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Adipose-derived mesenchymal stem cells (ADSCs) exhibit superior

immunomodulatory properties and have broad therapeutic applications. They

induce macrophage M2 polarization for anti-inflammatory responses. Exosomes

derived from ADSCs (ADSC-EXOs) exhibit biological functions similar to those of

ADSCs but can circumvent the limitations associated with cellular injection

therapies. Potent anti-inflammatory substances contained in exosomes include

the glycoprotein MFGE8, the cytokines such as prostaglandin E2, IL-6, and IGF, as

well as non-coding nucleotides (miR-451a, miR-23, miR-30d-5p, let-7, lncRNA

DLEU2, circRps5, Circ-Ptpn4, and mmu_ circ_0001359). The anti-inflammatory

and immunomodulatory properties of these exosomes provide new perspectives

for therapeutic approaches for graft inflammation, bone healing, acute lung injury,

kidney stones, myocardial infarction, and diabetes-related diseases. This review

summarizes the contents and functions of ADSC-EXOs, outlines their properties

and the characteristics of macrophage phenotypes, and emphasizes their impact

on macrophage polarization and their contribution to immune-related diseases.
KEYWORDS

exosomes, adipose-derived mesenchymal stem cells, macrophage polarization, M2
macrophages, inflammatory diseases
1 Introduction

Mesenchymal stem cells (MSCs) have substantial medical and biological value and have

become a research hotspot in biomedicine due to their excellent immunomodulatory

properties and wide range of applications (1). MSCs are multi-differentiated cells derived

from various tissues, including bone marrow, umbilical cord blood, and adipose tissue (2).

Among these, adipose-derived mesenchymal stem cells (ADSCs) are easily accessible,

minimally invasive, and easy to culture, with substantial medical promise and development
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potential (3). Exosomes possess great potential for cell-free therapies

as key mediators of intercellular communication (4, 5). ADSC-

derived exosomes (ADSC-EXOs) play vital role in regulating

macrophage M1/M2 polarization, mediating inflammatory

responses, and modulating immune functions (6). The M1 and M2

macrophage phenotypes represent two extremes of activation states

crucial to both the progression and recovery of inflammation in the

body (7). M1 macrophages, representing the classically activated

phenotype, contribute to tissue damage by releasing a wide range

of cytokines and chemokines that trigger pro-inflammatory, anti-

microbial, and tumorigenic activities. In contrast, M2 macrophages,

which have an alternatively activated phenotype, exert anti-

inflammatory, tissue regeneration and repair, angiogenic, and

immunomodulatory effects (8). This article reviews the role of

ADSC EXO in regulating macrophage M2 polarization and in the

treatment of diseases such as bone healing, acute lung injury, kidney

stones, fat graft survival and myocardial infarction (MI), which have

been studied in recent years.
2 ADSC-EXOs

Extracellular vesicles are classified into different subtypes based

on their diameter: exosomes (30–100 nm), microvesicles (100–

1,000 nm), and apoptotic vesicles (1–5 mm) (9). Exosomes are

important components of MSC secretion. MSC-derived exosomes

are readily distinguishable by the presence of markers and proteins,

including surface markers such as CD9, CD63, and CD81 of the

tetraspanin family;, heat shock proteins (HSP60, HSP70, and

HSP90), multivesicular bodies, biologically derived proteins (Alix

and tumor susceptibility gene 101 [TSG101]), lipid-associated

proteins, and phospholipases (10, 11). Notably, the phenotype

and biological effects of exosomes may change depending on the

type of MSCs source (12). MiRNAs are one of the major

components of exosomes that are protected from RNAase attack

by an exosomal lipid bilayer outside of the exosome (4). Among

them, miR-155 and miR-146 are involved in physiological and

pathological processes such as organism development, epigenetic

regulation, and immune regulation, and miR-23b, miR-451, miR-

223, miR-24, miR-125b, miR-31, miR-214, and miR-122 are

involved in tumorigenesis and tumor progression (1).

ADSC-EXOs possess numerous medicinal and biological

applications. They possess the advantages of being small in size, the

ability to penetrate biological membranes (capillaries and the

blood-brain barrier), low immunogenicity, and ease of storage (11).

Currently available or developing separation techniques include

ultracentrifugation-based separation, size-based techniques,

precipitation techniques, immunoaffinity capture, and combinations

of these techniques (4). Exosome production is simple and efficient,

and they can be extracted from culture medium using approaches such

as ultracentrifugation or produced on a large scale using specialized cell

lines (13). Exosomes are easy to store, structurally stable,

straightforward, unaffected by storage at -20°C for one week, and

retain their activities during long-term storage at -80°C (14). Exosomes

are safer, and in contrast their use avoids issues associated with MSC

therapy, such as cell survival, regenerative capacity, immune rejection,
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and tumor differentiation (15). These factors provide a solid foundation

for the commercial production of ADSC-EXOs and highlight their

therapeutic value (16).
3 Macrophage polarization

Macrophages are important immune cells involved in infection

prevention, tissue repair, angiogenesis, and immunomodulatory

processes. They are also important contributors to the promotion

and resolution of inflammation. Macrophages adopt two distinct

functional phenotypes in response to different signals in various

tissue microenvironments: classically activated macrophages (M1)

and alternatively activated macrophages (M2) (17). Among these,

M1 macrophages exhibit potent antimicrobial properties, high

antigen-presenting capacity, and activate the Th1 response,

leading to strong pro-inflammatory and antimicrobial effects,

whereas M2 macrophages promote tissue repair and regeneration

with an anti-inflammatory response relative to M1 (8).

Macrophage polarization and function are primarily regulated by

a network of signaling molecules, transcription factors, epigenetic

mechanisms, and post-transcriptional regulators (18). Typically

activated by lipopolysaccharide (LPS) and Th1 cytokines (for

example, IFN-g and TNF-a), macrophages undergo M1

polarization, releasing various cytokines and chemokines (for

example, TNF-a, IL-1a, IL-1b, IL-6, IL-12, CXCL9, and CXCL10),

which then interact with unpolarized macrophages, creating a

positive feedback loop (8, 9). The transcription factors studied and

elucidated are the NF-kB (p65 subunit), STAT1, STAT5, IRF3, and

IRF5. NF-kB and STAT1 are the two main transcription factors

involved in M1 macrophage polarization (8). M2 polarization is

controlled by downstream signals from cytokines such as IL-4, IL-13,

IL-10, IL-33, and TGF-b (8, 19). Of these, cytokines (for example, IL-

33 and IL-25) promote M2 activation by producing Th2 cytokines,

and only IL-4 and IL-13 directly induce M2 activation (20). Key

transcription factors regulating M2 gene expression include STAT6,

IRF 4, JMJD 3, PPARd, and PPARg, and it is currently believed that

the STAT6 pathway activates M2 macrophages (8). Two antagonistic

pathways of arginine metabolism are responsible for the polarity of

M1/M2macrophages. M1macrophages are associated with the iNOS

pathway that uses arginine to produce citrulline and nitric oxide

(NO), whereas M2 macrophages are associated with the arginase

pathway that uses arginine to produce ornithine and urea (21).

M2 macrophages exert profound effects on tissue repair, cell

growth, immune system regulation, inflammation, and apoptosis

suppression. M2 macrophages can be divided into four subtypes:

M2a, M2b, M2c, and M2d (8), each activated by different cytokines

and transcription factors and displaying distinct secretions and

effects. Among them, M2a macrophages are activated by IL-4 or IL-

13, increasing the expression of IL-10, TGFb, CCL17, CCL18, and
CCL22, and enhancing endocytosis activity to promote cell growth

and tissue repair (8). M2b macrophages are activated by immune

complexes, Toll-like receptor (TLR) ligands, and IL-1b to release

pro- and anti-inflammatory cytokines such as TNF-a, IL-1b, IL-6,
and IL-10 to regulate the depth and breadth of the immune and

inflammatory response (16).
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4 How ADSC-EXOs regulate
macrophage depolarization

Exosomes are one way in which ADSCs regulate macrophage

polarization in a cell-contact-free manner. Many signaling

pathways are involved in macrophage polarization, including the

PI3K/AKT, AK/STAT, NF-kB, Wnt/b-catenin, and Notch signaling
pathways (6, 22). Experiments have identified several proteins,

DNAs, mRNAs, and miRNAs in ADSC-EXOs that regulate the

polarization and function of M1/M2 macrophages (Figure 1).
4.1 Glycoprotein in ADSC-EXOs

MFGE8 is a glycoprotein that promotes the clearance of dead or

apoptotic cells and exerts anti-inflammatory effects by promoting

the polarization of M2 macrophages (23, 24). ADSC-EXOs have

been demonstrated to be rich in MFGE8 (25). Integrin b3 is one of
the known MFGE8 receptors, and the signaling pathway for this

receptor is integrin b3/SOCS3/STAT3 (23). Activation of this

pathway increases STAT-3 phosphorylation, thereby mediating

macrophage reprogramming toward M2 polarization (25).
Frontiers in Immunology 03
4.2 Cytokines in ADSC-EXOs

Cytokines in ADSC-EXOs also induce M2 macrophage

polarization. Prostaglandin E2 (PGE2) is a soluble and important

immunomodulatory cytokine (26). Treatment with PGE2-enriched

ADSC-EXOs resulted in a decrease in gene expression of M1-

characterized cytokines (iNOS, IL-6, and TNF-a) and an increase

in gene expression of M2-characterized cytokines (IL-10, Arg-1, and

CD206), as well as a shift of macrophages from M1-type to M2-type

in a rat model of colitis (27). IL-6 also mediates macrophage

polarization in ADSC-EXOs (28). IL-6 exposure upregulates IL-4

receptor expression and responses in macrophages, leading to STAT6

phosphorylation, which, in turn, directs M2 macrophage polarization

(29, 30). Insulin-like growth factor (IGF) is a serum component

structurally similar to the insulin B chain (31). ADSC-secreted IGF-2

pre-programs maturing macrophages (31). The secretion of pro-

inflammatory cytokines such as IL-12, IL-17, and IL-1b was reduced,

and PD-L1 expression was upregulated in treated macrophages (31).

IGF-2 exhibits a metabolic commitment to oxidative phosphorylation

of macrophages (OXPHOS) and significantly alters the distribution

of H3K27ac in macrophages, with significant reductions in the

promoters and enhancers (e.g., Mir155) of key regulators involved
FIGURE 1

Exosomes contain various substances involved in inducing macrophage polarization, such as glycoprotein, cytokine, RNA, and mtDNA. (by Figdraw).
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in macrophage M1 activation and enhancements in a number of

genes, such as the macrophage inflammation inhibitor methyl-CpG-

binding protein 2 (Mecp2) (31–33).
4.3 RNA in ADSC-EXOs

miRNAs are a family of short non-coding nucleotides that regulate

target genes at the post-transcriptional level and are important

components of MSC exosomes that regulate cell growth and

metabolism (34, 35). miR-451a is a highly expressed miRNA in

ADSCs that specifically binds to the macrophage migration inhibitory

factor (MIF) mRNA 3′-UTR, thereby reducing the expression of the

downstream target MIF (3, 36, 37). MIF is an endocrine immune

molecule that limits macrophage activity in vivo, is involved in immune

regulation, and has been experimentally demonstrated to promote the

polarization of M1 to M2 macrophages; however, the underlying

mechanism has not yet been elucidated (3). Experiments suggest that

the direct target of miR-23 in exosomes is interferon regulatory factor 1

(IRF1), and that miR-23 inhibits IRF1 to inhibit M1 macrophage

polarization (38). Exosomal miR-30d-5p can target the 3′-UTR of

Beclin-1 and Atg5 at the mRNA level, significantly inhibiting Beclin-1

and Atg5 expression and driving macrophage polarization from M1 to

M2 (39). Let-7, the first miRNA identified, has been demonstrated to be

a negative regulator of the pro-inflammatory response induced by TLR4

stimulation (40). Exosome-derived Let-7c significantly reduces the

expression of the transcription factor CCAAT/enhancer-binding

protein (C/EBP)-d that plays a key role in the regulation of TLR4 in

macrophages, thereby inhibiting M1 macrophage polarization (41).

Long non-coding RNAs (lncRNAs) are RNA molecules that are

more than 200 nucleotides in length compared with miRNAs (42).

They play critical roles in the regulation of cellular activity and

behavior (42). ADSC-EXOs affect macrophage polarization by

delivering lncRNA DLEU2 (42). It regulates mRNA expression by

targeting miRNAs, and DLEU2 promotes macrophage M2

polarization by regulating the miR-106a-5p/LXN axis (42).

ADSC-EXOs also carry a non-coding circular RNA (circRNA)

produced from a post-spliced exon, which is a naturally occurring

family of non-coding RNAs highly expressed in the eukaryotic

transcriptome (43). circRps5 possesses a stable circular structure

that binds to miR-124-3p and reduces its levels, thereby inhibiting

M1 macrophage polarization (44). ADSC-EXOs also deliver circ-

Ptpn4 that downregulates the expression of miR-153-3p targeting

the Nrf2 3′-UTR, resulting in enhanced Nrf2 expression and

macrophage conversion from M1 to M2 (43). Mmu_circ_0001359

also links alternatively activated macrophages to the M2 phenotype

by upregulating miR-183-5p expression, thereby promoting the

expression of the transcription factor FoxO1 (45).
4.4 ADSC-EXOs restore mitochondria

In terms of mitochondria and mtDNA, ADSC-EXOs increased

mitochondrial mtDNA levels and restored the levels of key

molecules related to mitochondrial biosynthesis and homeostasis

(PGC-1a, TFAM, and Sirt1) as well as key molecules related to the
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mitochondrial respiratory chain (cox-15, NDUFV2, and ATP5d)

and mitochondrial membrane potential. OXPHOS activity and

ATP production were increased, and macrophage mitochondrial

reactive oxygen species (mROS) stress caused by LPS stimulation

was alleviated, restoring oxidative phosphorylation process and

mitochondrial function (46). Exosome-mediated blunting of ROS

generated after oxidative stress in macrophage mitochondria

promotes activation of inflammatory pathways such as NF-kB
(47, 48). ADSC-EXOs switch macrophages from the M1 pro-

inflammatory phenotype to the M2 polarized anti-inflammatory

phenotype. Additionally, cells selectively package the mitochondrial

components of exosomes, actively preventing the packaging of pro-

inflammatory oxidized mitochondrial materials into exosomes,

which may act as damage-associated molecular patterns (46).
4.5 Other ways

ADSC-EXOs significantly activated the JAK/STAT6 signaling

pathway in macrophages (49). The JAK/STAT6 signaling pathway

is a typical pathway involved in macrophage M2 polarization (49).

When IL-4/IL-13 binds to receptors located on the cell membrane,

JAK1 is phosphorylated, which immediately activates STAT6; this, in

turn, activates M2-like genes such as YM1, Arg1, Fizz1, IL-10, and

MGL1, ultimately initiating M2 macrophage polarization (49–51).

Additionally, ADSC-EXOs activate the S1P/SK1/S1PR1 signaling

pathway in macrophages, inhibit the expression of NF-kB p65 and

TGF-b1, polarize macrophage M2, and suppress inflammatory

responses (52). ADSC EXOs contain phosphorylated STAT3.

Direct delivery of p-STAT3 to macrophages results in its binding

to STAT3-targeted DNA and promotes Arg-1 promoter/enhancer

transcriptional activation, thereby promoting M2 polarization (53).
5 Applications of ADSC-EXOs to
regulate macrophage polarization

Numerous successful ADSC-EXO therapy studies and

technological explorations have been conducted in animal models

over the past few years. This approach has been used experimentally

with favorable results for graft inflammatory responses, bone

healing, acute lung injury, esophageal stricture, kidney stones,

myocardial infarction, and diabetes-derived diseases (Figure 2).
5.1 Acute lung injury

Acute lung injury (ALI) can be caused by acute pneumonia, sepsis,

severe trauma, acute pancreatitis, and other causative factors (46). ALI

is typically associated with extensive airway inflammation, hypoxemia,

and tissue disorganization due to pulmonary immune abnormalities

and altered vascular permeability during this period; however, it still

exhibits a high mortality rate (35–55%) after treatment (e.g.,

improvement of mechanical ventilation) and poses a great threat to

human health (54–56). LPS is a known predisposing factor that induces

innate immune cells to secrete inflammatory mediators, thereby
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causing lung injury (57). This process is characterized by the collapse of

alveolar structures, thickening of alveolar septa, changes in membrane

transparency, and the infiltration of large numbers of inflammatory

cells (46). In the experiment, mitochondrial function and immune

homeostasis of lung macrophages in the LPS-induced ALI mouse

model were improved under ADSC-EXOs treatment (46). ADSC-

EXOs transfer mitochondrial components (especially mtDNA) to

stressed lung macrophages, increase mitochondrial DNA levels,

mitochondrial membrane potential, OXPHOS activity, and ATP

production, and alleviate LPS-induced macrophage mROS stress

thereby inhibiting TLR signaling activation and M1 macrophage

polarization (46). In this process, decreased release of IL-1b, TNF-a,
and iNOS, along with increased relative levels of anti-inflammatory

cytokines such as IL-10 and Arg-1 attenuate the inflammatory

response (46). This study provides a new approach to the treatment

of LPS-induced ALI and raises the question of whether ADSC-EXOs

can be effective in viral pneumonia, bacterial pneumonia, and

autoimmune lung injury, and whether the efficacy of ADSC-EXOs

can be improved using a form of nebulization.
5.2 Bone healing

Traumatic bone defects are typically associated with inflammation

(3). The most commonly used clinical method, autologous bone
Frontiers in Immunology 05
grafting, has significant limitations, such as large defect areas and

donor site discomfort (58, 59). However, allogeneic bone grafts can

cause immune rejection and infection (60, 61). With the development

of material technology, biomaterial implantation has attracted

widespread attention as a potential solution. However, studies have

reported that it can induce an inflammatory response that affects bone

metabolism and new bone formation, leading to implant failure (3, 61,

62). Therefore, new solutions are urgently required to promote effective

bone healing and regeneration. Recent experiments have indicated that

the immune system cells are closely linked to the skeletal system cells

and cooperate with each other (3). Bone defects due to trauma and

tumors are typically accompanied by peripheral inflammation and

immune dysregulation, including acute ischemia and hypoxia, the

release of pro- and anti-inflammatory factors, and abnormalities in

cellular metabolism (3). Thus, regulation of macrophage M1/M2

polarization with immunomodulatory effects is important for

traumatic bone defects. A model of skull defects in rats was

successfully established, new bone formation is promoted in cranial

defect areas (3). ADSC EXO enriched with miR-451a inhibited the

expression of MIF, promoted the shift of macrophages from pro-

inflammatory to anti-inflammatory, and inhibited the expression of

inflammatory factors such as NO, TNF-a, and IL-6, ultimately

suppressing the inflammatory response related to bone defects and

accelerated the bone healing in the experiment (3). The application of

GNP hydrogels offers a new approach to bone healing; however, the
FIGURE 2

With the ability to induce macrophage polarization, mediate inflammatory responses, and regulate immunity, ADSCs offer new hope for bone
healing, acute lung injury, esophageal stricture, kidney stones, myocardial infarction, and hindlimb ischemia caused by diabetes (by Figdraw).
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specific mechanism of miR-451a enrichment in ADSC-Exos to

promote the process of macrophage M1-to-M2 transition by

downregulating the expression of MIF still needs to be investigated

more deeply to guide subsequent clinical applications.
5.3 Kidney stones

Kidney stone formation, one of the most common urinary tract

diseases, is closely associated with genetic, environmental, and

metabolic factors (63). Kidney stones can be categorized into

different types based on their chemical composition. Calcium

oxalate (CaOx) stones are the most common and exhibit a high

recurrence rate (70–80% in the last 20 years), posing a major threat

to the urinary system (38). Several studies have demonstrated that

inflammation-induced damage to the renal tubular epithelial cells

alters the structure and polarity of the cell membrane surface,

thereby promoting calcium oxalate crystal adhesion and stone

formation (64). Macrophages and their M1/M2 polarization

phenotypes are central to CaOx stone formation (38). The

pathogenesis of CaOx crystals involves the promotion of M1-type

macrophage polarization that damages renal tubular epithelial cells

and promotes the development of CaOx crystal deposition. In

contrast, M2-type macrophages phagocytose CaOx crystals,

enhance anti-adhesion capacity, and protect renal tubular

epithelial cells (65, 66). In the hyperoxaluria rat model, renal

tubular injury scores are significantly decreased in the treatment

group (38). IRF1 expression is inhibited by treatment with miR-23-

enriched ADSC-EXOs, blocking the polarization of M1

macrophages during CaOx stone formation and thereby

inhibiting CaOx crystal deposition and renal tubular injury (38).

In the process, the complexity of the etiology of kidney stone

pathogenesis, together with the limitations of the experimental

COM-induced mouse model of kidney stones raise the question

of whether ADSC-EXOs might have universal applicability in

treating CaOx kidney stones of all etiologies.
5.4 Fat graft survival rate

Fat grafting for reconstructive surgery possesses the advantages of

low cost and easy accessibility, thus making it a common approach.

The retention rate of fat grafts is an important measure of the success

of the procedure (41). Macrophages play an important role in free

oil removal, phagocytosis of dead cells and debris, and tissue

inflammation. Therefore, an important link exists between

macrophages and fat graft survival (41). In mouse models of fat

grafting, inflammatory response reduces and survival of transplanted

fat increases (41). In this process, the modulation of macrophage

function and M1/M2 polarization by ADSC-EXOs plays an

important role (67). The mechanism is that let-7c enriched in

ADSC-EXOs downregulates the transcription factor C/EBP-d,
leading to a decrease in pro-inflammatory M1 macrophages and an

increase in anti-inflammatory M2 macrophages (41). Changes in

RF5, considered a key factor in M1 differentiation, were also observed

experimentally: its effect on the C/EBPd factor needs further
Frontiers in Immunology 06
investigation. In addition to let-7c, the impact of miR-let-7a, miR-

let-7g, and miR-98 were also observed experimentally to affect the

expression of C/EBP-d; elucidating the details and mechanism of

which await further future studies (41).
5.5 Esophageal stricture

Postoperative esophageal strictures are a major challenge

following endoscopic submucosal dissection (ESD) for superficial

esophageal neoplasms, with a high prevalence and limited effective

treatment options (25). The main surgical treatment modalities are

repeated endoscopic balloon dilatation and temporary stenting;

however, these modalities can cause esophageal perforation and

mediastinitis (68). Pharmacoprophylactic modalities, such as

systemic administration or local injection of steroids (e.g.,

triamcinolone acetonide), may reduce their incidence; however,

frequent use of steroids may cause adverse effects such as

immunosuppression, diabetes mellitus, peptic ulcers, osteoporosis,

and susceptibility to infection (69). Lai et al. demonstrated the

feasibility and efficacy of MSC-EXOs for preventing esophageal

strictures in a porcine ESD model (25). ADSC-EXOs contain

MFGE8, for which integrin b3 is a known receptor. Activated

integrin b3/SOCS3/STAT3 signaling pathway phosphorylates

macrophage STAT-3, induces M2 macrophage polarization, and

reduces the production of TGFb1, playing an important role in

fibrosis (25, 69). It was also observed that miR-148a-3p significantly

promotes tissue angiogenesis by activating the EGFR/MAPK

signaling pathway. The PI3K-Akt pathway, critically involved in

cellular functions such as survival, proliferation, and migration, was

the most highly enriched in the KEGG analysis. These are essential

factors in mucosa treatment (25). Nonetheless, therapy requires

further optimization of the dosage and duration of administration.
5.6 Myocardial infarction

MI is the most common disease, with acute MI being the most

prevalent form (70). Acute and prolonged coronary ischemia and

hypoxia can lead to myocardial necrosis and complications such as

arrhythmias, aneurysms, cardiac rupture, and ultimately heart

failure (71). Current treatment options include coronary artery

bypass graft surgery, primary percutaneous coronary intervention,

or the use of anti-remodeling drugs such as b-blockers and

angiotensin-converting enzyme inhibitors (72). However, these

are temporary solutions compared to heart transplantation, which

is a permanent solution but has the disadvantages of a significant

shortage of donor organs and the occurrence of post-transplant

complications (73). Moreover, ADSCs have a promising therapeutic

potential for MI (74). Several studies have reported that ADSC-

EXOs exert anti-inflammatory, anti-apoptotic, pro-angiogenic, and

anti-fibrotic effects, and can improve cardiac function (75, 76). In

experiments applying OHA-PL hydrogel to treat a rat model of

myocardial infarction, myocardial infarct area was reduced and

left ventricular wall thickness was increased compared with the

control group (74). In the experiment, we observed that ADSC
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EXOs scavenged intracellular and extracellular ROS, regulated

macrophage polarization, reduced the infiltration of inflammatory

cells, restored mitochondrial function, attenuated inflammation

in the early stage of myocardial infarction, effectively reduced

myocardial fibrosis and ventricular remodeling, promoted

angiogenesis, and restored the electrophysiological function of the

myocardium in the late stage of myocardial recovery. miR-125a in

ADSC-EXOs, which regulates endothelial cell angiogenesis and

promotes the formation of endothelial tip cells by inhibiting

DLL4, is also a factor in the treatment (74). The exploration of

the clinical application of the OHA-PL hydrogel is not yet complete.

Its surgical application requires fundamental research and

development to establish its in situ injection properties before this

novel idea could be applied to treating other body tissues.
5.7 Diabetes-derived diseases

Diabetes can cause ischemia in the lower extremities leading to

amputation and even death (44, 49). Chronic persistent hyperglycemia

can lead to the accumulation of advanced glycation end products, tissue

inflammation, and oxidative stress, triggering chronic inflammation of

the vasculature and gradual destruction of blood vessels, resulting in

vascular occlusion and tissue ischemia (49, 77, 78). The current clinical

treatment primarily consists of pharmacological interventions and

surgical hemodialysis; however, the prognosis is unsatisfactory (79).

In T2DM limb ischemic mouse model, angiogenesis and blood

perfusion are promoted, ADSCs significantly activate the JAK/

STAT6 pathway in macrophages and induce macrophage M2

polarization (49). M2 macrophages exert anti-inflammatory effects

and can initiate cellular autophagy programs to remove apoptotic

cells, promote wound healing, tissue repair and regeneration, and

promote angiogenesis that is important for the treatment of diabetic

lower-limb ischemia (49). However, since the simple low ligation

model of femoral artery in T2DM mice was used in the experiment,

which is an acute process, and diabetic lower limb ischemia is a chronic

process, the real efficacy still needs deeper research and demonstration.

Meanwhile, it is obvious that not only the JAK/STAT6 signaling

pathway and other signaling pathways are involved in macrophage

M2 polarization, which needs further exploration.
6 Discussion

Classically and alternatively activated macrophages play

important roles in tissue and cellular immune regulation.

Experiments have indicated that MSCs promote M2 macrophage

polarization. Follow-up studies demonstrated that MSCs induce M2

macrophage polarization via exosomes. ADSC-EXOs can regulate

macrophage M1/M2 polarization and modulate tissue inflammation

and immune response via the integrin b3/SOCS3/STAT3 pathway,

the S1P/SK1/S1PR1 signaling pathway, and miRNAs. Possible

upstream and downstream pathways as well as other mechanistic

pathways merit further study (Table 1). An increasing number of

miRNAs have been identified as playing crucial roles in the induction

of macrophage polarization, suggesting that the study of these
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miRNAs and their upstream and downstream effects will emerge as

a focal point for future research. MSC-derived exosomes do not

trigger malignant transformation unlike responses observed after

MSC injections. Therefore, ADSC-EXOs are expected to represent

a new hope for treating challenging immune and inflammatory

diseases. In recent years, research into the induction of macrophage

polarization and its therapeutic applications has deepened, yielding

positive results in animal experiments, such as those investigating

autoimmune diseases and post-traumatic tissue repair, confirming

the therapeutic and application value of ADSC-EXOs.

However, ADSC-EXOs face challenges and limitations before

clinical application. The current experiments were conducted in cells

and animals. Further preclinical experiments must be carried out before

ADSC-EXOs could be used in humans. The adaptability of exosomes to

different diseases needs to be further explored, demonstrating their

curative potential in inflammatory or autoimmune diseases and

whether they can show corresponding weakening properties in terms

of resistance. Because the current experimental animal cycle is limited

to short- and long-term animal experiments, further experiments and

demonstrations are needed to observe long-term side effects and safety.

It has been reported that exosomes have both cancer-promoting and-

suppressing effects on cancer cells; these effects need to be studied in

greater depth. Simultaneously, in existing studies, there is no in-depth

research on using ADSC-EXOs regarding the concentration, dose,

method, and maneuverability in different diseases and the negative

and positive feedback generated under such variables. Questions

regarding the optimal concentration for use in the treatment of

specific diseases, the relationship between the dosage and efficacy of

the drug at different levels of use, and the specific requirements for the

use of ADSC-EXOs owing to the characteristics of particular diseases

are yet to be answered. Although several formulations have been

developed, such as nano-gel particles, chitosan/gel encapsulation, and

OHA-PL hydrogels in the laboratory setting, additional clinical
TABLE 1 Therapeutic mechanisms of ADSC-EXOs.

Conditions/
diseases

ADSC-
EXOs
cargo

Mechanism Ref

Acute
lung injury

mtDNA Restore macrophage mitochondrial
function, inhibit TLR
signaling activation.

(9)

Bone healing miR-451a Target the MIF mRNA 3’UTR,
downregulate MIF expression.

(3)

Kidney stones miR-23 Inhibit IRF1 expression. (12)

Fat graft
survival rate

let-7c Reduce the expression of C/EBP-d,
negatively regulate TLR4

(11)

Postoperative
esophageal
strictures

MFGE8 Activate the integrin b3/SOCS3/
STAT3 pathway

(29)

Diabetic lower
limb ischemia

———— IL-4/IL-13 bind to receptors,
activate the JAK/STAT6 pathway

(50)
frontier
ALI, Acute lung injury; MI, Myocardial infarction; mtDNA, Mitochondrial DNA; miR-451a,
microRNA-451a; miR-23, microRNA-23; MFGE8, milk fat globule-epidermal growth factor
8; TLR, Toll-like receptor; MIF, macrophage migration inhibitory factor; IRF1, Interferon
regulatory Factor 1; C/EBP-d, CCAAT/enhancer-binding protein-d; STAT 3, signal
transducer and activator of transcription 3; IL, Interleukin.
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applications require different approaches, such as fat graft survival and

bone healing. Other issues, such as the production, transport, and

preservation of ADSC-EXOs, will need to be considered owing to their

biological and physicochemical properties.

Key factors include the effect of different sources on the final

efficacy, variations in productivity among different cells, and the effect

of different storage conditions on the efficacy of exosomes. Nonetheless,

the powerful anti-inflammatory and immunomodulatory functions of

ADSC EXOs in influencing immune, mainly macrophage cell function,

provide great hope for advancing the treatment of challenging human

diseases and clinical medicine.
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