
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Wantao Wu,
Chongqing Medical University, China

REVIEWED BY

Chen Li,
Free University of Berlin, Germany
Chao Li,
LMU Munich University Hospital, Germany

*CORRESPONDENCE

Jing Li

2403354742@qq.com

†These authors have contributed equally to
this work

RECEIVED 11 November 2024

ACCEPTED 13 January 2025
PUBLISHED 30 January 2025

CITATION

Shu Y and Li J (2025) Disulfidptosis as a key
regulator of glioblastoma progression and
immune cell impairment.
Front. Immunol. 16:1526296.
doi: 10.3389/fimmu.2025.1526296

COPYRIGHT

© 2025 Shu and Li. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 30 January 2025

DOI 10.3389/fimmu.2025.1526296
Disulfidptosis as a key regulator
of glioblastoma progression and
immune cell impairment
Yifu Shu † and Jing Li*†

Department of Neurosurgery, Taikang Ningbo Hospital, Ningbo, China
Background: Glioblastoma, associated with poor prognosis and impaired

immune function, shows potential interactions between newly identified

disulfidptosis mechanisms and T cell exhaustion, yet these remain understudied.

Methods: Key genes were identified using Lasso regression, followed by

mult ivar iate analysis to develop a prognostic model. Single-cel l

pseudotemporal analysis explored disulfidptosis T-cell exhaustion (Tex)

signaling in cell differentiation. Immune infiltration was assessed via ssGSEA,

while transwell assays and immunofluorescence examined the effects of

disulfidptosis-Tex genes on glioma cell behavior and immune response.

Results: Eleven disulfidptosis-Tex genes were found critical for glioblastoma

survival outcomes. This gene set underpinned a model predicting patient

prognosis. Single-cell analysis showed high disulfidptosis-Tex activity in

endothelial cells. Memory T cell populations were linked to these genes. SMC4

inhibition reduced LN299 cell migration and increased chemotherapy sensitivity,

decreasing CD4 and CD8 T cell activation.

Conclusions: Disulfidptosis-Tex genes are pivotal in glioblastoma progression

and immune interactions, offering new avenues for improving anti-glioblastoma

therapies through modulation of T cell exhaustion.
KEYWORDS
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1 Introduction

Glioblastoma (GBM), a highly aggressive brain cancer, has a median survival time of 15

months. Current treatments’ limited efficacy, including surgery, radiotherapy, and

chemotherapy, underscores the urgent need for innovative therapies and a deeper

understanding of GBM’s molecular basis (1–3). Crucially, the tumor microenvironment

and mechanisms of immune escape, such as T-cell exhaustion (Tex), play significant roles

in glioblastoma (GBM) disease progression and therapy resistance (4, 5). T cell exhaustion

is characterized by a progressive loss of effector functions and sustained expression of
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inhibitory receptors, which impairs the immune system’s ability to

effectively combat tumor cells. In gliomas, T cell function

diminishes due to persistent antigen exposure and the presence of

immunosuppressive factors like TGF-b and IL-10, alongside

increased expression of immune checkpoints PD-L1 and CTLA-4

(6–10). These factors collectively result in an impaired immune

response and enhanced tumor proliferation (11–13). Recent studies

have elucidated the roles of metabolic dysregulation, epigenetic

modifications, and chronic antigen exposure in driving T cell

exhaustion (14–16). Furthermore, advancements in single-cell

technologies have revealed the heterogeneity within exhausted T

cell populations, identifying distinct subsets with varying functional

states (17, 18). Understanding these complex mechanisms is crucial

for developing targeted immunotherapies aimed at reinvigorating

exhausted T cells and enhancing anti-tumor immunity (19, 20).

In addition, recent studies have begun to unravel the complex

genetic and epigenetic landscape of cancer (21–24), yet the role of

emerging cellular processes, such as disulfidptosis—a novel cell

death pathway—and the intricate dynamics of the tumor immune

microenvironment remain largely underexplored (25). As a newly

characterized type of regulated cell death (RCD), disulfidptosis is

considered to be closely related to the occurrence and development

of tumors as ferroptosis and cuproptosis death, which were fully

explored in the past, which is incited by the aberrant intracellular

buildup of disulfides (26), and this procedure cannot be mitigated

by previous inhibitors of cell death (27). Its linkage between cellular

metabolism and fate and its significant impact on tumor immune

responses is arousing great interest (28, 29). It is found that under a

glucose starvation situation, the expression of solute carrier family 7

member 11 can induce the abnormal accumulation of cystine and

other disulfides (30, 31). The formation of these disulfide bonds

between actin cytoskeletal results in the collapse of the cytoskeleton

structure and, eventually, cell death. Further, the treatment of

glucose transporter (GLUT) inhibitors can trigger disulfidptosis,

which indicates that the inducement of disulfidptosis might be a

promising therapeutic strategy (26). It is also reported that the

disulfidptosis procedure not only establishes a linkage between

cellular metabolism and cellular destiny but also demonstrates a

conspicuous association with the immune response within the

tumor microenvironment (32, 33). Emerging research has shown

that many cancer cells experience oxidative stress, leading to

disulfide metabolism disorders that affect cancer cell survival and

proliferation (34–37). Additionally, disulfide metabolism in cancer

cells is also associated with biological behaviors such as drug

res i s tance , metas tas i s , and immune escape (38–40) .

Understanding the interplay between disulfidptosis and GBM

may provide insights into the complex biology of GBM and help

identify potential therapeutic targets, ultimately improving the

outcomes of GBM patients.

Building upon these insights, our study investigates the intricate

interplay between disulfidptosis and Tex within the glioblastoma

microenvironment, aiming to uncover novel therapeutic targets and

enhance treatment outcomes for GBM patients. By leveraging the

relationship between disulfidptosis and Tex, we have developed a
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robust prognostic model for GBM survival and identified key

targets that could potentiate T-cell-mediated tumor control. This

integrative approach not only facilitates the prediction of patient

outcomes but also paves the way for precision therapies tailored to

individual molecular profiles. Ultimately, our research seeks to

advance immunotherapeutic strategies in combating glioblastoma,

offering promising avenues for personalized medicine and

improved clinical efficacy.
2 Materials and methods

2.1 Immunofluorescence assay

For LN229 cell replication, adhere the cells to glass coverslips

until they reach 30% confluency, then fix them with 4%

formaldehyde in phosphate-buffered saline (PBS) for 10 minutes

at room temperature. After washing with PBS, increase membrane

permeability by treating with 0.1-0.5% Triton X-100 in PBS for 5

minutes. Block nonspecific binding by incubating with 5% bovine

serum albumin (BSA) or serum for 30 minutes. Next, incubate with

the primary antibody, diluted in blocking solution, for 1 hour at

room temperature or overnight at 4°C. After washing with PBS, a

fluorescent secondary antibody was applied for 1 hour in the dark,

followed by a final PBS wash (41–43). Mount the coverslip and

examine the cellular signals using a fluorescence microscope

(44, 45).
2.2 Apoptosis detection using
flow cytometry

Apoptosis was assessed using the Annexin V-FITC kit from BD

Biosciences, USA. Cells were incubated with Annexin V-FITC for

15 minutes, followed by a 5-minute incubation with propidium

iodide (PI), both in the dark. Flow cytometric analysis was

performed with BD Biosciences equipment, and data were

analyzed using FlowJo software.
2.3 Cell invasion and migration assays

Cell invasion was evaluated using Matrigel-coated Transwell

inserts. LN229 cells (5 x 10^5 cells/ml) were seeded in the upper

compartment and incubated for 36 hours at 37°C in 5% CO2. After

incubation, cells adhering to the upper membrane were fixed with

4% formaldehyde, stained with crystal violet, washed with PBS, and

examined microscopically. The invasion was quantified by counting

cells that migrated through the membrane in five random fields

(46). A wound-healing assay was conducted to study the effect of

disulfidptosis-Tex on cell migration. A scratch was made in the

monolayer at 0 hours, detached cells were removed with PBS, and

images were taken after 36 hours for analysis (47).
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2.4 Evaluation of mitochondrial
membrane potential

The mitochondrial membrane potential (Ym) was evaluated

using the ‘YmAssay JC-1 Kit’ (Solarbio, M8650, China), employing

JC-1 as a fluorescent probe. When the membrane potential is high,

JC-1 accumulates within the mitochondrial matrix, leading to the

emission of red fluorescence. Conversely, at reduced potentials, JC-

1 forms monomers that emit green fluorescence.
2.5 Measurement of reactive oxygen
species detection

The Reactive Oxygen Species (ROS) levels were measured using

the Reactive Oxygen Species Assay Kit (Solarbio, CA1410, China)

with DCFH-DA as the fluorescent probe. ROS converts the non-

fluorescent DCFH to fluorescent DCF, which is then analyzed to

determine intracellular ROS concentrations.
2.6 Transcriptomic and clinical data
analysis for glioblastoma

Transcriptomic and comprehensive clinical data for the TCGA-

GBM cohort were sourced from the GDC portal (https://

portal.gdc.cancer.gov/). The study focused on entries that

provided both extensive clinical records and transcriptomic data

(48, 49). Additionally, the CGGA database was used for whole-

genome expression profiles with corresponding clinical information

for GBM (50).
2.7 Single-cell transcriptomic analysis

Using Seurat package version 4.2.0, the pre-filtered single-cell

dataset was imported (51, 52). Data normalization was performed

using the ‘NormalizeData’ function. Post-normalization, genes with

significant variation were identified by balancing average expression

levels and dispersion metrics. The ‘FindClusters’ function, a graph-

based clustering tool using a modularity optimization algorithm

from shared nearest neighbors, delineated 19 distinct clusters from

33 principal components at a resolution of 0.2. Differentially

expressed genes (DEGs) in each cluster were determined using

‘FindAllMarkers’ with default settings in Seurat.
2.8 Cell communication
profiling assessment

Cell Communication Profiling via single-cell analysis ligand-

receptor interactions among various cell types were analyzed to

identify unique signaling pathways (53). The ‘CellChat’ tool

quantified and estimated the probability of intercellular signaling

interactions, applying default parameters with a significance threshold

of P ≤ 0.05 and adjustments for multiple testing using the Benjamini-
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Hochberg procedure (54). We also assessed the expression of ten

disulfidptosis-Tex-related genes across different glioblastoma cell

types using the AUCell scoring method (55, 56). Twelve cell types

identified in the scRNA data were analyzed, categorizing cells with

AUCell scores above 0.3 as high disulfidptosis-Tex activity and those

with lower scores as reduced activity.
2.9 Enrichment analysis

Disulfidptosis-Tex’s role in glioblastoma was assessed using

‘ssGSEA’ to calculate gene enrichment scores in individual

samples (57–59). Using ‘surv_cutpoint’, samples were categorized

into low or high disulfidptosis-Tex enrichment groups. Intersection

analysis identified cell types with significant disulfidptosis-Tex

activity and contrasted gene enrichment between the groups. T

cell exhaustion-linked DEGs in GBM were identified. Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) analyses with ‘clusterProfiler’ revealed pathways enriched

among these DEGs (60–62).
2.10 Prognostic evaluation in glioblastoma

The prognostic relevance of disulfidptosis-Tex-associated DEGs

in glioblastoma was evaluated using univariate Cox regression to

analyze their correlation with patient overall survival (OS) (63–65).

Genes with a P-value < 0.05 were selected for further analysis (66).

The study used 268 tumor samples, split into training and

validation cohorts in a 7:3 ratio, with 106 samples in the latter. A

prognostic model was developed using the LASSO Cox regression

method via the ‘glmnet’ R package (67, 68), refining the list of

potential genes.
2.11 Differential expression and
functional analysis

Differential expression between high- and low-risk glioblastoma

groups was analyzed using the ‘limma’ R package (69, 70). Gene Set

Enrichment Analysis (GSEA) of log2 FC-ranked genes was

performed with ‘clusterProfiler’ (71–73), and functional

differences were examined using ‘GSVA’ (74, 75). Results were

visualized with ‘pheatmap’.
2.12 Immune pathway activity and immune
cell infiltration analysis

ssGSEA analyses were performed using the ‘gsva’ package in R to

evaluate immune pathway activities in the study’s samples, utilizing

established molecular markers (76). As an enhancement of GSEA,

ssGSEA calculates enrichment scores for individual gene set pairs

across different samples (77). These scores reflect the coordinated

regulation of genes, either upregulated or downregulated, within

specific gene sets for each sample. Gene expression data from all
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GBM samples were used to compute enrichment scores for 28

distinct immune cell types, derived from the TISIDB database

(http://cis.hku.hk/TISIDB/index.php) (78). Variations in immune

cell infiltration levels between low- and high-risk groups were

visualized using the ‘ggplot2’ R package (79, 80).
2.13 Statistical analyses

Statistical analyses were performed using R software (version

4.1.3) and GraphPad Prism 8.0. A P-value of <0.05 was considered

statistically significant (81). In the graphs, the symbols *, **, and ***

represent P-values of <0.05, <0.01, and <0.001, respectively.
3 Results

3.1 Single-cell RNA sequencing reveals
disulfidptosis-Tex-associated gene
expression in glioblastoma and identifies
immune cell subtypes

Single-cell RNA sequencing has significantly enhanced our

understanding of the cellular composition of glioblastoma. In this

study, we utilized the single-cell RNA sequencing dataset GSE173278

to explore the genes exhibiting elevated expression linked to
Frontiers in Immunology 04
disulfidptosis-Tex (Figure 1). The analysis of single-cell transcriptomes

revealed 19 distinct clusters across 29,543 cells, as shown in the UMAP

plot (Figure 2A). Cell surface markers were also used to identify 12

unique cell subtypes, including dendritic cells, central memory T cells,

and macrophages (Figures 2B, D). Further investigation focused on

disulfidptosis-Tex-associated differential expression genes (DEGs)

expression patterns within these subtypes (Figure 2C).
3.2 Endothelial cell enrichment of
disulfidptosis-Tex in glioblastoma

Figure 3A illustrates the identification of 205 cells exhibiting active

disulfidptosis-Tex. The UMAP representation of these cells revealed a

significant prevalence of endothelial cells (ECs) (Figure 3B). Notably,

ECs showed the strongest associationwith disulfidptosis-Tex, indicating

a marked accumulation of this marker within tumor-associated ECs.
3.3 Pseudotime analysis reveals core
disulfidptosis-Tex gene driving
glioblastoma progression

Pseudotime analysis of endothelial cells (ECs) in glioblastoma

revealed the key role of disulfidptosis-Tex genes in tumor

progression (Figure 3C). Five distinct transcriptional states were
FIGURE 1

Workflow diagram of study.
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identified along the trajectory (Figure 3D). Further analysis of these

genes showed their involvement in ‘angiogenesis regulation’ and

‘extracellular matrix organization’ (Figure 3E).
3.4 Key signaling pathways in cell
communication interaction

To investigate the roles of various cell populations in

glioblastoma, we conducted an analysis of intercellular

communication, which revealed significant interactions between

glioblastoma cells and immune cells, including central memory T

cells and macrophages (Figure 4A). Both outgoing and incoming

signals were examined, alongside relevant ligand-receptor pairs

across 12 distinct cell types. Key signaling pathways identified in

this analysis included SPP1, PTN, MK, PSAP, GRN, and MIF

(Figure 4B). Further analysis of the signaling pairs highlighted the

PSAP-GPR37 pathway as the predominant interaction in

endo the l i a l c e l l s , f a c i l i t a t ing commun ica t i on wi th

oligodendrocytes and dendritic cells (Figure 4C). Signaling
Frontiers in Immunology 05
pathways from oligodendrocytes and macrophages to endothelial

cells were also identified (Figure 4D). PSAP was found to be

expressed across all 12 cell types (Figure 4E), while GPR37L1 was

predominantly present in corticotroph cells, and GPR37 showed the

highest expression in oligodendrocytes (Figure 4F).
3.5 Identification of differentially expressed
genes in disulfidptosis-Tex
active subgroups

In glioblastoma, endothelial cells with the highest disulfidptosis-

Tex activity were characterized by 3,890 differentially expressed

genes (DEGs) compared to other cell types (Figure 5A). A

comparison between glioblastoma tissues and normal controls

revealed 2,200 DEGs, with a heatmap showing the top five

upregulated and downregulated genes (Figure 5B). Stratification

based on disulfidptosis-Tex activity identified an additional 4,255

DEGs, with the top five genes in the high-activity group also

highlighted (Figure 5C). An intersection analysis of these groups
FIGURE 2

Single-cell analysis of genes associated with disulfidptosis-Tex in glioblastoma. (A) Distribution of glioblastoma cell subpopulations. (B) Annotation of
the different glioblastoma cell subpopulations. (C) Gene expression profiles are specific to each cluster. (D) Expression levels of disulfidptosis-Tex
genes across various cell types.
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identified 143 key genes (Figure 5D). Enrichment analysis focused

on Gene Ontology (GO) and KEGG pathways. GO analysis showed

significant enrichment in processes such as synapse organization

and urogenital system development, along with molecular functions

like glycosaminoglycan binding and ECM structural components

(Figure 5E). KEGG pathway analysis revealed notable enrichment

in ECM-receptor interactions (Figure 5F).
Frontiers in Immunology 06
3.6 Development of the disulfidptosis-Tex-
based prognostic signature

A LASSO-Cox regression analysis was performed to assess

the impact of disulfidptosis-Tex genes on glioblastoma survival,

resulting in a model consisting of 11 key genes (Figure 5G). This

model successfully stratified patients into high- and low-risk
FIGURE 3

Pseudotime analysis identifies key disulfidptosis-Tex genes implicated in glioblastoma progression. (A) AUC scores for disulfidptosis-Tex activity.
(B) UMAP-based chromatic map displaying the activity scores of disulfidptosis-Tex. (C) Pseudotime trajectory analysis. (D) Pseudotime trajectories
segmented using Monocle2. (E) Expression patterns of differentially expressed genes (DEGs) across distinct cell branches.
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groups, with the high-risk group demonstrating higher mortality

rates and upregulated prognostic genes (Figure 5H). Kaplan-

Meier survival curves further confirmed that the high-risk group

had a worse prognosis compared to the low-risk group

(Figure 5I). The model’s ability to predict patient outcomes
Frontiers in Immunology 07
was evaluated using ROC curves, achieving AUC values of

0.780 for 5-year survival in the training set (Figure 5J) and

0.841 in the validation set (Figure 5K). Notably, SMC4 showed a

s t rong nega t i ve cor re l a t ion wi th T ce l l exhaus t ion

genes (Figure 5L).
FIGURE 4

Key signaling pathways involved in cell communication interactions. (A) Profiling of cell communication through single-cell analysis. (B) Predicted
incoming signaling pathways. (C) Potential outgoing signaling pairs. (D) Predicted incoming signaling pairs. (E) Signaling pair interactions. (F)
Distribution of receptor expression.
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FIGURE 5

Development of a prognostic signature based on disulfidptosis-Tex. (A) Differentially expressed genes (DEGs) in glioblastoma. (B) The top 10 genes
with the most significant differential expression between glioblastoma and normal control samples. (C) Top 10 genes differentially expressed
between glioblastoma subgroups with high and low disulfidptosis gene enrichment. (D) Venn diagram illustrating gene overlap. (E) Gene Ontology
(GO) enrichment analysis. (F) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. (G) LASSO analysis. (H) Kaplan-Meier
(K-M) survival curves for high-risk and low-risk glioblastoma patients in the training cohort. (I) Kaplan-Meier (K-M) survival curves for high-risk and
low-risk glioblastoma patients in the validation cohort. (J) Time-dependent Receiver Operating Characteristic (ROC) curves in the training cohort
model. (K) Time-dependent Receiver Operating Characteristic (ROC) curves in the validation cohort model. (L) Correlation analysis between
disulfidptosis and exhausted T cells.
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3.7 Disulfidptosis-Tex affects migration
ability of glioblastoma cell

We investigated the role of SMC4, a key gene in the

disulfidptosis-Tex-related prognostic model, in the migratory

behavior of glioblastoma cells. Wound-healing assays showed that

silencing SMC4 reduced cell migration at 36 hours compared to

controls (Figures 6A, B). While transwell assays at 24 hours showed

no significant differences between the SMC4-silenced and control

groups (Figure 6C), at 48 hours, the migration of SMC4-knockdown

cells was significantly lower than in the control group (Figure 6D).
3.8 Enrichment analysis unveiled intricate
network influenced by disulfidptosis-Tex
in glioblastoma

Gene Set Enrichment Analysis (GSEA) was used to explore the

underlying mechanisms of the 11-gene disulfidptosis-Tex model. The

results revealed significant enrichment in six key pathways, including the

T cell receptor signaling pathway, in the high-risk subgroup (Figure 7A).

Additionally, GSVA was performed using the same MsigDB pathway

data, identifying five pathways with the most pronounced differences

between high- and low-risk subgroups. A heatmap of these variations

revealed a notable enrichment of drug metabolism processes in

glioblastoma patients with low disulfidptosis-Tex activity (Figure 7B).

These findings suggest that disrupting disulfidptosis-Tex could influence

drug metabolism and sensitivity in glioblastoma cells.
Frontiers in Immunology 09
3.9 Connection between disulfidptosis-Tex
and immune infiltration

The relationship between immune cell infiltration and tumor

progression was demonstrated by analyzing 28 immune cell types in

both high- and low-risk subgroups, revealing a link with

disulfidptosis-Tex (Figure 8A). Notably, activated and central

memory CD8 T cells showed a significant negative correlation

(Figure 8B). Immune cell infiltration differed markedly between

risk groups, especially in regulatory T cells (Figure 8C).

Additionally, strong correlations were found between prognostic

genes and specific immune cells (Figures 9A-I). SMC4 was

positively correlated with activated CD4 T cells (Figure 9D) and

negatively correlated with CD56dim NK cells (Figure 9E). These

findings suggest that disulfidptosis-Tex influences the infiltration of

CD56dim NK cells and various T cell subsets, emphasizing the role

of these genes in modulating tumor microenvironment interactions.
3.10 Drug sensitivity prediction
and validation

Tobetter understand the prognostic value of the risk score signature

inpredictingpatientoutcomes,we examinedmutations inglioblastoma-

specific genes, focusing on the 20 most frequently mutated genes. TP53

mutations were the most common across both subgroups, followed by

PTENmutations (Figures10A,B).Wealso evaluatedwhether risk scores

could predict chemotherapeutic responses in glioblastoma patients.
FIGURE 6

The impact of disulfidptosis-Tex on the migratory capacity of glioblastoma cells. (A, B) Wound-healing assay. (C, D) Transwell migration assay.
***p < 0.001, **p < 0.01.
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Clinical trials were performed testing drugs such as Dinaciclib,

Bortezomib, and Docetaxel (Figure 10C). The results indicated that

patients with higher risk scores exhibited increased sensitivity to these

drugs, suggesting that they may be promising treatment options for

high-risk glioblastoma patients.
3.11 Inhibiting disulfidptosis-Tex induces
glioma cell sensitivity to drugs and
increases PD-L1 level

We also evaluated drug sensitivity using Dactinomycin,

Bortezomib, and Docetaxel. The results showed that combining si-

SMC4 with these drugs significantly reduced the invasiveness of

LN299 cell lines compared to single-agent treatments (Figures 11A,

B), highlighting the role of disulfidptosis-Tex in glioma metastasis.

Interestingly, all the drugs tested were found to upregulate PD-L1
Frontiers in Immunology 10
expression in LN299 cells (Figure 11C). Further investigation

revealed a significant increase in PD-L1 expression when LN299

cells were treated with the si-SMC4-drug combination (Figure 11D).
3.12 Inhibiting disulfidptosis-Tex induces
mitochondrial membrane potential and
ROS production in LN299 cells

To evaluate mitochondrial dynamics, LN299 cells were stained

with JC-1 and divided into two groups: control and SMC4-interfered.

Flow cytometry analysis revealed a significant reduction in

mitochondrial membrane potential in the SMC4-interfered cells

compared to controls (Figure 12A). Additionally, there was a

marked increase in reactive oxygen species (ROS) accumulation in

these cells (Figure 12B). These results suggest that SMC4 plays a

regulatory role in maintaining mitochondrial integrity.
FIGURE 7

Enrichment analysis unveiled an intricate network influenced by disulfidptosis-Tex in glioblastoma. (A) GSEA analysis. (B) Heatmap of pathway
enrichment differences between high- and low-risk groups from GSVA analysis.
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3.13 SMC4 inhibition reduces the ability of
LN299 cells to activate T cells

Our analysis showed a positive correlation between SMC4

expression in gliomas and CD4 T cell activation. To explore this
Frontiers in Immunology 11
further, we co-cultured SMC4 knockdown LN299 cells and control

cells with T cells. The results indicated that LN299 cells with high

SMC4 expression significantly increased the proportion of CD4 T

cells (Figures 13A-C). However, SMC4 depletion led to a 13.3%

reduction in CD4 T cell activation (Figures 13D-F) and a 9.62%
FIGURE 8

Connection between disulfidptosis-Tex and immune infiltration. (A) The relative proportions of immune cells across all glioblastoma samples.
(B) Correlation matrix of immune cells. (C) The proportions of immune cells between high- and low-risk groups. ****p < 0.0001, ***p < 0.001,
**p < 0.01, *p < 0.05.
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decrease in CD8 T cell activation (Figures 13G-I). These findings

suggest that SMC4 expression in glioma cells influences T

cell cytotoxicity.
4 Discussion

GBM is a highly heterogeneous and aggressively vascularized

malignancy, which contributes to its dismal prognosis (82). Within

the GBM tumor microenvironment, immune evasion is a common

phenomenon, with T-cell exhaustion playing a pivotal role. This

exhaustion, often induced by persistent antigen exposure and

chronic inflammatory states, results in diminished T cell

functionality and immune escape (83). Exhausted T cells exhibit

upregulation of inhibitory receptors such as PD-1, and their binding

to PD-L1 on tumor cells dampens T cell responses, a mechanism

central to immune checkpoint regulation and tumor immune

evasion (84, 85).

Our research indicates that targeting the disulfidptosis-T cell

exhaustion (Tex) network can modulate PD-L1 expression in

glioblastoma cells (Figure 11C). Disulfidptosis, a regulated form

of cell death, can potentially affect the survival and turnover of

tumor cells. These observations suggest combining disulfidptosis

inhibition with anti-PD-L1 therapy may improve clinical outcomes

in glioblastoma treatment (Figure 11A). Additionally, disulfidptosis
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might promote immune evasion by influencing tumor cell

metabolic pathways and stress responses. For instance, it could

bolster antioxidant defenses in tumor cells, protecting them from

immune-mediated damage driven by reactive oxygen species (ROS)

(86). Moreover, disulfidptosis may alter the surface marker profile

of tumor cells, thereby affecting immune recognition and clearance

(87). Our findings also implicate the disulfidptosis-Tex axis in the T

cell receptor signaling pathway (Figure 7A), which may contribute

to creating an immunosuppressive environment, thereby facilitating

immune escape. The altered oxidative and metabolic states of tumor

cells (Figure 3E) may further impair T-cell activity, promoting

tumor progression and immune resistance.

Interestingly, our data show dynamic shifts in the disulfidptosis-

Tex network during the malignant transformation of glioblastoma

(Figure 3C). Single-cell RNA sequencing (scRNA-seq) revealed

considerable cellular heterogeneity, with endothelial cells exhibiting

the highest levels of disulfidptosis-Tex activity, underscoring their

critical role in tumor progression (88, 89). Endothelial cells are

essential for vascular processes such as angiogenesis and

permeability (90), and aberrant angiogenesis is a key driver of

tumor growth, invasion, and recurrence (91–93). In addition, the

disulfidptosis-Tex network not only enhances the invasiveness of

glioblastoma cells but also increases their sensitivity to chemotherapy

(Figure 10C). Although our study did not include in vivo validation,

cell communication analyses suggest that endothelial cells (ECs)
FIGURE 9

Correlation scatter plots. The correlations between prognostic genes and specific immune cell types. (A) LYPLA1 and CD56dim natural killer cells.
(B) COL4A1 and CD56dim natural killer cells. (C) SMC4 and activated CD4 T cells. (D) CYFIP2 and monocytes. (E) SMC4 and CD56dim natural killer cells.
(F) CEND1 and monocytes. (G) PLOD2 and CD56dim natural killer cells. (H) PXDN and CD56dim natural killer cells. (I) COL4A1 and gamma delta T cells.
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significantly influence the disulfidptosis-Tex interaction. Elevated

vascular permeability can facilitate glioblastoma metastasis (48),

and our findings emphasize the intricate interactions within the

glioblastoma tumor microenvironment. Identifying key signaling

pathways and ligand-receptor pairs, such as PSAP-GPR37 and

SPP1-(ITGA5+ITGB1), highlights the importance of intercellular

communication in modulating tumor behavior. The disulfidptosis-

Tex-endothelial cell network plays a central role in glioblastoma

progression, indicating that targeting this axis may offer new

therapeutic avenues by modifying the tumor microenvironment.

Establishing an 11-gene disulfidptosis-Tex signature across

independent cohorts reinforces its potential clinical utility. However,
Frontiers in Immunology 13
tumor resistancemechanisms often undermine therapeutic approaches’

effectiveness (94, 95). The analysis of the disulfidptosis-Tex risk model

in glioblastomamay help identify patient subgroups that aremore likely

to respond to treatment. Strong correlations between immune cell

subsets and prognostic genes suggest that immunotherapy could

provide a promising alternative for patients with tumor (96–98),

especially those with poor responses to conventional chemotherapy

or targeted therapies. Nevertheless, further exploration of the immune

microenvironment in GBM is essential.

Disulfidptosis-Tex plays a pivotal role in modulating tumor cell

metabolism by influencing enzymatic activities, inducing gene

mutations associated with metabolic processes, and activating
FIGURE 10

Drug sensitivity prediction. (A, B) The top 20 genes with the highest mutation frequency were in the high-risk group and in the low-risk group.
(C) Differences in drug sensitivity between high- and low-risk groups.
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critical signaling pathways. Genes involved in apoptosis regulation,

RNA dynamics (99–102), and cell cycle control, such as SMC4 (103,

104), are integral to glioblastoma cell survival and proliferation,

with our data suggesting that SMC4 significantly contributes to

tumor cell growth and migration by regulating the cytoskeleton and

maintaining mitochondrial integrity, as evidenced by increased

ROS and altered mitochondrial membrane potential upon its

inhibition. Additionally, genes like COL4A1, PLOD2, and PXDN

(105–108), which participate in extracellular matrix remodeling,

alongside immune-related genes such as CYFIP2, EMP3, and HLA-

B (109–114), are instrumental in modulating the tumor

microenvironment and facilitating immune evasion. These genetic

interactions underscore the complexity of disulfidptosis-Tex’s role

in glioblastoma progression. Our 11-gene disulfidptosis-Tex model

holds promise as both a prognostic biomarker and a potential

therapeutic target. By modulating T cell exhaustion, these genes

may significantly influence the responsiveness of glioblastoma to

immunotherapies. For instance, the observed upregulation of PD-
Frontiers in Immunology 14
L1 following the inhibition of disulfidptosis-Tex genes like SMC4

suggests a potential feedback mechanism that could be exploited to

enhance the efficacy of PD-1/PD-L1 inhibitors. Furthermore,

altered immune cell infiltration, such as decreased activation of

CD4 and CD8 T cells upon SMC4 inhibition, highlights the

intricate balance between tumor cell death pathways and immune

surveillance. One hypothetical pathway is that SMC4 interacts with

signaling molecules involved in the PD-1/PD-L1 axis, thereby

affecting immune checkpoint regulation and T cell exhaustion.

Additionally, SMC4 may influence the expression of chemokines

or cytokines that attract or activate T cells within the tumor

microenvironment. Understanding these interactions provides a

foundation for developing combination therapies that

simultaneously target disulfidptosis pathways and bolster immune

responses, thereby improving therapeutic outcomes for

glioblastoma patients. Future studies should delve deeper into the

roles of these genes in disulfidptosis-Tex and glioblastoma

progression, investigating the precise molecular mechanisms by
FIGURE 11

SMC4 regulates PD-L1 expression level. (A) Transwell assay of invasion ability. (B) Results of invasion cell amounts. (C) Cellular immunofluorescence
experiment. (D) SMC4, in combination with the drug, promotes the upregulation of PD-1 in cells. ***p < 0.001, **p < 0.01.
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which SMC4 operates and its interplay with immune cells, to fully

elucidate their mechanisms and therapeutic potential.

While our study provides valuable insights into the role of

disulfidptosis-Tex in glioblastoma progression and immune cell

impairment, it is important to acknowledge several limitations that

warrant further investigation. Primarily, our research relies heavily

on multi-omics data, and the cellular communication mechanisms

identified may not fully replicate the complexities of the actual

glioblastoma immune microenvironment. The relatively small

sample size within our glioblastoma cohort also limits the
Frontiers in Immunology 15
robustness and generalizability of our prognostic models,

underscoring the necessity for validation in larger, independent

cohorts. Additionally, our cellular experiments were exclusively

conducted on glioblastoma cell lines, which restricts our ability to

explore the effects of disulfidptosis on exhausted T cells directly. This

narrow focus highlights the need for future studies to prioritize the

biological impact of disulfidptosis on T-cell exhaustion and to

incorporate diverse experimental models, including multiple

glioblastoma cell lines and in vivo systems, to better mimic the

tumor microenvironment. Furthermore, our 11-gene disulfidptosis-
FIGURE 12

Impact of SMC4 on Mitochondrial Dysfunction and Membrane Potential in Glioblastoma Cells. (A) Detection of Mitochondrial membrane potential
(B) Assessment of ROS production. **p < 0.01.
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Tex prognostic model, while demonstrating strong predictive power

within the training and internal validation cohorts, has yet to be

validated externally due to the unavailability of independent datasets

with comprehensive transcriptomic and clinical information.

Future research should aim to validate this prognostic signature

in independent and diverse patient populations to confirm its

clinical utility and generalizability. Prospective studies are also

essential to assess the model’s effectiveness across various clinical

settings, thereby enhancing its applicability and reliability. Given

the inherent complexity of glioblastoma and the intricate

interactions between disulfidptosis and other biological processes,

extensive experimental validation is crucial to substantiate our

findings and to fully elucidate the mechanistic pathways involved.

Addressing these limitations in future investigations will not only

strengthen the validity of our current findings but also pave the way
Frontiers in Immunology 16
for the development of more effective and personalized therapeutic

strategies for glioblastoma patients.
5 Conclusion

Disulfidptosis-Tex genes are pivotal in regulating glioblastoma

progression and immune cell infiltration, offering a novel strategy to

modulate T cell exhaustion and enhance the efficacy of anti-

glioblastoma therapies. Our research advances the understanding

of how the disulfidptosis-Tex network contributes to glioblastoma

progression and highlights potential therapeutic approaches

targeting this pathway. These findings open up new possibilities

for targeted interventions aimed at improving treatment outcomes

for glioblastoma patients.
FIGURE 13

Statue of T cell activation. (A–C) T cell percentage. (D–F) CD4 T cell activation. (G–I) CD 8 T cell activation. **p < 0.01, *p < 0.05.
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