profiles within

TAMs. Glycoprotein Non-Metastatic B (GPNMB) is a heavily

glycosylated transmembrane protein initially discovered in

melanoma cells, osteoblasts, and dendritic cells. It has been

proposed as a potential therapeutic target for CRC and is possibly

associated with poor tumor prognosis (77, 99). Furthermore,

increased GPNMB expression has been observed in macrophages

exposed to tumor-conditioned medium in vitro (100). The study

found that GPNMB+ TAMs were primarily enriched in

angiogenesis-related pathways. Spatial transcriptomic analysis
TABLE 1 Non-classical macrophage subtypes at the single-cell level in malignant colorectal tumors.

Phenotype Categorization Features/Functions Refs

SPP1+ Pro-angiogenic TAMs Enhancing the expression of CCL18 and FTL, which exhibit pro-angiogenic functions. (101)

SPP1+ Pro-angiogenic TAMs Exhibiting a high angiogenesis score. (106)

SPP1+ Pro-angiogenic TAMs Highly associated with FAP+ fibroblasts and may play a role in ECM remodeling. (107)

SPP1+ Immune regulatory TAMs The pathways of antigen processing and presentation and T-cell co-stimulation are
enriched in SPP1+TAMs.Enrichment of the Wnt signaling pathway. High expression
of MHC class II genes such as HLA-DRB5, HLA-DQA1, and HLA-DQB1.

(138)

SPP1+ Inflammatory cytokine-enriched TAMs Most of these ligands associated with lymphocyte exhaustion markers are secreted by
myeloid cells, represented primarily by SPP1+ macrophages.

(123)

SPP1+ Inflammatory cytokine-enriched TAMs The enrichment of the Wnt signaling pathway, along with the KLF, specifically KLF14
and KLF16, is observed.

(138)

SPP1+ Interferon-primed TAMs Immunosuppression and tumor promotion (84)

SPP1+ Interferon-primed TAMs High expression of CTLA-4 induces T cell exhaustion. (123)

SPP1+ Interferon-primed TAMs Highly expression of CCL20 promotes the migration and proliferation of cancer cells,
as well as remodels the tumor microenvironment to accelerate cancer progression.

(101)

SPP1+ Interferon-primed TAMs The high expression of NAMPT is associated with the immunosuppressive functions of
M2 macrophages.

(129)

MS4A4A+ Lipid-associated TAMs Highly expressed characteristic genes such as C1QA and APOE.The expression of M2
macrophage marker genes in MS4A4A+ TAMs within tumor samples is significantly
higher than that in normal tissues, indicating an immunosuppressive role.

(145)

MRC1+CCL18+ Lipid-associated TAMs A group of immunosuppressive cells exhibits significant enrichment in
metabolic pathways.

(148)

MMP12+ Pro-angiogenic TAMs Enriched in biological processes such as cell migration and angiogenesis. Differentiated
into a lineage with enhanced angiogenic capabilities through pseudotime analysis.

(111)

MMP12+ Interferon-primed TAMs The interaction between SPP1-CD44 ligands on T cells and B cells is enhanced,
thereby inhibiting T cell activation. The interaction between CD86-CTLA4 ligand-
receptor pairs on T cells and B cells is also strengthened.

(111)

MK67+ Proliferating TAMs The expression of MKI67 may be associated with its proliferative function. (106)

GPNMB+ Pro-angiogenic TAMs The functionality is enriched in angiogenesis and is spatially closer to the tumor
margin in spatial transcriptomics.

(98)

C1QC+ RTM-like TAMs Exhibiting phagocytic and antigen-presenting functions, while also playing a potential
role in the recruitment or activation of T cells. It is closely associated with certain
specific RTMs and shares some similarities in functional phenotype.

(85)

C1QC + Pro-angiogenic TAMs Interaction with MFAP5+ fibroblasts in tumor tissue and facilitating
tumor progression.

(115)

APOE+CTSZ+ Interferon-primed TAMs High expression of immunosuppressive markers. The high expression of CXCL16
exacerbates immune suppression through its interaction with CXCR6 on Treg cells.

(135)
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1526668
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2025.1526668
revealed that these cells were localized closer to the tumor margins

and were almost absent from the NA region, suggesting their

potential roles in promoting angiogenesis.

In a study that integrated three datasets (101), CCL18 was

enhanced in SPP1+ macrophages, which accelerated cancer

progression by promoting angiogenesis (102, 103). The ferritin light

chain (FTL) also possesses pro-angiogenic properties (104, 105), and its

expression is upregulated in SPP1+ macrophages. A comprehensive

investigation of the immune phenotypes associated with colorectal

cancer liver metastases (106) identified three types of TAMs. Among

them, SPP1+ TAMs were primarily enriched at the hepatic metastases.

Subsequently, the clinical relevance of SPP1+ TAMs was explored. In

the TCGA cohort, patients exhibiting higher levels of SPP1+ TAM

characteristics were associated with poorer overall survival (OS)

compared to untreated patients. Notably, the angiogenesis score for

SPP1+ TAMs was the highest, corroborating previously established

findings on their angiogenic function in CRC (85). A significant study

focusing on FAP+ fibroblasts (107) identified tumor-specific

macrophages that were highly associated with FAP+ fibroblasts,

namely SPP1+ TAMs. These macrophages exhibit elevated

expression levels of SPP1 and MARCO (Macrophage Receptor with

Collagenous Structure, a scavenger receptor) (108, 109), and their

proportion among myeloid cells in tumor samples is significantly

higher than that in normal tissues. Subsequently, the study revealed a

strong correlation between FAP+ fibroblasts and SPP1+ macrophages.

Patients exhibiting high levels of both FAP+ fibroblasts and SPP1+

macrophages demonstrated the shortest progression-free survival

period, suggesting the potential synergistic effects of these cell types

in promoting tumor progression. Immunofluorescence labeling

indicated that SPP1+ and FAP+ cells were in close proximity within

CRC tissues, implying potential crosstalk between these two cell types.

FAP+ fibroblasts and SPP1+ macrophages appear to form an

interactive network that supports their maintenance and function.

Both cell types may play critical roles in extracellular matrix (ECM)

remodeling, possibly fostering the formation of collagen-rich areas

within the TME (110).

A recent study (111). MMP12, a member of the matrix

metalloproteinase (MMP) gene family secreted by macrophages

(112), may serve as a marker of poor tumor prognosis (113, 114).

The authors observed that the proportion of MMP12+ TAMs

gradually increased across normal tissues, tumor tissues, and liver

metastatic samples. Furthermore, MMP12-expressing macrophages

exhibited high expression levels in various biological processes,

including cell migration, lipid metabolism, angiogenesis, negative

regulation of apoptosis, negative regulation of T-cell receptor

signaling pathways, and negative regulation of T-cell proliferation.

Using Monocle2 to construct the differentiation trajectory of MMP12

+ macrophages revealed that, with the progression of pseudotime, the

proportion of these cells increased in both tumor and liver metastatic

samples. This differentiation led to two distinct branches; one branch

was associated with enhanced angiogenic capacity.

In a single-cell study exploringMFAP5+ fibroblasts combined with

spatial transcriptomics (115), MFAP5+ fibroblasts and macrophages

were co-enriched in the fibroblast region, while certain adaptive
Frontiers in Immunology 06
immune cells, such as B and T cells, were notably absent from this

area. TAMs expressing high levels of C1QC, C1QA, and C1QB were

identified as C1QC+ TAMs. Further investigation revealed a significant

positive correlation between the infiltration of MFAP5+ fibroblasts and

C1QC+ macrophages. The signature scores for these cell types were

calculated using two algorithms: ssGSEA (116) and AddModuleScore

(117). These results indicated that MFAP5+ fibroblasts and C1QC+

macrophages were enriched within the fibroblast region. In normal

tissues, there were few C1QC+ macrophages surrounding MFAP5+

fibroblasts, suggesting that crosstalk between these cell types occurred

primarily within the tumor tissues. When visualizing the expression of

ligands and receptors in the CSF/IL34/CSF1R signaling axis, it was

noted that in normal tissues, MFAP5+ fibroblasts predominantly

secreted CSF-1, which is recognized as a classic tumor-promoting

factor that recruits macrophages to tumor sites and facilitates the

polarization of TAMs (118), to interact with C1QC+ macrophages;

however, in tumors, MFAP5+ fibroblasts exclusively released IL-34,

another cytokine capable of binding to CSF1R on C1QC+

macrophages. IL-34 promotes the differentiation into the M2

phenotype across various cancers through its interaction with CSF1R

while also facilitating the dysregulation of the TME toward a pro-

tumorigenic state (119–122). These findings suggest that MFAP5+

fibroblasts regulate the phenotype of C1QC+ macrophages via the IL-

34/CSF1R signaling pathway. In summary, complex interactions exist

between fibroblasts and TAMs, leading to their polarization and

functional transformations.
4.2 Interferon-primed TAMs

The IFN-TAM is a subtype that tends to exhibit

immunosuppressive characteristics, characterized by high

expression of IFN-regular genes. These macrophages’ primary

functions include T cell exhaustion, immune suppression,

inhibition of T cell activity, promotion of tumor cell proliferation,

and recruitment of regulatory Treg.

A large-scale study (84) indicated that SPP1+ macrophages may

exhibit immunosuppressive and tumor-promoting effects in patients

with CRC, aligning with functions defined as IFN-TAMs. Japanese

researchers (123) confirmed that cytotoxic T lymphocyte-associated

antigen-4 (CTLA-4) is highly expressed in SPP1+ macrophages at the

tumor invasion front, which are considered to be markers of

exhaustion. This suggests that these macrophages deplete other

immune cells at the invasive front, leading to T cells inactivity

against tumor cells and T lymphocyte exhaustion (124, 125). A study

integrating three datasets (101) revealed enhanced expression of

CCL20 in SPP1+ macrophages, which is believed to facilitate cancer

cell migration and proliferation, while remodeling the TME to

accelerate cancer progression (126–128). Additionally, research

conducted by Korean scholars (129) demonstrated elevated levels of

nicotinamide phosphoribosyl transferase (NAMPT) expression in

SPP1+ TAMs. This finding may be associated with the

immunosuppressive function of M2-type macrophages, which

contribute to the immunosuppressive microenvironment within CRC.
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In the study by Fan et al. (111), Monocle2 was utilized to

construct a differentiation trajectory of MMP12+ macrophages,

revealing an additional branch characterized by enhanced TGF-b
signaling and oxidative stress activity. In metastatic liver samples,

MMP12 macrophages exhibit increased interactions with T and B

cells through the SPP1-CD44 ligand (130). Macrophages express

SPP1, which inhibits T cells activation via its interaction with CD44

(131), potentially promoting liver metastasis. Furthermore, the

interaction between MMP12 macrophages and the CD86-CTLA4

ligand-receptor pair in T and B cells was significantly enhanced

compared to that in normal samples; this interaction is critically

important for tumor immunity (132–134).

Additionally, a study integrating two sets of CRC single-cell

data focusing on metabolism (135) revealed that a subset of APOE +

CTSZ + TAMs was highly enriched in the hypoxic group and

exhibited elevated anti-inflammatory and M2-like scores.

Differential gene expression analysis indicated that known

immunosuppressive markers such as APOE, CTSZ, SEPPI,

MRC1, and CD163 were significantly upregulated in the APOE +

CTSZ + TAM group. Subsequently, the authors conducted

receptor-ligand interaction analyses and discovered chemokine-

receptor pairs between APOE + CTSZ + TAMs and Treg cells,

including CXCL16-CXCR6. Notably, CXCL16 was highly expressed

in APOE + CTSZ + TAMs, while CXCR6 was predominantly

expressed in Treg cells. This suggests that APOE + CTSZ +

TAMs may utilize the CXCL16 signaling pathway to recruit Tregs

to tumor sites, thereby further exacerbating the immunosuppressive

TME (136, 137).
4.3 Immune regulatory TAMs

The characteristic functions of Reg-TAM include T cell

suppression, antigen presentation pathways, and immune

checkpoints. In a study conducted by Che et al. (76), Reg-TAM

was defined as exhibiting high expression of major histocompatibility

complex (MHC) and co-stimulatory genes, which are indicative of

immune activation and anti-tumor activity; however, it also shows

elevated expression of immunosuppressive genes. This “double-

agent” role in immune modulation suggests a complex interplay

between anti-tumor and pro-tumor activities.

Reg-TAMs refer to immune regulatory TAMs, in a previous

study (138), four macrophage subpopulations were identified, with

C1QC+ and CD55+ macrophages preferentially enriched in

adjacent tissues. SPP1+ and CXCL5+ macrophages, primarily

enriched in tumor tissues, were designated as TAMs. Notably,

SPP1+ TAMs exhibited both pro- and anti-inflammatory

phenotypes. The authors conducted gene set variation analysis

(GSVA) (139) and found that SPP1+ TAMs significantly enriched

the pathways of “antigen processing and presentation” and “T-cell

co-stimulation.” Furthermore, the authors observed that SPP1 +

TAM exhibited enrichment in the Wnt signaling pathway, which

may support tumor growth. Additionally, using the Monocle2

algorithm to reconstruct pseudo-time trajectories (140) revealed
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that SPP1+ and C1QC+ TAMs represent two distinct branches in

the monocyte differentiation pathway. Consistent with the

abundant antigen processing and presentation pathways observed

in SPP1+ TAMs, there was elevated expression of MHC class II

genes, such as HLA-DRB5, HLA-DQA1, and HLA-DQB1 (141)

compared with the CXCL5+ TAM subpopulation. This further

corroborates the complexity of the immune functions associated

with this particular subpopulation. Based on this evidence, SPP1+

TAMs can be classified as immune regulatory TAMs.
4.4 Inflammatory cytokine-enriched TAMs

The primary characteristic of Inflam-TAMs is the expression of

inflammatory cytokines, which may actively recruit and regulate

immune cells in tumor-associated inflammatory responses, thereby

promoting inflammation. Additionally, Inflam-TAMs may be

involved in the Wnt signaling pathway as well as immune

checkpoint responses.

One study indicated that, at the forefront of tumor invasion,

two populations of tumor cells co-localized more frequently with

SPP1+ macrophages than with other cell types (123). The authors

analyzed the expression of lymphocyte exhaustion markers and

various ligands associated with these markers such as PD-1/PD-L1.

Most of these ligands are secreted by myeloid cells, represented

primarily by SPP1+ macrophages, indicate that SPP1+ TAM may

deplete other immune cells at the forefront of tumor invasion. To

identify populations with lymphocyte recruitment capabilities, the

authors analyzed the expression of chemokines and cytokines that

induce lymphocytes, as well as the corresponding receptors for

these molecules. The results revealed that certain chemokine ligands

are highly expressed in SPP1+ TAM. In another study (138), SPP1+

TAMs were found to be enriched in the Wnt signaling pathway,

which may support tumor growth (142–144).
4.5 Lipid-associated TAMs

LA-TAMs express characteristic genes involved in lipid

metabolism, ECM degradation, and complement activation.

Notable expressions associated with this subgroup encompass

APOC1, APOE, C1QA, CCL18, MRC1, and MARCO. This

subgroup is enriched in pathways related to lipid metabolism and

oxidative phosphorylation (76), potentially exhibiting

immunosuppressive functions that may facilitate tumor progression.

In a study on mucinous colorectal adenocarcinoma (MCA)

(145), a population of MS4A4A+ TAMs characterized by high

expression levels of C1QA and APOE was identified. Pseudotime

analysis indicated that this group exhibited elevated gene expression

during the later stages of tumorigenesis. Additionally, these cells

express several markers associated with macrophage polarization,

including MS4A4A, C1QB, C1QC, and SPP1. The authors also

found that the expression of M2 macrophage marker genes in

MS4A4A+ TAMs within tumor samples was significantly higher
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than that in normal tissues, suggesting a pro-tumor role for these

cells in MCA progression. Previous studies have demonstrated that

MS4A4A mediates M2 polarization of macrophages through

activation of the PI3K/AKT and JAK/STAT6 pathways (146, 147).

In the TCGA cohort, the authors validated that high expression

levels of MS4A4A were correlated with poor prognosis.

Experimental evidence further indicates that the proportion of

MS4A4A+ TAMs is markedly enriched within the MCA TME,

promoting immune suppression through interactions with specific

tumor cells.

Another study (148) identified the specific presence of certain

immunosuppressive cells in liver metastases, with a marked increase

in SPP1+ TAMs and MRC1+ CCL18+ TAMs in colorectal cancer

liver metastases. Notably, MRC1+ CCL18+ TAMs exhibit

characteristics similar to Kupffer cells (149), suggesting a potential

hepatic origin. Similar findings were observed by multiplex

immunohistochemistry (mIHC). The authors also discovered that

metastatic tumor cells tend to express the ligand CD47, an

important “don’t-eat-me” signal (150), which may influence the

anti-tumor immunity of MRC1+ CCL18+ macrophages via its

corresponding receptor SIRPA (151). Differential expression of

key molecules related to macrophage polarization was noted

among MRC1+ CCL18+ TAMs; APOE exhibited anti-

inflammatory properties and promoted M2 conversion (152),

whereas MARCO (153) was significantly upregulated in liver

metastasis-enriched MRC1+ CCL18+ macrophages. In contrast,

we found that the enriched population of MRC1+ CCL18+

macrophages within CRC expressed higher levels of inflammatory

cytokines, including TNF, IL1B, CCL3, and CCL4, indicating that

even within the same subpopulation, distinct phenotypes may

emerge in different tissues. A similar molecular profile shift was

observed in SPP1+ macrophages, highlighting the functional

changes shared by these immune cells at primary and metastatic

tumor sites.
4.6 RTM-like TAMs

RTM-like TAMs refer to a group of macrophages that are

characterized as being similar to normal RTMs. A study (85)

identified two distinct functional states of macrophages in CRC:

C1QC+ and SPP1+ macrophages. Specifically, C1QC+ macrophages

exhibit phagocytic activity and antigen presentation capabilities,

simultaneously, they may play a potential role in the process of

recruiting or activating T cells. whereas SPP1+ macrophages

are associated with promoting angiogenesis and facilitating

tumor progression. Patients with high SPP1+ and low C1QC+

macrophage levels tend to have poorer prognoses. Through

analyses such as RNA velocity, it has been demonstrated that

C1QC+ TAMs are closely associated with a specific subset of

RTMs and exhibit certain functional phenotypic similarities.

Therefore, it is reasonable to propose that C1QC+ TAMs represent

a type of RTM-like TAMs. Furthermore, only C1QC+ TAMs were

identified in the colonic mucosa of individuals with ulcerative colitis

and healthy subjects, whereas SPP1+ TAMs were not detected (154).
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4.7 Proliferating TAMs

The research on proliferating TAMs is limited, primarily

characterized by the expression of the proliferation marker

MKI67. In the study conducted by Liu et al. (106), it was noted

that MKI67+ TAMs exhibit similar marker genes to those

previously characterized in C1QC+ TAMs; however, they

uniquely express MKI67, which may be related to their

proliferative function. Furthermore, RNA velocity analysis

revealed a strong directional transition from MKI67+ TAMs

toward C1QC+, further indicating that this population of TAMs

possesses high proliferative capacity.
5 Discussion

CRC is one of the most prevalent malignant tumors worldwide,

with an increasing annual incidence rate and a complex pathogenesis.

Based on the role of TAMs in cancer and their high plasticity,

several therapeutic strategies targeting TAMs have been developed.

For example, the reduction and depletion of TAMs are influenced by

CSF1.Clinically, AMG 820, a fully human anti-CSF1 receptor

antibody, inhibits the binding of its ligand CSF1 to interleukin

34 (IL-34), thereby preventing subsequent ligand-mediated receptor

activation. This results in a decrease in the accumulation of

immunosuppressive TAMs in solid tumors (155). Chemokine

ligand 2 (CCL2) recruits monocytes expressing chemokine receptor

2 (CCR2) from the peripheral blood to the tumor site, where

they further mature into TAMs (156). Therapeutic blockade of the

CCL2/CCR2 axis suppresses the recruitment, infiltration, and M2

polarization of inflammatory monocytes mediated by TAMs. This

leads to the reversal of immune suppression within the TME and

activates anti-tumor CD8+ T cell responses (157). Clodronate is a

chemical agent that induces macrophage depletion and significantly

reduces TAMs in the TME, thereby diminishing their pro-angiogenic

effects (158). The triggering receptor expressed on myeloid cell

2 (TREM2) represents a potential therapeutic target for modulating

immunosuppressive TAMs (159). The use of TREM2 inhibitors and

similar tools selectively eliminates immunosuppressive macrophages,

restores normal immune responses, and inhibits tumor growth (160).

Additionally, TAMs can be repolarized into M1-like macrophages

to regain their anti-tumor properties. Toll-like receptors (TLRs) are

crucial pathogen-recognition receptors expressed by immune cells.

The utilization of TLR agonists is an effective strategy for rapidly

activating both innate and adaptive immunity (161). Following TLR-

3 stimulation, the upregulation of M1-specific markers, such as major

histocompatibility complex class II molecules (MHC II), and co-

stimulatory molecules, such as CD86, CD80, and CD40, is observed

in M2 macrophages. In contrast, there is a decrease in the expression

of M2 markers, including CD206, Tim-3, and proinflammatory

cytokines. This phenotypic shift effectively inhibits tumor growth

(162). In addition, TAMs exhibit anti-tumor properties that can be

leveraged. For instance, using SIRP1a-CD47 inhibitors and anti-

MS4A4A antibodies, certain unique TAM subpopulations can be

utilized to impede tumor growth or restore T cell-mediated anti-
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tumor immunity (147, 163). Furthermore, TAMs express PD-1, and

the expression level of PD-1 is negatively correlated with the

phagocytic capacity of macrophages. Blocking the PD-1/PD-L1

pathway can enhance macrophage-mediated phagocytosis of tumor

cells and inhibit tumor progression (164). Macrophages are critical

components of the complex interplay between the immune system

and tumors; thus, they represent significant therapeutic targets for

cancer prevention and treatment. In response to tumor stimuli,

TAMs undergo M2-like polarization, promoting tumor growth and

severely affecting prognosis. Therefore, the development and

application of drugs based on TAMs and the TME are of

substantial significance (36).

The article discusses several specific subpopulations of tumor-

associated macrophages (TAMs) that have been the focus of various

treatment-related studies. One study (165) demonstrated that the

knockout of SPP1 significantly inhibited the infiltration of M2

TAMs in xenograft tumors, while RNA aptamer-based blockade

of SPP1 markedly suppressed tumor growth and M2 TAM

infiltration in mouse models. Additionally, literature reports (166)

indicate that a certain compound can downregulate SPP1 both in

vitro and in vivo, leading to tumor remission in different mouse

models of cancer. Research by Zhang et al. (167) demonstrated that

targeting C1Q+ TAMs effectively alleviates immune suppression

and enhances the efficacy of immune checkpoint blockade therapy.

These findings suggest that specific subpopulations of macrophages

may serve as potential targets for therapeutic intervention, thereby

presenting new opportunities for cancer treatment.

TAMs, which differentiate from monocytes, play a crucial role in

tumor immunity in CRC. TheM1/M2 polarization subtypes provide a

foundational framework for summarizing certain functions of

macrophages; however, an increasing body of research (94, 168) has

demonstrated the complexity of TAM functions and phenotypes. The

advent of technologies such as single-cell RNA sequencing (scRNA-

seq) has further substantiated these findings at a more precise level,

emphasizing the necessity of leveraging new techniques to enhance

existing molecular identification systems based on previous

knowledge. However, given the limited number of single-cell studies

focusing on specific TAM subpopulations, the relationships among

these unique subtypes still require further investigation. Additionally,

some TAM subtypes identified in previous studies are challenging to

classify within the existing functional subsets based on their

characteristics, transcription factors, enriched pathways, and

predicted functions. For instance, in a study by Bao et al. (169), a

distinct population of S100A9+ macrophages was identified, leading

to an immunosuppressive phenotype cluster described as immune

tolerance in CRC at the single-cell level. However, additional

information is needed for a more accurate characterization of this

subgroup. In another study integrating CRC tissues with adjacent

normal tissues (170), seven specific macrophage subpopulations were

identified. Among these, IDO1+ TAMs were the only macrophage

subtype predominantly present in CRC tissues. It has been observed

that IDO1+ macrophages interact with various cell types; however, a

clear understanding of these interactions is still lacking. Several large-

scale pan-cancer studies utilizing single-cell analyses (171, 172) have

identified unique subpopulations. For example, MMP9+ TAMs may
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play a role in tumor tissue remodeling (173–175), CX3CR1+ TAMs

may exhibit unique phagocytic patterns (176, 177), ECM-associated

TAMs (ECMMac) involved in extracellular matrix remodeling are

upregulated (178, 179), and SPP1AREGMac exhibit distinct

distribution within tumor tissues. This evidence further underscores

that the polarization of macrophages into M1 and M2 phenotypes is

not the sole critical factor in cancer. Therefore, the functional diversity

of macrophages should be comprehensively considered. With

sufficient research, it may become possible to establish a novel

molecular classification system for CRC based on TAM

functionality. Such an approach would allow for a more detailed

characterization of TAM heterogeneity, thereby facilitating the

development of targeted therapies for specific TAM populations

in CRC.
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