
95% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
REVIEW article
Front. Immunol.
Sec. Cancer Immunity and Immunotherapy
Volume 16 - 2025 | doi: 10.3389/fimmu.2025.1524711
This article is part of the Research Topic The crosstalk between emerging cell death and immune microenvironment remodeling in cancer progression and treatment View all 10 articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Ferroptosis is a novel form of programmed cell death characterized by irondependent accumulation of reactive oxygen species (ROS) and lipid peroxidation. The execution of ferroptosis is intricately linked to both iron and lipid metabolism. Intriguingly, iron and lipid metabolism are also pivotal for maintaining the physiological function of immune cells. Research has revealed that ferroptosis can potentiate the immunogenicity of tumor cells and engage in intricate interactions with immune cells. Certain ferroptosis inducers have the capacity to augment the efficacy of immunotherapy by modulating the tumor immune microenvironment. Ferroptosis holds immense potential in cancer immunotherapy and is anticipated to emerge as a novel therapeutic target in the future landscape of cancer treatment. In this review, we primarily delineate the ferroptosis signaling pathways and metabolic processes pertinent to immune cells, and further summarize the roles of ferroptosis in tumorinfiltrating immune cells. Ultimately, we anticipate further elucidation of the mechanisms of ferroptosis in immunotherapy and envision that strategies targeting ferroptosis and immunotherapy will be expeditiously applied in clinical oncology practice.
Keywords: ferroptosis, Immunotherapy, Metabolism, Tumor immunotherapy, immune cell
Received: 08 Nov 2024; Accepted: 11 Mar 2025.
Copyright: © 2025 Xu, Ge, Xu and Yin. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Kai Yin, Changhai Hospital, Second Military Medical University, Shanghai, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.