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In general, increasing lymphocyte entry into tumor microenvironment (TME) and

limiting their efflux will have a positive effect on the efficacy of immunotherapy.

Current studies suggest maintenance lymphocyte homeostasis during cancer

immunotherapy through the two pipelines tumor-associated high endothelial

venules and lymphatic vessels. Tumor-associated high endothelial venules (TA-

HEVs) play a key role in cancer immunotherapy through facilitating lymphocyte

trafficking to the tumor. While tumor-associated lymphatic vessels, in contrast,

may promote the egress of lymphocytes and restrict their function. Therefore,

the two traffic control points might be potential to maintain lymphocyte

homeostasis in cancer during immunotherapy. Herein, we highlight the

unexpected roles of lymphocyte circulation regulated by the two gateways for

through reviewing the biological characters and functions of TA-HEVs and

tumor-associated lymphatic vessels in the entry, positioning and exit of

lymphocyte cells in TME during anti-tumor immunity.
KEYWORDS

CD8 + T cells, tumor-associated high endothelial venules, immunotherapy, tumor-
associated lymphatic vessels, lymphocytes
Introduction

The recruitment of lymphocytes into the tumor microenvironment (TME) is an

essential way to enhance the efficacy of the treatments involving immune checkpoint

blockade (ICB), vaccines, or adoptive T cell immunotherapy (1–3). Before infiltrating into

TME, the lymphocytes usually migrate to the blood vessels and then extravasate from them

(4). High endothelial venules (HEVs) are specialized vessels dedicated to lymphocyte

recruitment in lymph nodes and other lymphoid organs (5, 6). Lymphocytes including

CD8+ T cells can enter tumor tissue through HEVs and then participate in antitumor
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activities. Previous studies revealed that MECA-79+ tumor-

associated HEVs (TA-HEVs) were present in some types of

human solid tumors, and the density of TA-HEVs in TME was

associated with the numbers of CD3+ CD8+ T cells and CD20 B cells

(4, 7, 8). Subsequently, another study evidenced that the cycling

lymphocytes in blood could enter the tumor tissue continuously

through TA-HEVs, thus enhancing the immune response during

antitumor activities (9).

The accumulation of tumor-specific CD8+ T cells within TME is

essential for the efficacy of immunotherapy. Besides increasing the

infiltration of T cells into TME, reducing the leakage of effecter T

cells from TME is another way to enhance the effects of antitumor

activities. Studies exploring the exit of lymphocytes from tumor

tissue mainly focused on the lymphatic vessels regulated by antigen

contact (10). The C-X-C motif chemokine ligand 12(CXCL12) is

produced by tumor-associated lymphatic endothelial cells. The C-

X-C motif chemokine receptor 4 (CXCR4) on the surface of T cells

binds to and recognizes CXCL12 and then leaves the tumor along

the lymphatic vessels and is sealed around the tumor

(Figures 1A, B).

Therefore, strategies limiting the leakage of effector T cells from

TME while increasing the infiltration of T cells into TME can help

improve the efficacy of immunotherapy. We conducted this
Frontiers in Immunology 02
systematic review on both the entry and exit of lymphocytes from

TME, aiming to explore the potential avenues to enhance the

efficacy of immunotherapy.
TA-HEVs: a pipeline for the entry of
T cells into TME

Structure of HEVs

As specialized postcapillary venules, HEVs are primarily located

in other secondary lymphoid tissues except the spleen (11). High

endothelial cells (HECs) are unique microstructures in HEVs,

characterized by highly columnar and approximately cuboidal

endothelial cells, with a width of 7–10 mm and a height of 5–7

mm (12–14), thus distinguishing them from other common

endothelial cells. HECs occupy most of the luminal space, and

hence the lumen of HEVs is narrow or even closed and covered with

a thick basement membrane and a perivascular sheath (5, 15, 16).

HECs have a large round nucleus with one or two nucleoli and

abundant organelles such as mitochondria, rough endoplasmic

reticulum, ribosomes, and Golgi complex. They show the

characteristics of secretory cells with highly fast metabolism (15,
FIGURE 1

Interaction among immune cells, TA-HEVs, and tumor-associated lymphatic vessels. (A) Interaction among immune cells, TA-HEVs, and tumor-
associated lymphatic vessels. In tumor tissue, immune cells including CD8+ T cells, CD4+ T cells, and DCs infiltrate tumor tissue through tumor-
associated high endothelial venules and exit through tumor-associated lymphatic vessels. In this way, the immune cells maintain their number and
function of infiltration in tumor tissue. (B) Tumor-associated lymphatic vessels mediate the exit of CD8+ T cells from the tumor tissue. Tumor-
associated lymphatic endothelial cells can secrete the cytokine CXCL12. Further, CXCL12 binds to the receptor CXCR4 on the surface of CD8+ T
cells, inducing CD8+ T cells to approach and pass through the lymphatic endothelial cell space, and finally exit the tumor tissue. (C) HECs and the
structure of vascular endothelial cells and immune cells through the HECs into tumor tissue. HECs are transformed by capillary endothelial cell
migration. Immune cells such as lymphocytes, mediated by chemokines, undergo processes such as receptor recognition, adhesion, and rolling to
infiltrate tumor tissues through paracellular pathways. TA-HEVs, tumor-associated high endothelial venules; DCs, dendric cells; CXCL12, C-X-C motif
chemokine ligand 12; CXCR4, C-X-C motif chemokine receptor 4; HECs, high endothelial cells.
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17–19). Ultrastructural studies revealed that HECs have a thick

carbohydrate-rich glycocalyx coating on their luminal surface (20–

22). In addition, sulfated carbohydrates and glycoproteins are

important recognition determinants of L-selectin in lymphocytes

(23). Moreover, the glycocalyx in HECs may also facilitate the

retention of secreted molecules on the luminal surface of HECs

(14, 20).

As HECs are specialized capillary endothelial cells, we focused

on their mode of transformation. The pathway represented by

lymphotoxin and tumor necrosis factor a (TNF-a), which are

mainly secreted by activated lymphocytes and natural killer cells

(NK cells), is the most critical signaling pathway during HEVs

formation (4). Lymphotoxin a3(LTa3) or TNF-a binds to tumor

necrosis factor receptor 1 or 2 (TNFR1/2), whereas LTa1b2 or

tumor necrosis factor superfamily 14 (LIGHT) signals bind to

LTbR. TNF-a or LTa3 drives spontaneous HEVs formation,

whereas LTa1b2 and LIGHT are the major inducers of HEVs.

After HEVs formation, their special morphology also needs to be

maintained (24, 25). LTbR signaling is important in maintaining

the HEVs phenotype because LTab/LTbR signaling can maintain

the cube-like morphology of HECs (26, 27). Sphingosine-1-

phosphate (S1P)–S1PR1 axis also plays a role in regulating HEVs

maintenance (28–30). The complex relationship between LTbR
signaling and TA-HEVs plays an important role in the

differentiation and growth of TA-HEVs (27, 31). As such, LTbR
agonists are potent inducers of TA-HEVs in tumors (32).
Function of HEVs and mechanisms of
lymphatic homing

The special structure of HECs contributes to the special role of

HEVs in lymphocyte homing and recycling (33–35). Lymphocytes

may enter lymph nodes via two transendothelial migration

pathways: the paracellular route (through intercellular spaces) and

the transcellular route (through endothelial cells). However, the

paracellular route is predominant (36–39). First, the ligands of L-

selectin synthesized by HECs are processed by the Golgi complex,

stored in secretory granules, and released on the luminal surface of

HECs for recognition by homing receptors on the surface of passing

lymphocytes to initiate the homing of lymphocytes (40). Next, the

circulating lymphocytes in the blood bind to the 6-sulfo sialyl Lewis

X motif modifying HEVs via L-selectin, and then tether and roll on

the HEVs wall, allowing them to immobilize with heparan sulfate

and interact with chemokines on the luminal surface of HEVs (41,

42). These chemokines can mediate the activation of integrins

essential for lymphocyte arrest in HEVs (43–47). Integrin

lymphocyte function–associated antigen 1 (LFA1) is the major

integrin responsible for T and B cell arrest in HEVs in peripheral

lymph nodes. The combination of the shear stress of blood flow and

the G protein-coupled chemokine receptor signaling induces a

conformational change in the LFA1 molecule, leading to the firm

adhesion of lymphocytes to intercellular adhesion molecules 1 and 2

(ICAM1 and ICAM2) expressed on HECs (44, 46, 48). After stable

arrest, the lymphocytes crawl along the luminal surface of the HEVs
Frontiers in Immunology 03
in search of suitable transport sites. Thereafter, they migrate

through transcellular or paracellular pathways (49, 50). During

migration through the paracellular pathway, the high columnar

HECs rapidly close the opened intercellular space on the side of the

lumen after lymphocyte passage, thus minimizing the leakage of

intravascular fluid (36, 51).
Distribution and role of TA-HEVs

The antitumor immune response primarily depends on the

activity of tumor-specific lymphocytes that can recognize and

eliminate tumor cells. TA-HEVs are a major gateway for

lymphocyte infiltration into human tumors. They are usually

found in areas with B cell–rich tertiary lymphoid structures (TLS)

as well as in areas with high densities of T cells and mature dendritic

cells (DCs) (52, 53). TA-HEVs can be induced in different types of

tumors (54, 55). However, MECA-79+ TA-HEVs are sometimes

formed spontaneously in the TME even without any treatment (55–

57). MECA-79+ TA-HEVs facilitate the recruitment of naive

lymphocytes to tumors (4, 58). Further studies suggested that a

high density of MECA-79+ TA-HEVs was associated with increased

infiltration of naive and central memory T cells into TME (4, 7, 52).

Therefore, an increase in the number of T cells in different

morphological stages within the tumor is proposed to accelerate

and foster antitumor response (59, 60). The induction of MECA-

79+ TA-HEVs is also observed in a number of mouse tumor models.

This is associated with the infiltration of T cells, especially CD8+ T

cells, and the inhibition of tumor growth (61, 62). Moreover,

increasing the differentiation and maturation of HEVs in tumors

can reduce CD8+ T cell depletion and lead to an increase in the

proportion of stem-like CD8+ T cells (52) (Figure 1C).
Relationship between immunotherapy and
TA-HEVs

Theoretically, the efficacy of immunotherapy can be potentiated

by the increased generation of HEVs, which in turn promotes

lymphocyte entry into TME. In fact, many studies have suggested

that the therapeutic induction of TA-HEVs in tumors might

enhance the trafficking of endogenous lymphocytes, as well as

adoptive transferred lymphocytes, and improve the efficacy of

various cancer therapies, including immunotherapy with immune

checkpoint inhibitors (ICIs), adoptive T cell therapy (ACT),

vaccines, and potential targeted and conventional cancer therapies

(radiotherapy and chemotherapy) (2, 63) (Figure 2). Additionally,

the immune cells, especially lymphocytes, may also have an effect on

TA-HEVs. CD8+ T cells may be the major inducers of TA-HEVs in

tumors (64, 65). CD8+ T cells can produce LTa3, LTa1b2, TNF-a,
IFN-g, and other signals that induce the activation of lymphotoxin

beta receptor (LTbR), thus contributing to the production of TA-

HEVs (66). NK cells express LTa1b2 and IFN-g. Follicular helper T
cells express LIGHT. Macrophages express TNF-a, and LTa3 plays
a role in contributing to the production of TA-HEVs. In other
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tumor models, the generation of TA-HEVs also requires the

participation of B cells and DCs (65, 67–69). Some DCs can

express LTbR and directly promote the differentiation of DC-

dependent HEVs (31). CD11c integrin is important in DC

physiology; Moussion and Girard demonstrated in mice that

CD11c cells were essential for HEVs formation (6, 70). Thus, a

larger number of CD11c cells could trigger increased HEVs

formation (70). The additional regulatory role of DCs is to

promote the growth of TA-HEVs in a vascular endothelial growth

factor (VEGF)-dependent manner (71, 72). Regulatory T cells

(Tregs) appear to limit the development of TA-HEVs in tumors,

but their mechanism of action remains unclear (69, 73). The

appropriate ways to treat LTbR should be explored, and the

number of CD8+ T cells, DCs, and Tregs should be reasonably

regulated (Figure 3). Tumor progression may also affect the

presence of TA-HEVs, which needs further investigation. Since

the last decades, ICB therapy, including programmed death 1 and

programmed death-ligand 1(PD-1 and PD-L1) blockade

treatments, has exhibited positive effects in antitumor

immunotherapy for several solid tumors (2). Therefore, we

focused on the association between ICB therapy and TA-HEVs.

Previous studies suggested that anti-PD-1 therapy might have the

potential to promote tumor immunity by stimulating the formation

of TA-HEVs (74). At the same time, the formation of TA-HEVs can

cooperate with anti-PD-1 therapy to promote the infiltration of
Frontiers in Immunology 04
lymphocytes, so that they can play a potent immune role against

tumors (5, 75). Some other ICIs, such as anti-CTLA-4, can increase

the abundance of TA-HECs and tumor-infiltrating CD4+ and CD8+

T cells (52, 74). A combination of antiangiogenic therapy and ICB

also achieved similar efficacy, thus improving the infiltration of

CD8+ T cells from the periphery (52). Some mouse experiments

revealed a significant increase in the homing efficiency of TA-HEV-

mediated lymphocytes after ICB treatment, possibly contributing to

an increase in the tumor-specific T cell repertoire (76, 77).

Tumor-associated lymphatic vessels:
the pipeline for the exit of T cells
from TME

Role of Tumor-associated
lymphatic vessels

Tumor-associated lymphatic vessels carry interstitial fluid and

leukocytes unidirectionally from peripheral tissues to lymph nodes

and are mainly involved in the generation, maintenance, and

regression of adaptive immunity (78). Tumor-associated lymphatic

vessels and their transport function are important conditions for

controlling the exit of lymphocytes from tumor tissues. Tumor-

associated lymphatic vessels can exert immunosuppressive effects,
FIGURE 2

HECs production therapy in combination with other treatment options to inhibit tumor cell proliferation. Therapies combined with ICB promote T
cell activation and proliferation. A combination with tumor vaccine promotes T cell specificity and kills tumor cells. HECs therapy combined with
ACT promotes the proliferation of tumor killer T cells and recruits other immune cells. A combination of chemotherapy and radiotherapy effectively
kills tumors. HECs, high endothelial cells; ICB, immune checkpoint blockade; ACT, adoptive T cell therapy.
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cross-present antigens, and limit CD8+ T cell-dependent tumor

control in an interferon-g (IFN-g)-dependent manner, directly

leading to tumor immune escape (79–83). However, the lymphatic

system also contributes to regulating the diversity and functional

status of CD8+ T cells within the tumor (84).Therefore, the inhibition

of CD8+ T cell shedding by the lymphatic system is an important

control point to enhance the response to immunotherapy.
Mechanisms of T cells exiting the tumor
through tumor-associated
lymphatic vessels

The exit of lymphocytes from tumors through tumor-associated

lymphatic vessels is mainly regulated by various chemokines. For

example, chemokine12 (CXCL12) and its receptor CXCR4

mediated the exit of CD8+ T cells from the tumor through

tumor-associated lymphatic vessels. In this process, CXCL12, a

ligand for CXCR4, has been shown to promote the egress of DCs

and B-lymphocytes (85, 86). CXCL12 can also promote the exit of

CXCR4 CD8+ T cells from the tumor, and lymphangiogenic

CXCL12 is sufficient to affect the accumulation and location of T

cells in the tumor (10). Antigen contacts regulate surface CXCR4,

and therefore CD8+ T cells are sensitive to CXCL12. The

peritumoral tumor-associated lymphatic vessels direct the
Frontiers in Immunology 05
location and retention of CD8+ T cells in the TME by expressing

CXCL12, which recruits and ultimately egresses a wide range of

functional tumor-specific CXCR4 CD8+ T cells (87). Blocking CD8+

T cell shedding through this pathway can improve local tumor

control and ICB response (88, 89). Atypical chemokine receptor 3

(ACKR3) is a decoy receptor for CXCL12. CD8+ T cells can

modulate their CXCL12 sensitivity in vivo by downregulating the

expression of surface CXCR4 and upregulating the expression of

ACKR3 [ (10, 90). Therefore, the retention of memory and effector

CD8+ T cells in tumor tissue can be promoted by downregulating

the CXCR4 expression or reducing its sensitivity to CXCL12, thus

allowing it to play an immune role against the tumor for a longer

time (87).
Co-regulation of CXCR4 with intratumoral
T cell differentiation to determine the
repertoire of retained lymphocytes

Not all the T cells in the tumor are exported under the action of

CXCL12–CXCR4, but selectively. Besides the role of CXCR4, T cell

differentiation is also coordinated to participate in exported and

retained lymphocyte screening. Exported effector CD8+ T cells have

various transcriptional modules with retained effector CD8+ T cells

(91). Tumor-retained effector CD8+ T cells are enriched for

transcriptional modules related to hypoxia, leukocyte activation,
FIGURE 3

Immune cells produce various cytokines that promote or inhibit the production of HECs. CD8+ T cells play an important role in the production of
HECs. LTa1b2, LTa3, TNF-a, and IFN-g secreted by CD8+ T cells promotes the production and differentiation of HECs. CD4+ T cells secrete LIGHT,
DCs secrete LTa1b2, macrophages secrete LTa3 and TNF-a, and NK secrete LTa1b2 and IFN-g, and all can promote the production and
differentiation of HECs. Tregs and neutrophils can exert a direct inhibitory effect. Also, Tregs can inhibit the function of CD8+ T cells. HECs, high
endothelial cells; LTa1b2, lymphotoxin a1b2; LTa3, lymphotoxin a3; TNF-a, tumor necrosis factor a; IFN-g, interferon g; LIGHT, tumor necrosis
factor superfamily 14; DCs, dendric cells.
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and extracellular matrix organization, whereas exported CD8+ T

cells are enriched for transcriptional modules related to leukocyte

migration, glutamate receptor signaling, and branched-chain amino

acid catabolism. The retained intratumoral CD8+ T cells are

enriched for a gene set that is upregulated upon exhaustion (e.g.,

PD-1, nuclear receptor subfamily 4,group a(Nr4a2), cytotoxic T-

lymphocyte-associated protein 4(Ctla4), and T cell immune

receptor with Ig and ITIM domains(Tigit)), whereas exported

CD8+.T cells are enriched for a gene set that is downregulated

upon exhaustion (e.g., transcription factor 7(Tcf7), selectin L(Sell),

Lympho-enhancing factor 1(Lef1), chemokine receptors 7(Ccr7),

and Sphingosine-1-phosphate receptor 1(S1pr1)) (92). In addition,

CD8+ T cells within the tumor predominantly express TCF1.

However, a subset of exported CD8+ T cells expresses both TCF1

and PD-1, with PD-1 exported cells expressing lower levels of PD-1

than retained cells (93, 94). Finally, a fraction of the exported CD8+

T cells could produce effector cytokines after restimulation in vitro,

whereas the retained CD8+ T cells could not produce effector

cytokines (95).
Relationship between immunotherapy
and tumor-associated
lymphatic vessels

In the immunotherapy of Tumor-associated lymphatic vessels,

we focused on the role of VEGF. VEGF and its receptor are mainly

responsible for the occurrence, development, and remodeling of

lymphatic vessels (96). The major molecular drivers of tumor-

associated lymphatic vessels are VEGF-C and VEGF-D, which are

produced by tumor and infiltrating myeloid cells (96). VEGF-C and

VEGF-D exert their biological effects by binding to VEGFR-3 and

VEGFR-2, and activate receptor tyrosine kinase activity through

autophosphorylation, thereby activating the function of lymphatic

endothelial cells (LECs) and tumor-associated lymphatic vessels

(97, 98). The blockade of the VEGF-C/VEGFR-3 pathway inhibits

tumor-associated lymphatic vessels and tumor growth in colorectal

and breast cancer models (99). In both glioblastoma and

intracranial melanoma models, VEGF-C delivery is highly

synergistic with immune checkpoint inhibitor treatment (anti-

PD-1 alone or in combination with anti-CTLA-4) (100). Many

chemokines have been found to have different effects on tumor-

associated lymphangiogenesis. For example, C-C motif chemokine

ligand 5(CCL5) is involved in angiogenesis and can increase VEGF

expression in tumor cells by activating chemokine receptors 1 and 5

(CCR1 and CCR5) (101–104). Moreover, it has a synergistic effect

with C-C motif chemokine ligand 4(CCL4) to indirectly cause

lymphangiogenesis by increasing the expression of VEGF-C (105–

107). Clinical and histopathological studies showed that

cyclooxygenase-2 (COX-2) expression was associated with tumor-

associated lymphatic vessels density and lymph node metastasis in

human malignancies (108–111). The treatment with COX-2

inhibitors can halt tumor progression by simultaneously

inhibiting local inflammation, tumor-associated lymphatic vessels,

and angiogenesis (112, 113). Also, evidence shows that IFN-g
Frontiers in Immunology 06
secreted by cytotoxic T cells reduces lymphatic vessel density in

homeostatic and inflamed lymph nodes(LN) and promotes the

immunosuppressive function of LECs in tumors (80, 82, 114).

Therefore, targeted therapy increases the number of tumor-

associated cytotoxic T cells, thus inducing the apoptosis of LECs

and decreasing the number of tumor-associated lymphatic

vessels (81).
Relationship between TA-HEVs and
tumor-associated lymphatic vessels

HEVs are special vessels for transporting lymphocytes. They

belong to the tumor-associated vasculature together with tumor-

associated lymphatic vessels (115). Therefore, relevant treatment

options may play a role in both HEVs and tumor-associated

lymphatic vessels at the same time. For example, previous studies

have shown that using anti-PD-L1 immunotherapy in combination

with antiangiogenic therapies (anti-VEGF or anti-VEGF/Ang2)

resulted in a mutually beneficial effect in targeted antiangiogenic

immunotherapy. More importantly, antiangiogenic immunotherapy

successfully induced the generation of HEVs and inhibited the

generation of tumor-associated lymphatic vessels. Moreover, the

vascular normalization induced by antiangiogenic therapy increased

lymphocyte infiltration and activation (75, 116, 117). Therefore, ICB

combined with antiangiogenic drugs can be used in immunotherapy to

simultaneously induce HEV production and tumor-associated

lymphatic vessels inhibition. Another association between HEVs and

tumor-associated lymphatic vessels is that they are both involved in

transporting lymphocytes in the tumor tissue. Therefore, treating

lymphocytes, especially CD8+ T cells, may simultaneously affect this

complex trafficking mechanism. However, the exact mechanism

needs exploration.

Summary and prospect

In this review, we focused on the entry and exit of lymphocytes

into and out of tumor tissue through TA-HEVs and tumor-

associated lymphatic vessels, respectively, and their impact on

immunotherapeutic approaches. The special structure and

function of TA-HEVs account for their role as the main site of

lymphocyte extravasation into tumors during cancer immunity and

immune checkpoint inhibitor immunotherapy. TA-HEVs have

been identified in various human tumor tissues as a major portal

for lymphocyte entry into the tumor and have been found to

associate with TLS-rich regions. The induction of TA-HEVs may

be associated with the recruitment of CD8+ T cells and may exert an

inhibitory effect on tumor growth. However, tumor-associated

lymphatic vessels play an important role in controlling the exit of

lymphocytes from tumor tissues. The lymphatic vessel system

controls the exit of lymphocytes from the tumor mainly through

the synergistic differentiation of various chemokines and T cells,

thus controlling the function and number of CD8+ T cells in the

tumor immune microenvironment and inhibiting the immune

effect to a certain extent.
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Tumor cells evade human immune system surveillance

by constructing various biophysical and biochemical barriers

to block entry and promote the expulsion of immune cells

such as lymphocytes. Also, lymphocytes are the key to tumor

immunotherapy. The promotion of MECA-79+ TA-HEV

production and the inhibition of CXCL12 work together to

regulate the transport of lymphocytes in and out of the tumor as

well as the number of immune cells such as CD8+ T cells and DCs,

resulting in better therapeutic effect and prognosis for ICB

combined therapy and other methods.

In summary, this review highlighted the importance of TA-

HEVs and tumor-associated lymphatic vessels in immunotherapy

and analyzed the two potential pathways regulating the flow of

lymphocytes into and out of the TME. The modulation of these

channels may be important for improving the efficacy

of immunotherapy.
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