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the IL-10-induced enhancement
of mast cell responses during
food allergy
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1Department of Pharmaceutical and Administrative Sciences, Western New England University,
Springfield, MA, United States, 2Department of Nutritional Sciences, University of Connecticut, Storrs,
CT, United States, 3Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield,
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Background: The IL-33/ST2 axis plays a pivotal role in the development of IgE-

mediated mast cell (MC) responses during food allergy. We recently

demonstrated that the pleiotropic cytokine, IL-10, not only exerts

proinflammatory effects on IgE-mediated MC activation, but also promotes IL-

33-induced MC responses. However, whether IL-33 is necessary for IL-10’s

proinflammatory effects has not been examined.

Methods: To therefore determine the role of the IL-33/ST2 axis in this pathway,

we assessed the effects of IL-10 on IgE-mediated MC activation and food allergy

development in wild-type (WT) and ST2-/- mice.

Results: IL-10 stimulation significantly enhanced IL-33 gene expression, ST2

receptor expression, cytokine production, mMCP-1 secretion, and proliferation

in IgE and antigen-activated bone marrow-derived MCs (BMMCs) fromWTmice.

ST2-/- BMMCs exhibited reduced cytokine secretion in response to IgE-

dependent activation. However, IL-10 enhanced cytokine production, mMCP-1

secretion, and proliferation in these cells as well. To further assess the role of IL-

10, food allergy was induced in WT and ST2-/- mice subjected to antibody-

mediated IL-10 depletion. IL-10-depleted WT mice exhibited a significant

attenuation in MC-mediated responses to OVA challenge. While ST2-/- mice

also exhibited a profound suppression of MC responses, IL-10 depletion had no

additional effects. However, ST2-/-/IL-10-/- mice exhibited further decreases in

OVA-IgE and antigen-specific MC activation compared to ST2-/- mice.

Conclusion: Our data demonstrates that IL-10 can enhance MC responses in

both WT and ST2-/- mice, further corroborating its proinflammatory effects on

MCs and suggesting that they are not regulated by IL-33 signaling.
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Introduction

Allergic sensitization to food allergens has been steadily increasing

in theWestern world (1–3). Mast cell (MC) activation induced by food

allergen-specific IgE antibodies plays a critical role in the development

of the allergic response, leading to various proinflammatory effects

including vasodilation, smooth muscle hyperreactivity, and in rare

cases, systemic anaphylactic reactions (3–6). Various endogenous and

environmental factors are known to exert stimulatory effects onMCs to

promote allergic sensitization. Of these, epicutaneous sensitization with

food antigens leading to the production of the alarmin cytokine, IL-33,

by epithelial cells, has been shown to have a prominent effect on MC

activation and function (7, 8). Furthermore, we and others have shown

that various Th2-derived cytokines such as IL-3, IL-4, IL-9 and IL-10

can have critical roles in promotingMC activation and function during

food allergy (9–16).

We recently demonstrated that the pleiotropic cytokine, IL-10,

has unexpected pro-inflammatory effects on MC responses (14, 17,

18). IL-10 promoted the activation and function of both IgE-

activated and IL-33-stimulated MCs, leading to enhanced MC

responses during food allergy (14, 17), passive anaphylaxis (14),

and type 2 inflammation (18). In the absence of IL-10, food allergy

development was attenuated, leading to decreased MC expansion

and IgE-mediated MC activation (14, 17). Furthermore, the transfer

of either IL-10-producing CD4+ T cells or WT MCs restored the

development of food allergy in IL-10-/- mice (14). The

proinflammatory effects of IL-10 on MCs were also observed on

bone marrow-derived MCs (BMMCs) in cell culture (14, 18). IL-10

directly promoted the proliferation and survival of these cells and

enhanced the effects of IgE and/or IL-33-induced activation leading

to increased secretion of granule contents and the production of

type 2 cytokines such as IL-13 (14, 18). These effects correlated with

enhanced expression of the FceRI and ST2 receptors on MCs,

suggesting that IL-10 enhances the responsiveness of MCs to their

respective ligands (14, 18). These data are consistent with several

other reports demonstrating similar effects of IL-10 on MCs both

during allergic responses and other diseases (19–25).

In a similar vein, we recently also demonstrated a critical role for

IL-33 in inducing MC expansion and activation during food allergy

development (26). IL-33 is a potent stimulator of MCs and can

promote both IgE-dependent and independent MC-mediated

inflammation (27–32). MCs constitutively express the IL-33 receptor,

ST2 (also called ST2L), which promotes MC differentiation and

survival, induces antigen-independent degranulation, and elicits the

production of cytokines such as IL-6 and IL-13 (27, 33–35).

Furthermore, MCs activated with IgE and antigen can produce IL-33

(35, 36) whereas IL-33-respondingMCs have been shown to potentiate

IgE-mediated responses (7, 8, 36–42).

We therefore wondered whether the effects of IL-10 onMCs may

be regulated by IL-33 signaling and investigated the role of IL-10 on

MC activation and function during food allergy development in

ST2-/- mice. Our data demonstrate that IL-10 enhancesMC responses

in both WT and ST2-/- mice, suggesting that IL-33 signaling is not
Abbreviations: OVA, Ovalbumin; WT, Wild-type; BMMCs, Bone marrow

derived MCs.
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required for IL-10’s effects either during IgE-mediated MC activation

or food allergy. Furthermore, while both IL-33 and IL-10 were

independently required for full MC responsiveness during food

allergy, IL-10 deficiency further decreased MC responses in ST2-/-

mice. Collectively, these data demonstrate that IL-10 is critical for

allergen-specific MC responses in mice and that its proinflammatory

effects extend beyond the IL-33/ST2 signaling axis.
Methods

Animals

BALB/c mice were purchased from The Jackson Laboratory and

Envigo and used as WT controls in all experiments. IL-10-/- mice on

the BALB/c background were purchased from The Jackson

Laboratory. ST2-/- mice on the BALB/c background are a kind

gift of Dr. Andrew McKenzie, Medical Research Council, United

Kingdom and Drs. Paul Bryce and Gurjit Khurana Hershey. IL-10-/-

and ST2-/- mice were crossed to generate ST2-/-/IL-10-/- mice. All

mice were bred in our facilities and all animal research was

performed as approved by the IACUCs at the respective

institutions, Western New England University (protocol no. 2019-

S1) and the University of Connecticut (protocol no. A22-048).
BMMC culture

BMMCs were generated from naïve WT BALB/c and ST2-/-

animals as previously described (14). Briefly, bone marrow cells

were collected from the tibia and femurs of animals and cultured

with 10 ng/ml of rIL-3 and rSCF (Shenandoah) for >4 weeks.

Harvested BMMCs were positive for c-Kit and FceRI.
BMMC activation

1 million BMMCs/ml were cultured in triplicate with 10 ng/ml

IL-3 and SCF. Cells were activated by pre-sensitizing with 1 µg/ml

DNP-IgE (clone SPE7, Sigma) or vehicle (medium), followed by

treatment with 200 ng/ml DNP-BSA (14, 43). Some groups of cells

were treated with 20 ng/ml of rIL-10 and/or rIL-33 (Biolegend) for

various time periods (including 6 hours and 24hrs) prior to

challenge with DNP-BSA. Thirty minutes to an hour after

activation with DNP-BSA, cells were collected for isolation of

RNA and cDNA was created. The cDNA was then used to assess

the expression of various cytokine genes as described in the

manuscript. In other experiments, supernatants were collected 6-

24h later for the assessment of secreted cytokines by ELISA.
Quantitative PCR analysis and ELISAs

Quantitative RT-PCR was performed as previously described

using Taqman probes (14, 43). The expression of cytokine genes

(IL-4, IL-5, IL-13, IL-10, IL-33, IFN-g) was calculated relative to
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GAPDH transcripts. ELISAs for mMCP-1 (Thermofisher), IL-4, IL-

5, IL-6, TNF-a and IFN-g (Biolegend), IL-13 (R&D Systems), and

OVA-IgE were performed according to manufacturers’ protocols as

previously described (14, 43).
BMMC proliferation

BMMCs were grown in rIL-3 and rSCF as described above. Some

groups of cells were treated with 20 ng/ml of rIL-10. Cells were

counted daily for 1-3 days and live cells were enumerated on the basis

of trypan blue exclusion or using a quantitative tetrazolium reduction

cell proliferation assay (MTS assay kit by Abcam). Cell proliferation

was calculated based on OD using the formula: (OD of samples –OD

of untreated control)/(OD of untreated control × 100).
b-hexosaminidase assay

BMMCs were cultured in the presence or absence of 20 ng/ml

rIL-10 for 24 hours. Cells were activated with IgE and antigen and

b-hex activity was assessed as previously described (44).
Flow cytometry

Cultured BMMCs were resuspended in staining medium (SM)

containing 1X HBSS, HEPES buffer, and 2% fetal calf serum and

incubated with mAbs against mouse c-Kit, FceRI, and ST2

(Biolegend). Stained cells were then washed and assessed

phenotypically by flow cytometry as previously described (18).
Food allergy regimen

To induce food allergy, WT, IL-10-/-, ST2-/- and IL-10/ST2-/- mice

were i.p. immunized with 50 mg chicken egg OVA in 1 mg alum twice

(two weeks apart), as previously described (14, 43, 45). Four weeks

later, mice were challenged i.g. with 50 mg OVA on 6 alternating days.

Control animals were i.p. sensitized but not challenged with OVA. To

supplement knockout data, some groups of mice were also treated with

blocking antibodies for IL-10. In these experiments, mice were treated

i.p. with 100 mg purified anti-IL-10 (Biolegend) 6 different times

immediately prior to OVA challenges. Mice were sacrificed one hour

after the 6th challenge with OVA, and food allergy parameters were

assessed as previously described (14, 43, 46). Blood was collected for

evaluation of antibodies andmMCP-1 in serum. Jejunumwas collected

for histological assessment of MCs and evaluation of cytokine gene

expression by RT-PCR as described above.
Measurement of intestinal anaphylaxis

Intestinal anaphylaxis was assessed in challenged mice by

scoring the percentage of animals exhibiting allergic diarrhea for

one hour after OVA challenge (14, 46).
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Histological analysis and enumeration
of MCs

Intestinal MCs were enumerated as we have previously

described (14). Briefly, paraffin-embedded jejunal sections were

stained with chloroacetate esterase (CAE) and MCs were counted

in complete cross-sections. Data are represented as the average

numbers of MCs in 3 high-powered fields (HPF).
Passive anaphylaxis

WT and ST2-/- were sensitized i.v. with 6 mg DNP-IgE (clone

SPE7, Sigma). 24h later, they were challenged i.v. with 75 mg of

DNP-BSA, and changes in core body temperature were recorded

using subcutaneously placed transponders (Biomedic Data

Systems). To assess the effects of anti-IL-10 on the development

of passive anaphylaxis, some mice were injected i.p. with 400 mg rIL-
10 concurrently with the DNP-IgE injection.
Statistical analysis

Data are expressed as mean plus or minus standard error of

mean, unless stated otherwise. Statistical significance comparing

two groups of mice was determined using the unpaired or paired

Student’s t-test as appropriate. Two-way analysis of variance was

used to calculate differences between multiple groups.
Results

IL-10 enhances ST2 expression and
promotes cytokine production in
IL-33-stimulated MCs

We have previously demonstrated that IL-10 can enhance FceRI
expression and promote IgE-mediated activation in MCs (14).

Similarly, we recently observed that IL-10 can also significantly

enhance the expression of the IL-33 receptor, ST2, and promote

IL-33-induced type 2 cytokine production (18). As shown in

Figure 1A, treatment with IL-10 enhanced ST2 expression on WT

BMMCs (Figure 1A). This was further increased in cells that

were cultured with IL-10 and activated with IgE/Ag, suggesting that

IL-10 can enhance IL-33 responsiveness during IgE-mediated

activation (Figure 1A).

IL-33 signaling also plays a critical role in the development of

allergic responses and endogenously produced IL-33 has been

shown to regulate IgE-mediated MC activation (47, 48). To

therefore further evaluate the effects of IL-10, we assessed

whether IL-10 can also enhance IL-33 production in IgE/Ag-

activated cells. As observed in Figure 1B (and data not shown),

while we could not detect any IL-33 protein secretion, IL-10

significantly enhanced the transcriptional levels of IL-33 in IgE-

activated cells. We have previously shown that IL-10 can also

enhance the production of cytokines such as IL-6 and IL-13 in
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IL-33-stimulated MCs (18). We therefore wondered whether IL-10

may have similar effects on IL-33 production in these cells.

Interestingly, as observed in Figure 1C, IL-10 pre-treatment

significantly enhanced IL-33 protein secretion in IL-33-treated
Frontiers in Immunology 04
BMMCs. Similarly, increased secretion of the cytokines IL-6 and

IL-13 (Figures 1D, E) was also observed, suggesting that crosstalk

between IL-10 and IL-33 may serve to further potentiate

MC responses.
FIGURE 1

IL-10 enhances ST2 and IL-33 expression and promotes IL-33-mediated cytokine production in BMMCs. (A, B) WT BMMCs were cultured with rIL-10
for 24h and activated with IgE/Ag for 1h. (A) The expression of ST2 on treated cells was evaluated using flow cytometry. Median fluorescence
intensity (MFI) is shown. (B) IL-33 mRNA levels relative to GAPDH are shown. (C-E) WT BMMCs were cultured with either rIL-10, rIL-33, or both for 7
days. (C) IL-33 levels in supernatant are shown. (D, E) IL-6 and IL-13 levels after 7 days. Data are representative of >3 experiments. *p<0.05;
**p<0.001; ***p<0.0001 (t-test).
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IL-10 enhances the IgE-mediated
activation of ST2-/- BMMCs

To further investigate whether IL-33 signaling is necessary for

IL-10’s effects, we next assessed cytokine production in unactivated

and IgE-activated ST2-/- BMMCs. As previously observed (14, 18)

and shown in Figures 2A-C, IL-10 significantly enhanced the

production of IL-6 and IL-13 in both unactivated and

IgE-activated WT BMMCs. Similarly, IL-10 pre-treatment also

enhanced IL-6 and IL-13 production in unactivated ST2-/-

BMMCs, suggesting that IL-33 signaling is not required for its

effects. In general, ST2-/- BMMCs exhibited reduced cytokine

responses after IgE-mediated activation (Figures 2A-C), although

some variability was observed depending on experimental

conditions (Supplementary Figures S1A-C). Pre-treatment with

IL-10 enhanced the production of both IL-6 and IL-13 but not

TNF-a in IgE-activated ST2-/- cells. A similar pattern was also

observed after long-term culture (three days) with rIL-10 as we have

previously shown (Supplementary Figures S1A-C). Taken together,

these data suggest that IL-10 may further modulate the function of

MCs in vivo, and that its effects on IgE-activated MCs are

independent of IL-33 signaling. Next, we also assessed the effects

of IL-10 on MC degranulation and murine MC protease (mMCP)-1

secretion. As observed in Figure 2D, both WT and ST2-/- BMMCs

exhibited comparable levels of b-hex activity in response to IgE

activation. IL-10 pre-treatment enhanced b-hex release in both cell

types and this was higher in ST2-/- BMMCs compared to their WT

counterparts. This suggests that while IL-10 can promote MC

degranulation independently of IL-33 signaling, endogenous IL-33

may regulate some of its effects. Similarly, as previously shown by us

(18), IL-10 also enhanced mMCP-1 secretion in both WT and

ST2-/- resting BMMCs (Figure 2E). However, lower mMCP-1 levels

were observed in IL-10-treated ST2-/- BMMCs compared to WT

cells. Interestingly, no mMCP-1 secretion was observed in either

WT or ST2-/- BMMCs after activation with IgE and antigen

(Figure 2E). Instead, IL-10 stimulation led to mMCP-1 secretion

in these cells as well (Figure 2E). Finally, we have previously shown

that IL-10 can also promote MC proliferation during cell culture

(14, 18). To assess whether IL-33 signaling may be required in this

process, we next also assessed the proliferation of both WT and

ST2-/- BMMCs. As observed in Figure 2F, IL-10 enhanced the

proliferation of BMMCs from both strains. Furthermore, greater

proliferation was observed in ST2-/- BMMCs treated with IL-10.

While the mechanism for this is unclear, these data further

underscore the role of IL-10 and suggest that IL-33 signaling is

not required for its effects.
Allergic responses to enteral ovalbumin
administration are suppressed in
ST2-/- mice

Recently, IL-33 has emerged as a critical mediator of MC

responses during food allergy (8, 26, 49–51). To further

investigate the crosstalk between IL-10 and IL-33, and whether
Frontiers in Immunology 05
IL-10’s effects on IgE-induced MC responses may depend on IL-33,

we assessed the development of food allergy in WT and IL-10-

depleted ST2-/- mice using an ovalbumin (OVA)-induced model of

intestinal anaphylaxis. We and others have previously shown that

the development of food allergy in this model is IgE and MC-

dependent (9, 14, 43, 46, 52). Similarly, we recently also

demonstrated a critical role for IL-33 in inducing MC responses

in this model (26). Lastly, using both IL-10-/- mice (14) as well as

pharmacological blockade of IL-10 (17), we have shown that MC

responses and the development of intestinal anaphylaxis in this

model are also IL-10-dependent. We therefore hypothesized that

this would be a good system to assess the roles of IL-10 and IL-33

and their interrelated effects on MCs.

Briefly, WT and ST2-/- mice were i.p. sensitized with chicken

egg OVA and alum as previously described and subsequently

challenged orally with OVA to induce the development of

intestinal anaphylaxis. As demonstrated in Figure 3A and

Supplementary Figure S2A, WT BALB/c mice developed profuse

diarrhea after the sixth oral gavage, accompanied by a robust OVA-

specific IgE-mediated response (Figure 3B, Supplementary Figure

S2B). Histological analysis using chloroacetate esterase staining

revealed a significant recruitment of mature degranulating MCs

to the small intestine of WT OVA mice compared to unchallenged

controls (Figure 3C, Supplementary Figure S2C). Furthermore,

assessment of MC activation in WT mice revealed the presence of

elevated levels of serum mMCP-1, a marker correlated with the

degranulation of mucosal MCs (Figure 3D, Supplementary Figure

S2D). In contrast to these positive markers of food allergy in WT

mice and as previously observed by us (26), ST2-/- animals did not

develop allergic diarrhea or exhibit MC-mediated activation,

suggesting that the IgE and MC-dependent effects of food allergy

require IL-33 signaling (Figures 3A-D).
Pharmacological IL-10 depletion has no
additional effects on MC responses in
ST2-/- mice

To next examine the effects of IL-10 depletion, some groups of

mice were treated with anti-IL-10 during the acute, MC-dependent,

challenge phase of the model as described above. As expected and

consistent with our previous findings (17), anti-IL-10 treatment in

WT mice significantly attenuated MC responses including decreased

allergic diarrhea (Figure 3A), OVA-specific IgE production

(Figure 3B), intestinal MC numbers (Figure 3C) and mMCP-1

levels (Figure 3D). Interestingly, however, treatment with anti-IL-10

had no additional effects in ST2-/- mice, including changes in allergic

diarrhea, OVA-IgE orMC numbers, or intestinal cytokine expression

in ST2-/- mice (Figures 3A-J). mMCP-1 levels were below the limits of

detection in ST2-/- animals, except in the case of one mouse

(Figure 3D). These data suggest that IL-33 signaling is not required

for IL-10’s effects on MCs in the food allergy model.

To next assess the effects of IL-10 on intestinal type 2 cytokine

expression, we examined jejunal tissue from experimental animals for

various cytokine transcripts. As we have previously reported, while the
frontiersin.org
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expression of IL-4, IL-5, IL-13, and IL-10 was increased in the jejunae

of allergic WT mice, the induction of these cytokines was significantly

decreased in both ST2-/- and anti-IL-10-treated WT mice (Figures 3E-

H). In contrast, no significant differences were observed between

control and anti-IL-10-treated ST2-/- mice. Furthermore, no

significant differences were observed in the expression of IFN-g or

IL-33 between any of the groups (Figures 3I, J).
Frontiers in Immunology 06
We have previously shown that ST2-/- mice exhibit reduced IL-4

responses during food allergy which may affect the development of

antigen-specific IgE (26). Similarly, IL-10 has also been shown to play

an important role in the development of IgE production (53–55). To

therefore ascertain whether the effects of anti-IL-10 in our system may

be related to reduced IgE responses as opposed to functional defects in

MCs, we next assessed the development of IgE-mediated passive
FIGURE 2

IL-10 promotes the IgE-mediated activation of ST2-/- BMMCs. (A-E) WT and ST2-/- BMMCs were cultured with or without rIL-10 for 24h and
subsequently activated with IgE and antigen. (A-C) Supernatants were collected and cytokine secretion was assessed. (D) b-hex activity was measured in
supernatants. (E) mMCP-1 release was assessed. (F) BMMCs were cultured with rIL-10 for 3 days and an MTS assay was performed to assess
proliferation. Percent cell proliferation is shown. Data are representative of 2 experiments. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001 (t-test).
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anaphylaxis in anti-IL-10-treated naïve WT and ST2-/- mice. As

observed in Supplementary Figure S3, IgE-sensitized WT mice

exhibited significant drops in core body temperature after

intravenous antigen administration. In contrast, the induction of
Frontiers in Immunology 07
hypothermia was delayed in ST2-/- mice. Anti-IL-10 treatment

attenuated the development of passive anaphylaxis in WT mice,

suggesting that basal IL-10 levels may prime MC responsiveness to

IgE-mediated activation. This is also consistent with our previous
FIGURE 3

ST2-/- mice exhibit reduced MC responses during food allergy and IL-10 depletion has no further effects. WT BALB/c and ST2-/- mice were
sensitized and challenged with OVA as described in Methods. Some groups of animals were treated with anti-IL-10 daily during the challenge phase.
One hour after the 6th OVA challenge, mice were sacrificed and the following parameters were measured: (A) occurrence of diarrhea; (B) serum
OVA-IgE levels; (C) CAE+ MCs in the jejunum; (D) serum mMCP-1 levels; (E-J) jejunal mRNA expression. Data are representative of 2 experiments.
n=5-7 mice/group. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001 (t-test).
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observation demonstrating that exogenous IL-10 priming can enhance

IgE-mediated passive anaphylaxis (14). However, similar effects were

not observed in ST2-/- mice.While anti-IL-10 treatment initially had no

effect in these mice, a more sustained hypothermic response was

observed in anti-IL-10-treated ST2-/- mice, suggesting that other

factors may also be involved in these animals, including effects on

basophils and other cell types. Taken together, these data suggest that

the reduced MC responses in both ST2-/- mice and anti-IL-10-treated

WTmice during food allergy occur irrespectively of IgE levels and may

result directly as a consequence of functional deficiencies in MCs.
MC responses and food allergy are further
diminished in ST2-/- mice deficient in IL-10

Considering that ST2-/- mice exhibit profoundly attenuated MC

responses during food allergy and to rule out any variability that may

be associated with the pharmacological depletion of IL-10, we next

generated mice with a genetic deficiency in both IL-10 and ST2, and

examined their susceptibility to the development of food allergy. As

observed in Figure 4, neither ST2-/- nor ST2-/-/IL-10-/- OVA-sensitized

mice developed diarrhea in response to OVA challenges (Figure 4A).

As expected, OVA-IgE levels (Figure 4B) and MC responses including

intestinal MC numbers and mMCP-1 levels were decreased in the

absence of IL-33 signaling (Figures 4C, D). To our surprise, however,

genetic deletion of IL-10 in these animals further decreased the levels of

OVA-IgE and mMCP-1 levels (Figures 4B, D). This was also

accompanied by a decrease in the number of intestinal MCs

(Figure 4C). These data suggest that mice with an intrinsic deficiency

in both ST2 and IL-10 are further protected from food allergy

development and that IL-10 can regulate the IgE-mediated activation

of MCs even in the absence of IL-33 signaling.
Discussion

In this study, we sought to investigate whether the

proinflammatory effects of IL-10 on IgE-mediated MC activation

may be regulated by IL-33. While we found that IL-10 can promote

IL-33 gene expression and its secretion in BMMCs, it could enhance

IgE-mediated activation even in ST2-/- BMMCs, demonstrating that

IL-33 signaling is not required for IL-10’s effects. These

observations were extended in vivo, where we found that

although the IL-33/ST2 axis was required for MC responses

during food allergy, IL-10’s proinflammatory effects on MCs were

independent of IL-33 signaling. Instead, IL-10 also promoted IgE-

dependent responses in ST2-/- mice. These data further confirm the

role of IL-10 as a potent costimulator of MC responses that can

prime MCs for IL-33 responsiveness, but the effects of which are not

dependent on endogenous IL-33 signaling.

IL-10 is a pleiotropic cytokine that is known to have both pro- and

anti-inflammatory effects (56–58). We and others have demonstrated

that IL-10 can play critical roles during allergic responses and exert

pro-inflammatory effects on MCs and other cells. IL-10 was initially

identified as a MC stimulator and shown to promote mMCP-1
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expression in MCs (19, 20, 59–62). Similarly, IL-10 can also induce

IL-9 production by IgE-cross-linkedMCs (21).While some studies had

suggested that IL-10may induce suppression of IgE-mediated signaling

in MCs (63, 64), more recently, several investigators including us, have

shown that IL-10 can promote MC responses during food allergy (14),

enhance STAT3 and miR-155-induced IgE-mediated activation (23),

and promote MC expansion and activity during small bowel cancer

(24). Several studies also suggest that IL-10 can have mixed (pro- and

anti-inflammatory) effects during allergic inflammation. Interestingly,

some of these demonstrated that IL-10 can promote the development

of airway hyperresponsiveness, mucus metaplasia, IL-5 production,

eosinophilia, dendritic cell polarization and a Th2-skewed phenotype

in allergic mice (53, 54, 65–73). More recently, IL-10 was shown to

both be required for the development of allergen-specific TH2 cells as

well as promote effector T cell function (74). Similarly, B cell-derived

IL-10 promoted allergic sensitization during asthma (75).

In a recent report, we demonstrated that IL-10 can not only

promote IgE-dependent MC responses, but also potently co-

stimulate IL-33-stimulated MCs by increasing ST2 responsiveness

(18). These observations suggest that IL-10’s proinflammatory

effects on MCs may be global in nature and not restricted to IgE-

allergen crosslinking. Considering that MCs have previously been

shown to produce IL-33, we therefore wondered whether MC-

derived IL-33 may regulate IL-10’s effects. Interestingly, while in our

hands, we could not detect IL-33 protein secretion in IgE-activated

cells, IL-10 pre-treatment enhanced IL-33 mRNA expression in

these cells. Similarly, IL-10 treatment also enhanced the production

of IL-33 in IL-33-treated BMMCs. Finally, while ST2-/- MCs

exhibited reduced cytokine responses when activated with IgE

and antigen, IL-10 was able to enhance cytokine secretion,

degranulation, mMCP-1 release, and proliferation in these cells as

well. Collectively, these data suggest that endogenous IL-33

signaling in MCs is not required for IL-10’s proinflammatory

effects on MC activation or function.

These observations prompted us to further explore the interactions

of IL-10 in the context of IgE and IL-33-mediated signaling during

physiological allergic responses in vivo. The role of IL-33 in regulating

MC responses during allergic inflammation is well-established (30, 33,

48, 76). IL-33-responding MCs have been shown to promote IgE-

dependent responses, enhance proinflammatory cytokine production,

and facilitate allergic symptoms including bronchoconstriction, IL-13-

induced mucus secretion, and systemic anaphylaxis (7, 8, 36–42).

Conversely, MCs and their mediators also amplify IL-33-mediated

inflammation, by enhancing the recruitment of leukocytes and

promoting the activation of group 2 innate lymphoid cells (ILC2s)

(77). Furthermore, release of IL-33 by epithelial cells early during

allergic inflammation results in the activation of both MCs and ILC2s,

leading to either the enhancement of inflammation or its regulation

depending on the context and the type of allergen (7, 41, 78, 79).

Several studies have demonstrated the importance of IL-33

signaling during food allergy. However, depending on the model

systems used, divergent effects on MC activation, intestinal MC

numbers, and allergen-specific Th2 cells have been observed. Food

allergy induction in epicutaneously sensitized mice or mice with

alterations in IL-4 signaling was attenuated in ST2-/- mice, suggesting
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that IL-33-mediated signals are critical for the development of oral

anaphylaxis in mice, and that IL-33 promotes food anaphylaxis by

targeting MCs or ILC2s (7, 8, 49–51, 80). However, in the absence of

ST2, while cutaneously sensitized mice were protected from

anaphylaxis due to decreased MC activation and mMCP-1 levels,

no changes in systemic and intestinal MC numbers were observed,

suggesting normal MC expansion (8). Similarly, no differences in TH2

cytokines or IgE antibodies were also observed (8). In contrast, other

investigators observed decreased TH2 responses and reduced MC

accumulation during allergic responses (including asthma) in ST2-/-

mice (31, 50, 51, 81). In our hands, we observed both decreased MC

activation and expansion as well as Th2 cytokine gene expression in

the intestinal anaphylaxis model (26). While these dichotomous

observations may be a consequence of different experimental

models and sensitization regimens, they further strengthen the

importance of IL-33 in modulating MC responses in vivo.

Our findings also further confirm the importance of IL-10 in

regulating MC responses during the development of food allergy.
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As we have previously observed, both IL-10-deficiency and anti-IL-10

treatments attenuated allergic symptoms, accompanied by decreased

MC activation, TH2 cytokine expression, and intestinal MC

expansion (14, 17). In this study, we demonstrate that IL-10 is able

to regulate IgE-mediated MC proliferation and activation as well as

MC responses during food allergy even in the absence of IL-33

signaling, suggesting that IL-33 is dispensable for IL-10’s effects.

Interestingly, while this was suggested by both antibody-mediated

depletion as well as genetic deletion of IL-10, a few subtle differences

were observed between the two strategies. Anti-IL-10 treatment in

ST2-/- mice had no further effects on IgE levels, intestinal MC

numbers, MC activation and jejunal TH2 cytokine expression

(Figure 3). In contrast, genetic deletion of IL-10 led to a greater

reduction in MC responses in ST2-/- mice (Figure 4). While these

differences may be due to the variability involved with antibody-

mediated targeting approaches, they may also point to different effects

of IL-10 during the allergen sensitization and challenge phases as the

anti-IL-10 treatments were only performed during OVA challenge.
FIGURE 4

MC responses are further decreased in ST2/IL-10-/- mice. WT BALB/c, IL-10-/-, ST2-/-, and ST2/IL-10-/- mice were sensitized and challenged
with OVA as described in Methods. One hour after the 6th OVA challenge, mice were sacrificed and the following parameters were measured:
(A) occurrence of diarrhea; (B) serum OVA-IgE levels; (C) CAE+ MCs in the jejunum; (D) serum mMCP-1 levels. n=5-7 mice/group. *p<0.05;
***p<0.001; ****p<0.0001 (t-test).
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In this context, while IL-10 is known to promote the induction of

antigen-specific IgE (53) and IL-33 is a potent stimulator of Th2 cells

(82), the passive anaphylaxis study in Supplementary Figure S3,

suggests that their individual effects on MCs are independent of

circulating IgE levels. Taken together, the data from both model

systems collectively suggests that IL-10’s effects on MCs can extend

beyond IL-33 signaling. Furthermore, while both IL-33 and IL-10

may act as independent variables that regulate MC function during

food allergy, these data also point to a potential for synergistic control

if it were necessary.

In summary, our study not only further corroborates the

proinflammatory role of IL-10 on MCs during allergic sensitization

but suggests that it has unilateral effects on MCs that are independent

of other MC stimulators such as IL-33. The mechanisms by which IL-

10 exerts these effects need to be further investigated.
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SUPPLEMENTARY FIGURE 1

Long-term IL-10 culture enhances cytokine secretion in IgE-activated ST2-/-

BMMCs. (A-C)WT and ST2-/- BMMCs were cultured with or without rIL-10 for

3 days and subsequently activated with IgE and antigen. Supernatants were
collected and cytokine secretion was assessed. *p<0.05; **p<0.01;

***p<0.001 (t-test).

SUPPLEMENTARY FIGURE 2

MC responses and food allergy development are attenuated in ST2-/- mice.
BALB/c and ST2-/- mice were sensitized and challenged with OVA as

described in Methods. One hour after the 6th challenge, the following
parameters were measured: (A) occurrence of diarrhea; (B) serum OVA-IgE

levels; (C) CAE+ MCs in the jejunum (magnification: 40X; arrows depict MCs);
(D) serum mMCP-1 levels. Data are representative of >3 experiments. n=5-7

mice/group. ND, not detected. *p<0.05; **p<0.01 (t-test).

SUPPLEMENTARY FIGURE 3

Anti-IL-10 treatment attenuates IgE-mediated passive anaphylaxis in WT
mice. Naïve BALB/c and ST2-/- mice were injected i.v. with 6 mg DNP-IgE.

Some groups of mice were treated i.p. with 400 mg anti-IL-10. 24h later, all
mice were injected i.v. with 75 mg DNP-BSA and changes in body temperature

were measured. n=4-5 mice/group. **p<0.05 for the WT group compared

withWT plus anti-IL-10-treatedmice by 2-way ANOVA; ***p<0.05 for theWT
group compared with ST2-/- mice and the ST2-/- group compared with anti-

IL-10-treated ST2-/- mice by 2-way ANOVA.
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