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Comprehensive integration of
diagnostic biomarker analysis
and immune cell infiltration
features in sepsis via
machine learning and
bioinformatics techniques
Liuqing Yang1,2,3†, Rui Xuan1,2,3†, Dawei Xu1,2,3†, Aming Sang1,2,3,
Jing Zhang1,2,3, Yanfang Zhang4*, Xujun Ye4* and Xinyi Li1,2,3*

1Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China,
2Department of Anesthesiology, Hubei Provincial Engineering Research Center of Minimally Invasive
Cardiovascular Sugery, Wuhan, China, 3Department of Anesthesiology, Wuhan Clinical Research
Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, China, 4Department of
Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
Introduction: Sepsis, a critical medical condition resulting from an irregular

immune response to infection, leads to life-threatening organ dysfunction.

Despite medical advancements, the critical need for research into dependable

diagnostic markers and precise therapeutic targets.

Methods: We screened out five gene expression datasets (GSE69063,

GSE236713, GSE28750, GSE65682 and GSE137340) from the Gene Expression

Omnibus. First, we merged the first two datasets. We then identified differentially

expressed genes (DEGs), which were subjected to KEGG and GO enrichment

analyses. Following this, we integrated the DEGs with the genes from key

modules as determined by Weighted Gene Co-expression Network Analysis

(WGCNA), identifying 262 overlapping genes. 12 core genes were subsequently

selected using three machine-learning algorithms: random forest (RF), Least

Absolute Shrinkage and Selection Operator (LASSO), and Support Vector

Machine-Recursive Feature Elimination (SVW-RFE). The utilization of the

receiver operating characteristic curve in conjunction with the nomogram

model served to authenticate the discriminatory strength and efficacy of the

key genes. CIBERSORT was utilized to evaluate the inflammatory and

immunological condition of sepsis. Astragalus, Salvia, and Safflower are the

primary elements of Xuebijing, commonly used in the clinical treatment of

sepsis. Using the Traditional Chinese Medicine Systems Pharmacology

Database and Analysis Platform (TCMSP), we identified the chemical

constituents of these three herbs and their target genes.

Results: We found that CD40LG is not only one of the 12 core genes we

identified, but also a common target of the active components quercetin,

luteolin, and apigenin in these herbs. We extracted the common chemical

structure of these active ingredients -flavonoids. Through docking analysis, we

further validated the interaction between flavonoids and CD40LG. Lastly, blood

samples were collected from healthy individuals and sepsis patients, with and
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without the administration of Xuebijing, for the extraction of peripheral blood

mononuclear cells (PBMCs). By qPCR and WB analysis. We observed significant

differences in the expression of CD40LG across the three groups. In this study,

we pinpointed candidate hub genes for sepsis and constructed a nomogram for

its diagnosis.

Discussion: This research not only provides potential diagnostic evidence for

peripheral blood diagnosis of sepsis but also offers insights into the pathogenesis

and disease progression of sepsis.
KEYWORDS

sepsis, bioinformatics, machine learning, biomarkers, immune cell infiltration
Introduction

Sepsis, a life-threatening condition caused by a dysregulated

host response to infection, remains a critical challenge in modern

medicine (1). It is characterized by systemic inflammation and

organ dysfunction, leading to high morbidity and mortality rates

worldwide (2). Despite significant advancements in understanding

its pathophysiology and improvements in clinical management,

sepsis continues to impose a substantial burden on healthcare

systems (3). Early diagnosis and effective treatment are often

hindered by the heterogeneity of the condition and the lack of

reliable biomarkers, underscoring the urgent need for innovative

approaches to improve patient outcomes.

The complexity of sepsis lies in its multifaceted nature,

involving intricate interactions between immune dysregulation,

inflammatory cascades, and cellular dysfunction (4). Recent

research has increasingly focused on identifying key molecular

signatures and pathways that drive sepsis progression, with the

aim of uncovering potential diagnostic markers and therapeutic

targets (5). Advances in high-throughput sequencing technologies

have revolutionized the study of sepsis by enabling comprehensive

profiling of gene expression patterns, providing unprecedented

insights into the molecular mechanisms underlying the disease

(6). These technologies, combined with bioinformatics tools, have

facilitated the analysis of large-scale datasets, revealing critical genes

and pathways associated with sepsis pathogenesis (7).

The integration of machine learning algorithms has further

enhanced the ability to analyze complex biological data, offering

powerful tools for identifying robust biomarkers and predictive

models (8). Techniques such as random forest, LASSO regression,

and support vector machines have been employed to sift through

vast amounts of genomic data, enabling the selection of key genes

with diagnostic and prognostic potential (9). These approaches not

only improve the accuracy of sepsis diagnosis but also pave the way
02
for personalized treatment strategies by identifying patient-specific

molecular profiles.

In parallel with these technological advancements, traditional

Chinese medicine (TCM) has emerged as a promising

complementary approach to sepsis management (10). Xuebijing, a

traditional Chinese medicine injection widely used in clinical practice,

is primarily composed of herbal ingredients such as safflower, salvia,

and Astragalus (11). It is known for its effects in promoting blood

circulation, removing blood stasis, clearing heat, and detoxifying (12).

In recent years, Xuebijing has demonstrated significant efficacy in

treating critical conditions such as sepsis, acute respiratory distress

syndrome (ARDS), and multiple organ dysfunction syndrome

(MODS) (13). Research indicates that Xuebijing exerts its therapeutic

effects by inhibiting the release of inflammatory factors, improving

microcirculation, and alleviating oxidative stress. For instance, a

randomized controlled trial found that Xuebijing combined with

conventional treatment significantly reduced the 28-day mortality

rate in sepsis patients (14). Additionally, Xuebijing has shown

potential in the treatment of COVID-19-related pneumonia,

alleviating pulmonary inflammation and improving patient outcomes

(15, 16). However, despite the positive results achieved in clinical

applications, the specific mechanisms of action of Xuebijing require

further in-depth research.

This study aims to bridge the gap between modern

biomedical research and traditional medicine by exploring the

molecular underpinnings of sepsis and the therapeutic potential

of Xuebijing. By leveraging high-throughput sequencing,

bioinformatics tools, and machine learning algorithms, we seek to

identify key genes and pathways involved in sepsis pathogenesis.

Furthermore, we aim to investigate the active components of

Xuebijing and their molecular targets, integrating experimental

validation to provide mechanistic insights. Our findings may not

only advance the understanding of sepsis but also offer valuable

insights into the development of personalized diagnostic and
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therapeutic approaches, ultimately improving outcomes for

sepsis patients.
Methods

Gene expression datasets

The Gene Expression Omnibus (GEO) serves as a publicly

accessible database for storing high-throughput gene expression

data (https://www.ncbi.nlm.nih.gov/geo/), complete with tools for

querying, downloading, and analyzing experiments as well as

curated gene expression profiles. We scoured the GEO database

using the keywords “Sepsis” [Mesh] AND “Expression profiling by

array” [All Fields] AND “Homo sapiens” [porgn: txid9606].

Selection criteria included microarray datasets of whole-genome

gene expression profiles from blood, with both sepsis and healthy

samples. Each group had more than 12 samples. Ultimately, an in-

depth examination was conducted on three distinct gene expression

datasets. The specifics of these datasets are detailed in

Supplementary Table S1. For the analysis, GSE69063 and

GSE236713 were selected, while GSE28750, GSE65682 and

GSE137340 served as the validation dataset.
Detection of differentially expressed genes

Convert the probe IDs of the three datasets to gene symbols.

Then, combine the two datasets GSE69063 and GSE236713 into one

training set, and use the ‘removeBatchEffect’ function from the

‘limma’ package (17) (version 3.60.3) to eliminate batch effects

between the datasets. Using the “limma” package to analyze

combined data, we screened out differentially expressed genes

(DEGs) in the sepsis group as compared to the control group,

and plotted a volcano plot to delineate them. In GEO, the adjusted P

values were examined to address the potential for false-positive

results. |log2FC|> 1 and the adjusted P value < 0.05 were deemed to

be the cutoffs for DEGs. We selected the top 25 genes with the

highest and lowest logFC respectively among all statistically

significant differentially expressed genes to create a heatmap

utilizing the pheatmap package (version 1.0.12) in R software.
Functional enrichment analysis

Gene Set Enrichment Analysis (GSEA) (18) serves as a

computational method for assessing whether a specified group of

genes exhibits a statistically notable, uniform disparity across two

distinct biological conditions. This method pinpoints categories of

genes or proteins that are excessively represented within an

extensive collection of genes or proteins, potentially linking them

to particular phenotypes and shedding light on intrinsic biological

mechanisms. Kyoto Encyclopedia of Genes and Genomes (KEGG)

is a comprehensive database that amalgamates genomic,
Frontiers in Immunology 03
biochemical, and phylogenetic information to systematically

analyze gene functions and understand high-level biological

functions and utilities. Gene Ontology (GO) analysis classifies

genes into structured groups according to biological mechanisms,

cellular elements, and molecular functions. After converting the IDs

of the differentially expressed genes, we use the enrichGO and

enrichKEGG functions from the clusterProfiler package (19)

(version 4.12.0) for GO and KEGG analyses, respectively.
Protein-protein interaction network

To explore further the molecular mechanisms underlying the

onset and progression of sepsis, we selected differentially expressed

genes with |log2FC| > 2. Using the STRING database (https://

cn.string-db.org/), we analyzed the protein-protein interaction

network to reveal the functions and mechanisms of proteins

within cells, as well as the complex regulatory networks in

biological systems. The PPI network was constructed based on

empirically validated interactions, each having a cumulative score

greater than 0.4.
The weighted gene co-expression network

Weighted Gene Co-expression Network Analysis (WGCNA)

(20) serves as a systemic biology technique for uncovering

correlation patterns between different genes in microarray or

RNA-Seq datasets. This method discerns groups (modules) of

genes that are closely correlated and connects these modules to

distinct external characteristics. The main steps include data input

and preprocessing, network construction, module detection, and

relating modules to external traits. To link modules with clinical

features, we calculated the Module Membership (MM) and Gene

Significance (GS) values. MM values exceeding 0.8 and GS values

over 0.2 signify strong connectivity within modules and significant

clinical association. Extract all strongly associated genes from each

module for subsequent analysis.
Identification and confirmation of
diagnostic markers

We utilized three machine learning methods, including Random

Forest (RF), Least Absolute Shrinkage and Selection Operator

(LASSO) logistic regression, and Support Vector Machine-

Recursive Feature Elimination (SVM-RFE), to identify key

biomarkers linked with sepsis. Random forest is an ensemble

learning method that improves the generalization ability of the

model by constructing 500 decision trees and performing voting or

averaging. The seed is set to 19991018 to ensure reproducibility. The

importance score of each feature is calculated based on the Gini

index. For the random forest analysis, we used the “randomForest”

package (version 4.7.1.1) in R.Lasso regression is a linear regression
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method used for feature selection and regularization. It introduces an

L1 regularization term to penalize the complexity of the model,

causing the coefficients of some unimportant features to become zero.

The model is specified as a binary classification model with L1

regularization. It calculates 100 different l values along the

regularization path. Mean squared error (MSE) is used as the

evaluation metric for cross-validation. Five-fold cross-validation is

employed to select the optimal l value. Genes with non-zero

coefficients are selected. For the LASSO logistic regression analysis,

we used the “glmnet” package (version 4.1.8) in R.SVM-RFE is a

feature selection method based on support vector machines (SVM)

that recursively eliminates the least important features to select the

optimal feature subset. Five-fold cross-validation is used. When the

number of features exceeds 100, half of the features are eliminated in

each iteration. SVM-RFE achieves feature selection by selecting the

feature subset with the lowest error rate. For the SVM-RFE analysis,

we used the “e1071” package (21) (version 1.7.14) in R.
Molecular docking

The molecular structures of active ingredients were sourced

from the PubChem database and subsequently imported into

ChemBio3D 14.0 for spatial conformation adjustment of the

active ingredients, energy optimization computations, and

ultimately saved in the mol2 file format. Following processing

with AutoDockTools 1.5.6, these files were converted and saved

in pdbq format. The three-dimensional crystal structure of the

target protein was obtained from the Uniprot database. Using

Notepad2, the water molecules and organic substances were

excised from the target protein. Subsequently, the protein was

imported into AutoDockTools (version 1.5.6) to undergo

hydrogenation, charge assignment, and atomic type assignment,

culminating in the saving of a pdbqt format file. Molecular docking

was executed with AutoDockVina, and the resultant docking

images were generated using Pymol 2.6.
Clinical study on patients with sepsis

Between September 2024 and December 2024, a total of 12

patients with sepsis (age >18 years) were enrolled from the

Department of Intensive Care Unit at Zhongnan Hospital of

Wuhan University. The inclusion criteria for sepsis were based on

the Third International Consensus Definitions for Sepsis and Septic

Shock (Sepsis-3): suspected or confirmed infection, an acute

increase of ≥ 2 points in the Sequential Organ Failure Assessment

(SOFA) score, and evidence of organ dysfunction or tissue

hypoperfusion. Being younger than 18 years of age, pregnant, or

nursing, and having malignant tumors were all excluded from

participation. Collect whole blood samples from 6 non-infected

patients undergoing surgery in the Department of Anesthesiology at

Zhongnan Hospital of Wuhan. We obtained the permission from

the Ethics Committee of Zhongnan Hospital of Wuhan University,

and participants gave their informed consent at the start of the

research (the ethics batch number: 2024260k).
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Isolation of PBMCs from whole blood

Peripheral blood mononuclear cells (PBMCs) were isolated

from whole blood samples using density gradient centrifugation.

Following the protocol described in previous literature, human

peripheral blood was collected into anticoagulant tubes and gently

inverted to prevent clotting. The anticoagulated whole blood was

diluted 1:1 with PBS and mixed gently.

A 15 mL sterile centrifuge tube was filled with 4 mL of

lymphocyte separation medium (Ficoll-Paque PLUS). The diluted

whole blood was carefully layered on top of the separation medium,

ensuring that the interface between the two layers remained intact

and undisturbed. The tube was then placed in a horizontal rotor and

centrifuged at 400 × g for 30 minutes at room temperature (with no

brake). After centrifugation, the intermediate white layer (PBMCs)

was carefully aspirated using a sterile pipette and transferred to a

new 15 mL centrifuge tube. Ten milliliters of PBS were added, and

the mixture was gently resuspended and centrifuged at 300 × g for

10 minutes at room temperature. The supernatant was discarded,

and the PBMCs were resuspended in DMEM growth medium

(Gibco, 11965118) containing 2% fetal bovine serum or in

Cryostor CS10 (StemCell Technologies) for overnight storage at

-80°C, followed by long-term storage in liquid nitrogen.
qRT-PCR analysis

Total RNA was derived from human PBMC using TRIzol

reagent (Invitrogen, USA). The RNA was subsequently converted

into cDNA through reverse transcription, utilizing the reverse

transcription kit (produced by Takara, China). cDNA was used as

a template for qPCR, with target gene primers and reference gene

primers added. The reaction mixture was prepared adhered to the

guidelines provided by the qPCR kit (Takara, China). Ultimately,

the expression levels of the target gene were determined by

analyzing the qPCR outcomes with the Bio-Rad CFX Maestro

software. The sequences of the primers can be found in

“Supplementary Table S2”.
Western blot

Human PBMCs were cultivated in DMEMmedium supplemented

with 10% fetal bovine serum and 1% penicillin-streptomycin, within a

regulated incubator atmosphere maintained at 37°C and 5% CO2.

Protein extraction was performed using RIPA buffer, which included

inhibitors for proteases and phosphatases, followed by protein

quantification via the BCA method. Identical amounts of proteins

were separated on SDS-PAGE gels and subsequently blotted onto

PVDF membranes. The membranes were blocked with 5% non-fat

milk in TBST, before being exposed to the anti-CD40LG antibody

(abcam, ab2391) overnight at 4°C. Afterward, HRP-conjugated

secondary antibodies were applied. Protein bands were detected by

ECL and visualized with a chemiluminescence imager. ImageJ software

was utilized to measure the intensity of the bands.
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Cecal ligation and puncture induced sepsis
model in mice

Male C57BL/6 mice (8 weeks old) were used to establish the

sepsis model via cecal ligation and puncture (CLP). After anesthesia

with 1.0% pentobarbital sodium injections intraperitoneally (35 mg/

kg), a midline incision was made to expose the cecum. The cecum

was ligated below the ileocecal valve and punctured twice with a 21-

gauge needle. A small amount of fecal matter was extruded to ensure

patency, and the cecum was then returned to the abdominal cavity.

The incision was closed in two layers, and the mice were resuscitated

with 1 ml of pre-warmed saline subcutaneously. Sham-operated mice

underwent the same procedure without cecal ligation and puncture.

Post-surgery, all mice were monitored closely for signs of sepsis.

Flavonoids (5 mg/kg, obtained from Song Hui Laboratory) were

administered via tail vein injection to evaluate their protective effects

on sepsis-induced organ damage. Every experiment was carried out

in accordance with NIH guidelines and approved by Wuhan

University’s Animal Ethics Committee (ZN2021185).
Liver function-related index detection

Whole blood samples were left at room temperature for 2 hours

and then centrifuged at 3000 rpm for 15 minutes at 4°C to obtain

serum. Liver function tests were performed using an enzymatic

colorimetric method, including alanine aminotransferase (ALT)

(BioBASE 70111), aspartate aminotransferase (AST) (BioBASE

70910). Enzymatic colorimetric assay reagents were prepared

according to the kit instructions. Samples and reagents were

incubated at 37°C. The samples were loaded onto an automatic

biochemical analyzer (Shandong Brocade Biotechnology Co., Ltd.,

BK-280) for automatic measurement. Absorbance values of each

indicator were measured using a spectrophotometer. The

concentrations of each liver function indicator were calculated

based on the standard curve.
Concentration in bronchoalveolar
lavage fluid

According to previous manufacturer’s protocol (22), lungs of

mice were lavaged after experiment. Using a commercial

bicinchoninic acid (BCA) protein assay kit (Beyotime, China), the

proteins of BALF were quantified.
Assessment and correlation study of
immune cells related to infiltration

The CIBERSORT website approximates the copiousness of 22

distinct immune cell varieties within composite cell populations by

analyzing gene expression data. The immune cell infiltration matrix

was obtained, as demonstrated by a p-value less than 0.05. Use the

“ggplot2” (version 3.5.1) and “ggcorrplot” (version 0.1.4.1) packages

to plot the heatmap of immune cell distribution and the correlation
Frontiers in Immunology 05
matrix of immune cell distribution, respectively. Finally, we

conducted a correlation between pivotal genes and immune cells

that have infiltrated the tissue.
Software tools

The analysis in this study was based on R version 4.4.0 and

utilized the following key R packages and their versions: ggplot2

(version 3.5.1) for data visualization, limma (version 3.60.3) (17) for

differential expression analysis, and WGCNA (version 1.72-5) (20)

for weighted gene co-expression network analysis.
Statistical methods

All statistical tests were performed using GRAPHPAD 6.0c.

Results are expressed as mean ± SD. Comparisons between the

experimental and control groups were made using independent

sample t-tests or one-way analysis of variance (ANOVA). A p-value

of less than 0.05 was considered statistically significant.
Results

Screening of differentially expressed genes
in sepsis

The procedure of this research is depicted in Figure 1, and the

relevant information is provided in Supplementary Table S1. We

combined the two datasets GSE69063 and GSE236713 into one

training set, and use the ‘removeBatchEffect’ function from the

‘limma’ package to eliminate batch effects between the datasets

(Supplementary Figure S1). We employed the “limma” package (17)

(version 3.60.3) to identify differentially expressed genes (DEGs)

with |log2FC| > 1 and an adjusted p-value < 0.05 as cutoffs, resulting

in a total of 1443 genes, including 891 upregulated and 552

downregulated genes. We selected the top 25 genes with the

highest and lowest logFC respectively among all statistically

significant differentially expressed genes to create a heatmap

(Supplementary Figure S2A) by using R software’s pheatmap

package. A graphical representation, known as a volcano plot,

was created to highlight the varying expression levels of the

differentially expressed genes (DEGs). (Supplementary Figure S2B).
GSEA

To study the relationship between genes and specific

phenotypes in sepsis patients and healthy controls using GSEA,

we identified potential biological processes. Through HALLMARK

analysis, we found that the top-ranked terms were mostly related to

antigen presentation, cell differentiation, immune response, and

other processes. In sepsis patients, the signaling pathways for

antigen processing and presentation, ribosome, ribosome

biogenesis in eukaryotes, T cell receptor signaling pathway, as
frontiersin.org
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well as the differentiation of Th1 and Th2 cells, with all the adjusted

p-values falling below 0.05. (Figure 2A)
Functional enrichment analysis of DEGs

Based on the findings from functional enrichment analysis, DEGs

pertained to conditions including primary immunodeficiency disease,

HIV infection, arteriosclerosis, oral diseases, and tuberculosis

(Figure 2B). According to the output of GO enrichment analysis,
Frontiers in Immunology 06
DEGs are mainly associated with T cell differentiation, immune

response activation of cell surface receptors, innate immune

response activation signal transduction, immune receptor activity,

and extracellular matrix-related functions. Figure 2C shows the

enrichment results for these functions. The KEGG analysis is

related to Th17 cell differentiation, Th1 and Th2 cell differentiation,

T cell receptor signaling pathway, and Cytokine-cytokine receptor

interaction (Figure 2D). Figure 2E shows the PPI network, in which

core proteins such as CD5, CD3E, CD6, LCK, etc., play crucial roles

in T cell activation and signal transduction.
FIGURE 1

The flowchart portraying the investigation procedure. GEO, Gene Expression Omnibus; GSEA, Gene Set Enrichment Analysis; CIBERSORT, Cell-Type
Identification by Estimating Relative Subsets of RNA Transcripts; DEGs, Differentially Expressed Genes; GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; PPI, Protein-Protein Interaction; LASSO, Least Absolute Shrinkage and Selection Operator; RF, Random
Forest; SVM-RFE, Support Vector Machine-Recursive Feature Elimination; ROC, Receiver Operating Characteristic Curve; DCA, Decision
Curve Analysis.
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Detection of co−expression gene modules
within sepsis

In the training dataset, we applied WGCNA to identify gene

modules extensively co-expressed across numerous genes. First, the

samples from two datasets were divided into two groups: sepsis

group and control group. A cutHeight of 114 was set to remove
Frontiers in Immunology 07
outliers (Figure 3A). Then, the minimum soft threshold with a

scale-free topology model fit close to 0.9 was chosen, with 5 as the

soft threshold power (b), for constructing biologically significant

scale-free networks in the next step (Figures 3B, C). Through

employing hierarchical clustering and dynamic branch cutting

techniques to dissect gene dendrograms, we divided genes into 12

modules (Figure 3D). The modules of black, greenyellow, and pink
FIGURE 2

Functional and pathway enrichment assessment of DEGs. (A) GSEA evaluation; (B) DO examination; (C) GO enrichment evaluation; (D) KEGG
pathway enrichment evaluation; (E) PPI network analysis. DEGs, Differentially Expressed Genes; GSEA, Gene Set Enrichment Analysis; DO, Disease
Ontology; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, Protein-Protein Interaction.
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exhibited a significant correlation with sepsis (Figure 3E, P < 0.05).

We plotted scatter plots for all modules with p-values indicating

significant differences (p < 0.05) (Supplementary Figure S3).

Figures 3F–H show scatter plots for the three most significantly

correlated modules. We extracted genes from all modules with

threshold of membership > 0.8 and threshold of significance > 0.2.

A total of 351 genes showed significant correlations with sepsis-

related genes and module membership.
Frontiers in Immunology 08
Assessment and verification of
diagnostic biomarkers

We used a Venn diagram to display the overlapping genes

between DEGs and key modules identified byWGCNA, resulting in

a total of 262 shared genes (Figure 4A). Three machine learning

algorithms were applied to pinpoint characteristic genes: the SVM-

RFE error rate graph indicates that when 89 genes are selected, the
FIGURE 3

Construction of weighted co-expression network datasets in pediatric sepsis. (A) Clustering dendrogram of 226 samples; (B, C) Evaluation of
network topology for different soft thresholds (b); (D) Gene dendrograms derived from average linkage hierarchical clustering; (E) Module-trait
correlations; (F) Scatterplot of GS for recurrence vs. MM in the black module; (G) Scatterplot of GS for recurrence vs. MM in the greenyellow
module; (H) Scatterplot of GS for recurrence vs. MM in the pink module. GS, Gene Significance; MM, Module Membership.
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diagnostic error rate is the lowest (Figure 4B); Figure 4C shows the

fitting process of the Random Forest algorithm. The RF accuracy

graph indicates that when the number of feature genes is 84, the

diagnostic accuracy is the highest (Supplementary Figure S2C). In

the Random Forest model, the top 30 feature genes are ranked in

descending order of importance (Figure 4D); LASSO regression was

applied to identify 17 genes predictive of the outcome, following

univariate statistical significance assessments. (Figures 4E, F). We

extracted 12 feature genes (MS4A4A, AFF3, P2RY10, SIPA1L2,
Frontiers in Immunology 09
CD40LG, ST6GALNAC3, CD3E, LILRA5, KREMEN1, FCER2,

CCNB2, HJURP) covered by all three machine learning

algorithms, and illustrated their overlap with a Venn diagram

(Figure 5A). Utilizing the “rms” package (version 6.8.1), we

crafted nomogram models for the diagnosis of sepsis, leveraging

the data from these 12 genes. (Figure 5B) Based on the decision

curve analysis (DCA) outcomes, the Nomogram model yields

superior clinical advantages (Figure 5C). In the training dataset,

the AUC for all 12 feature genes exceeds 0.7, indicating their high
FIGURE 4

Identification of diagnostic markers through a comprehensive approach. (A) Venn diagram comparing key module genes with DEGs; (B) Biomarker
screening via SVM-RFE; (C, D) Based on RF algorithm to screen biomarkers; (E) Varied colors indicate distinct genes; (F) Diagnostic marker screening
employing the LASSO logistic regression algorithm. DEGs, Differentially Expressed Genes; WGCNA, Weighted Gene Co-Expression Network; SVM-
RFE, Support Vector Machine-Recursive Feature Elimination; RF, Random Forest; LASSO, Least Absolute Shrinkage and Selection Operator.
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predictive accuracy and suggesting their potential as clinical

biomarkers (Figures 5D–F). In the GSE65682 validation group, all

12 core genes showed significant differences between the healthy

control group and the sepsis group (Figures 6A–C). Except for

FCRE2, the area under the ROC curve (AUC) for the remaining
Frontiers in Immunology 10
core genes was above 0.7(Figures 6D–F). In the three validation

datasets, we selected genes with AUC greater than 0.7 and single-

gene boxplot P-values less than 0.05 in each dataset to create a Venn

diagram. We found that there were 7 overlapping genes, among

which CD40LG was one (Figure 6G). Moreover, in the GSE137340
FIGURE 5

Key Genes in Diagnosing Pediatric Sepsis. (A) A Venn diagram illustrates the overlap of diagnostic markers identified by the three algorithms; (B) A
nomogram is employed to forecast the incidence of pediatric sepsis; (C) Decision Curve Analysis (DCA) plots; (D-F) The ROC curve for validating
diagnostic effectiveness. DCA, Decision Curve Analysis; ROC, Receiver Operating Characteristic Curve; AUC, Area Under Curve.
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validation group, the levels of CD3E, CD40LG, FCER2, and

P2RY10 expressions were markedly reduced in the sepsis group

when contrasted with the control group (P < 0.05) (Supplementary

Figure S5A). Conversely, the expression of CCNB2, HJURP,

KREMEN1, LILRA5, and SIPA1L2 was significantly higher in the
Frontiers in Immunology 11
sepsis group (P < 0.05) (Supplementary Figure S5B). The remaining

genes exhibited no substantial disparity when comparing the two

groups. In the validation dataset, ROC curves were plotted for 12

genes (Supplementary Figures S5C–E). Except for MS4A4A, AFF3,

and ST6GALNAC3, the AUC of the remaining genes’ curves was
FIGURE 6

Confirmation of pivotal genes. (A-C) A boxplot depicts the expression levels of key genes between the pediatric sepsis group and the control group
in GSE65682 dataset; (D-F) The ROC curve for diagnostic efficacy validation in GSE65682. (G) A Venn diagram illustrates the overlapping genes with
significant differences and AUC greater than 0.7 and single-gene boxplot P-values less than 0.05 in all validation sets.
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greater than 0.7. We used a Venn diagram to show overlapping

genes (CD3E, CD40LG, LILRA5 and FCER2) with significant

differences and an ROC curve area greater than 0.8 in the

validation dataset (Supplementary Figure S5F). Similarly, in the

GSE28750 dataset, we performed single-gene boxplot validation

(Supplementary Figures S6AC–C) and ROC curve validation

(Supplementary Figures S6DC–F) for the 12 core genes.
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Infiltration of immune cells results

As indicated by the CIBERSORT analysis, septic specimens

generally exhibit an elevated prevalence of plasma cells, CD4+ T

cells in the memory activated state, gamma delta T cells, M0

Macrophages, M2 Macrophages, and Neutrophils, as compared

with normal controls (P < 0.05) (Figures 7A, B). However, B cells
FIGURE 7

Evaluation, visualization, and correlation analysis of immune cell infiltration. (A) Boxplot and (B) Violin plot depicting the distribution of 22 distinct
immune cell types. (C) Linkage between CD3E and infiltrating immune cells; (D) Linkage between LILRA5 and infiltrating immune cells; (E) Linkage
between CD40LG and infiltrating immune cells; (F) Linkage between FCER2 and infiltrating immune cells. NK, natural killer. *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001, ns stands for non-significant.
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naive, B cells memory, T cells CD8, T cells CD4 naive, T cells CD4

memory resting, and NK cells resting are relatively lower in septic

samples. Correlation analysis results indicate significant

associations of CD3E, CD40LG, LILRA5 and FCER2 with various

immune cells (Figures 7C–F). The Correlation analysis results of the

remaining genes are shown in Supplementary Figure S4.
Screening of therapeutic targets

Xuebijing, a traditional Chinese medicine injection composed of

safflower, salvia, and Astragalus, is widely used for its ability to

promote blood circulation, clear heat, and detoxify. It has shown

significant efficacy in treating critical conditions such as sepsis,

ARDS, and MODS, primarily by inhibiting inflammatory factors,

improving microcirculation, and reducing oxidative stress. While

clinical studies have demonstrated its potential to reduce mortality

and alleviate conditions like COVID-19-related pneumonia, the

precise mechanisms of Xuebijing’s action remain to be fully

elucidated. Employing the Traditional Chinese Medicine Systems

Pharmacology Database and Analysis Platform (TCMSP), we

discerned the chemical components found in the three herbs along

with their corresponding target genes. We found that CD40LG is not

only one of the 12 core genes we identified, but also a common target

of the active components quercetin, luteolin, and apigenin in these

herbs. Figure 8A illustrates the chemical structures of these active

ingredients, and we extracted the common chemical structure of

them—flavonoids (Figure 8B). The 3D binding model analysis of

CD40LG with flavonoids shows a docking score of -6.263 kcal/mol,

indicating strong affinity between the compound and the protein, as

values more negative than -5 reflect good affinity (Figure 8C).

Through docking analysis, we further validated the interaction

between flavonoids and CD40LG, providing strong evidence for

personalized sepsis treatment. To further substantiate the clinical

applicability of the gene in practical scenarios and explore its roles in

the pathogenesis of sepsis, we collected blood samples from both a

healthy control group and a sepsis group with or without the

administration of Xuebijing. We extracted PBMCs from blood

samples and conducted WB and PCR experiments on them. At

both gene and protein levels, CD40LG significantly decreased in

sepsis patients without Xuebijing treatment compared to the healthy

group, while CD40LG was partially rescued in sepsis patients with

Xuebijing treatment (Figures 8D, E). Using the sham operation group

as a control, we established a mouse sepsis model through cecal

ligation and puncture (CLP) and administered flavonoids to a portion

of the septic mice via tail vein injection. We observed the histological

changes in the liver and lung tissues among different treatment

groups. The results showed that CLP treatment exacerbated liver

and lung injuries in mice, while flavonoid treatment effectively

alleviated the histological changes in the liver and lung tissues

(Figure 8F). Similarly, the changes in serum ALT and AST levels

(Figure 8G) and BALF protein concentration (Figure 8H) among the

three groups followed the same trend: CLP treatment significantly

increased ALT, AST, and BALF protein concentrations, whereas
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flavonoid treatment significantly decreased these indices. These

results indicate that flavonoids have a protective effect against CLP-

induced tissue injury.
Discussion

Sepsis frequently arises from combat-related wounds and trauma,

characterized as a perilous organ dysfunction stemming from an

erratic host reaction to infection. Additionally, it ranks as a principal

factor contributing to mortality rates and heightened healthcare

expenditures within contemporary intensive care settings (23).

Sepsis represents an abnormal systemic response to ordinary

infections, typically characterized by a preliminary hyper-

inflammatory phase followed by an immunosuppressive phase,

leading to multiple organ dysfunction (5, 24). In the early stage of

sepsis, cytokines like tumor necrosis factor (TNF), interleukin-1b (IL-
1b), and interleukin-6 (IL-6) mediate the inflammatory reaction,

initiating the systemic inflammatory response syndrome (SIRS) (25).

In the later stages of sepsis, the immune response becomes

suppressed, manifesting as compensatory anti-inflammatory

response syndrome (CARS) (26). Biomarkers of this phase include

anti-inflammatory cytokines and changes in the distinguishing

markers on the surfaces of monocytes and lymphocytes. Integrating

a range of pro-inflammatory and anti-inflammatory biomarkers may

potentially facilitate the early detection of patients susceptible to

developing severe sepsis, even before the occurrence of organ

dysfunction. This approach could allow for prompt supportive

intervention, enhancing patient outcomes, decreasing mortality

rates, and reducing healthcare expenditures (5). Many existing

biomarkers, such as C-reactive protein (CRP) and procalcitonin

(PCT), although elevated during inflammatory responses, lack

specificity and are influenced by other inflammatory or infectious

conditions. Some biomarkers do not show significant changes during

the progression of sepsis, rendering it challenging to capture the

dynamic fluctuations and severity of the condition. Identifying and

validating new biomarkers for sepsis can significantly enhance early

diagnosis and treatment efficacy, thereby improving patient

prognosis (27).

While the precise mechanisms are yet to be fully understood,

immunosuppression is regarded as a significant contributor to

mortality in sepsis (23). The mechanisms of sepsis-induced

immunosuppression are highly complex, involving various cellular

and molecular pathways. Immune checkpoint proteins, such as PD-1

and CTLA-4, are upregulated in sepsis, leading to immunosuppression

by inhibiting T cell activation and proliferation (28–31). Regulating the

expression and function of these checkpoint proteins is a current

research focus. Autophagy fulfills a dual function within sepsis; it can

protect cells by clearing damaged organelles and proteins, but excessive

autophagy may lead to immune cell death, exacerbating

immunosuppression (32). Ferroptosis, a type of cell death dependent

on iron and characterized by lipid peroxidation, may further impair

immune responses by disrupting the integrity of immune cell

membranes during sepsis (33, 34). During sepsis, immune cells such
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as T cells, B cells, and natural killer cells undergo significant apoptosis,

leading to a marked decline in immune system function and reduced

resistance to infection (35–39). The count of regulatory T cells (Tregs)

escalates, and these cells modulate immune responses through the
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secretion of anti-inflammatory cytokines like IL-10 and TGF-b (40–

42). Sepsis also causes dysfunction in immune cells, including antigen-

presenting cells like dendritic cells andmacrophages, impairing antigen

presentation and T cell activation (43, 44). Studies have shown that
FIGURE 8

Interaction between Flavonoids and CD40LG. (A) The chemical structures of quercetin. Luteolin and apigenin. (B) The chemical structure of
flavonoids. (C) 3D Binding model analysis of CD40LG with flavonoids. (D) The relative expression of CD40LG mRNA in control (Con), sepsis, and
Xuebijing-treated groups. (E) Western blot analysis of CD40LG and GAPDH protein expression in control (Con), sepsis, and Xuebijing-treated groups.
(F) Liver tissue sections stained with hematoxylin and eosin (H&E), showing the liver and lung tissue structure of the sham operation group, cecal
ligation and puncture (CLP) group, and CLP plus flavonoid treatment group. (G) Serum ALT and AST levels in different treatment groups. (H) Protein
concentration in bronchoalveolar lavage fluid (BALF) in different treatment groups. (n=6). Data are presented as mean ± SD. Statistical significance is
indicated as follows: ns (not significant), *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns stands for non-significant.
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targeting immunosuppression can reverse immune cell dysfunction,

providing a theoretical basis for developing new immunotherapeutic

strategies (37, 45–48).

The identification of novel biomarkers has not only improved

the diagnosis and treatment outcomes of sepsis but also provided

new research directions for studying the mechanisms of sepsis-

induced immunosuppression (27, 49). Studies have found that the

levels of BMP9 are significantly reduced in sepsis patients, and these

levels are closely related to patient prognosis. BMP9 can serve not

only as a prognostic biomarker but also has potential value as a

therapeutic target (50).

Traditional treatments for sepsis, such as fluid resuscitation and

broad-spectrum antibiotics, although somewhat effective, have

drawbacks including fluid overload, antibiotic resistance, and

disruption of the gut microbiota (51–53). Personalized treatment,

which adjusts therapeutic strategies based on the patient’s specific

conditions through methods like gene expression analysis, single-

cell transcriptomics, and dynamic monitoring, is gaining

importance in sepsis management due to its potential to reduce

side effects and improve outcomes (54–59). Machine learning

models can predict the occurrence and progression of sepsis

based on patients’ gene expression data (60). Researchers have

developed machine learning classification models based on

preoperative transcriptomic features to predict postoperative

sepsis (61). These models can help clinicians more accurately

assess patient risk and formulate personalized treatment plans.

In this study, we utilized machine learning and bioinformatics

to identify new diagnostic biomarkers for sepsis and conducted a

comprehensive analysis of immune cell infiltration characteristics,

affording novel pathways for delving deeper into the intricacies of

sepsis-induced immunosuppressive mechanisms. We merged two

datasets (GSE69063 and GSE236713) from the Gene Expression

Omnibus and removed batch effects. Between the control and the

sepsis groups, our research revealed a total of 1443 DEGs, including

891 upregulated and 552 downregulated genes. According to the

results of GO enrichment analysis, differentially expressed genes are

mainly associated with T cell differentiation, immune response

activation of cell surface receptors, innate immune response

activation signal transduction, immune receptor activity, and

extracellular matrix-related functions. The KEGG analysis is

related to Th17 cell differentiation, Th1 and Th2 cell

differentiation, T cell receptor signaling pathway, and Cytokine-

cytokine receptor interaction. We extracted 262 genes commonly

covered by WGCNA and DEGs, and employed three distinct

machine learning algorithms to screen and identify diagnostic

biomarkers associated with sepsis.

The Random Forest algorithm is an ensemble learning method

that relies on decision trees (62). It combines multiple decision trees

to form a forest, improving accuracy for classification or regression

tasks (63). Using the Bagging algorithm (Bootstrap aggregating), it

generates multiple subsets by sampling with replacement from the

training set and trains individual decision trees. Finally, the overall

prediction result is obtained by averaging or majority voting (64).

The Random Forest algorithm is capable of generating highly

precise classifiers across diverse datasets, managing extensive

input variables efficiently, and supporting parallel processing (63).
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LASSO is a widely used regression analysis method in statistics. Its

core idea is to compress coefficients to achieve variable selection and

complexity adjustment, thereby improving the predictive accuracy

and interpretability of the model (65, 66). SVM-RFE is a wrapper-

based feature selection method. It starts with all potential genes (or

other predictor variables) and then iteratively removes them one by

one, forming a backward elimination process. During every cycle,

genes are sorted in accordance with their significance in relation to

the target variable, allowing identification of the most relevant genes

and simplifying the model to improve predictive performance (67).

Finally, we extracted 12 genes common to three machine learning

algorithms: MS4A4A, AFF3, P2RY10, SIPA1L2, CD40LG,

ST6GALNAC3, CD3E, LILRA5, KREMEN1, FCER2, CCNB2, and

HJURP, which were identified again as potential biomarkers by the

validation gene set. CIBERSORT is a widely used computational

method in immunology research. It is based on a linear regression

model that quantitatively analyzes the proportions of various

immune cell subtypes in tissues using gene expression data (68).

By training on known immune cell characteristic gene expression

profiles, CIBERSORT estimates the relative abundance of immune

cell subpopulations in mixed cell samples (69). The variation in

immune cell infiltration, encompassing diverse types of immune

cells, appears to correlate with the onset and progression of sepsis

(37). To acquire profound insight into the role of immune cell

infiltration in this context, we employed CiberSort for analysis.

Xuebijing injection is a traditional Chinese medicine injection

that has shown significant efficacy in the management of sepsis over

the past few years (70). Xuebijing works by modulating the body’s

abnormal responses, protecting vascular endothelial cells, and

mitigating the interaction between the inflammatory and

coagulation systems, thereby preserving the physiological

functions of major organs. Its application in the treatment of

COVID-19 has also shown certain efficacy. Research indicates

that Xuebijing can suppress the cytokine storm caused by the

coronavirus, improve the Pneumonia Severity Index (PSI) of

patients, and increase the cure rate (71). In a multicenter

randomized double-blind placebo-controlled clinical trial, the 28-

day all-cause mortality rate for the Xuebijing group was markedly

reduced compared to the placebo group (18.8% versus 26.1%),

highlighting its efficacy in potentially lowering sepsis-related

mortality (72). Additionally, Xuebijing can improve patients’

immune function and reduce the incidence of multiple organ

dysfunction syndrome (MODS). These findings provide high-level

evidence for the application of Xuebijing in sepsis treatment.

Astragalus, Salvia, and Safflower are the main components of

Xuebijing (73), commonly used in the clinical treatment of sepsis.

Using the Traditional Chinese Medicine Systems Pharmacology

Database and Analysis Platform (TCMSP), we identified the

chemical constituents of these three herbs and their target genes.

We found that CD40LG is not only one of the 12 core genes we

identified, but also a common target of the active components

quercetin, luteolin, and apigenin in these herbs. We extracted the

common chemical structure of these active ingredients—flavonoids.

Through docking analysis, we further validated the interaction

between flavonoids and CD40LG, providing strong evidence for

personalized sepsis treatment. To further validate the practical
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application value of the gene in clinical settings and explore its roles

in the pathogenesis of sepsis, we collected blood samples from

healthy individuals and sepsis patients with or without the

administration of Xuebijing for PBMC extraction, followed by

qPCR and WB. At both gene and protein levels, CD40LG

significantly decreased in sepsis patients without Xuebijing

treatment compared to the healthy group, while CD40LG was

partially rescued in sepsis patients with Xuebijing treatment.

CD40LG, predominantly located on the surface of T cells, serves

as a critical co-stimulatory molecule in immune system functions. By

attaching to the CD40 receptor on B cells and additional antigen-

presenting cells, it facilitates B cell activation, antibody synthesis, and

modulation of inflammatory processes (74, 75). This interaction is

essential for B cell activation, antibody production, and the regulation

of inflammatory pathways. CD40LG plays a multifaceted role in

disease mechanisms, particularly in immune regulation and

inflammation. It is a powerful modulator of inflammatory

pathways, promoting the build-up of inflammatory white blood

cells in atherosclerotic plaques and driving the expression of

inflammatory genes. Produced by activated T lymphocytes and

platelets, CD40LG can be converted into a soluble variant known

as sCD40L, which behaves similarly to cytokines. Both the

membrane-bound and soluble forms participate in inflammatory

reactions and various immune and vascular disorders. Soluble

CD40L, chiefly released by platelets, has been linked to harmful

transfusion reactions, including transfusion-related acute lung injury

(TRALI) (76). Genetic mutations in the CD40LG gene lead to X-

linked hyper IgM syndrome (XHIM), a condition marked by the

absence of T cell-dependent humoral immunity and specific IgG

antibodies (77). A multicenter, prospective study showed that

sCD40L levels might play a role in sepsis, with circulating sCD40L

levels in septic patients significantly higher than those in the control

group, and non-survivors having higher sCD40L levels than survivors

(78). This is inconsistent with our bioinformatics analysis results,

which may be due to differences in sample types and sources used in

different studies. In the study by Pastor E et al., the measurement was

of soluble CD40 ligand (sCD40L) levels in serum, whereas our

bioinformatics analysis was based on CD40LG gene expression

levels in whole blood samples. Nevertheless, the important role of

CD40LG in sepsis cannot be denied. Further in-depth mechanistic

exploration of changes in CD40L levels in serum and whole blood is

still needed. The reduction of CD40LG may be associated with

immunosuppression in late-stage sepsis patients (23). The

interaction between CD40LG and CD40 receptors on B cells and

other antigen-presenting cells is vital to the immune response. The

decrease in CD40LG inhibits this immune response. After treatment

with Xuebijing, the expression of CD40LG increases, which may be

due to the binding of flavonoids to CD40LG, enhancing its stability,

and possibly through signal transduction, increasing the gene

transcription and protein expression of CD40LG.

The CD40LG may serve as a novel biomarker for the diagnosis

of sepsis and as an indicator for evaluating treatment efficacy and

provides a new research direction for further studying the

mechanisms of immunosuppression in sepsis. However, our study
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has the following limitations. Machine learning models may overfit

training data during training, yielding suboptimal outcomes when

faced with fresh data sets. If the selected genes perform well only in

the training data but poorly in other datasets, using these genes as

diagnostic markers may be unreliable. Additionally, CIBERSORT

estimates the composition and abundance of immune cells based on

transcriptome data, but gene interactions within the organism and

overlapping gene expression between different cell types may affect

the accuracy of individual gene expression levels. To mitigate

overfitting in machine learning models, we enhanced

generalization through expanded sample size, data augmentation,

feature selection (e.g., LASSO, random forest), regularization (L1,

L2), cross-validation, and ensemble learning (e.g., XGBoost) (79).

Future work will focus on robust algorithms for high-dimensional/

small-sample data, multi-omics integration, and transparent model

training. For CIBERSORT’s gene expression overlap issue, we plan

to develop single-cell-based deconvolution tools and integrate

multi-modal data (e.g., epigenetics, proteomics) to improve cell

type resolution (80). Bias correction tools and multivariate

regression will address confounding factors, ensuring result

reliability (81). Therefore, the results of this study still need

validation using larger datasets and extensive experiments to

determine their reliability. Through biological experiments, we

have confirmed that flavonoids can benefit sepsis patients by

affecting CD40LG. However, the underlying mechanisms of this

effect require further investigation.

In summary, our research has identified twelve genes, including

CD3E, CD40LG, LILRA5, and FCER2, as potential diagnostic

markers for sepsis. Among these, we selected CD40LG, a target

gene for the three main components of Xuebijing, as one of the core

genes. Through biological experiments, we concluded that Xuebijing

treatment might improve the prognosis of sepsis patients by affecting

CD40LG, providing a new research direction for further studying the

mechanisms of immunosuppression in sepsis.
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SUPPLEMENTARY FIGURE 1

Scatter plots showing gene expression data before and after batch correction.

SUPPLEMENTARY FIGURE 2

(A)Heatmap of the top 25 genes with the highest and lowest logFC among all

statistically significant differentially expressed genes. (B) Volcano plot of the

1443 DEGs. (C) RF accuracy graph showing the relationship between the
number of feature genes and diagnostic accuracy. RF: Random Forest; DEGs

differentially expressed genes; FC fold-change.

SUPPLEMENTARY FIGURE 3

Scatterplot of GS for recurrence vs. MM in the other modules.

SUPPLEMENTARY FIGURE 4

Linkages between the other key genes and infiltrating immune cells.

SUPPLEMENTARY FIGURE 5

Validation in the GSE137340 Dataset (A, B) A boxplot depicts the expression
levels of key genes between the pediatric sepsis group and the control group

in the validation dataset; (C-E) The ROC curve for diagnostic efficacy

validation in GSE137340 dataset. (F) A Venn diagram illustrates the
overlapping genes with significant differences and AUC greater than 0.8

in GSE137340.

SUPPLEMENTARY FIGURE 6

Validation in the GSE28750 Dataset (A-C) A boxplot depicts the expression

levels of key genes between the sepsis group and the control group in

GSE28750 dataset; (C-E) The ROC curve for diagnostic efficacy validation
in GSE28750.

SUPPLEMENTARY FIGURE 7

Quantitative PCR (qPCR) analysis of the mRNA expression of ST6GALNAC3,
CD3E, LILRA5, KREMEN1, HJURP, CCNB2, FCER2, MS4A4A, AFF3, P2RY10 and

SIPA1L2. Relative mRNA levels were measured in healthy control and sepsis

using specific primers. (n = 6). Data are shown as mean ± SD. *P < 0.05, ****P
< 0.0001 for indicated comparisons.

SUPPLEMENTARY TABLE 1

Information on microarray datasets obtained from GEO.

SUPPLEMENTARY TABLE 2

Primer information.
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