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Macrophage metabolic reprogramming refers to the process by which

macrophages adjust their physiological pathways to meet survival and functional

demands in different immunemicroenvironments. This involves a range ofmetabolic

pathways, including glycolysis, the tricarboxylic acid cycle, oxidative

phosphorylation, fatty acid oxidation, and cholesterol transport. By modulating the

expression and activity of key enzymes and molecules within these pathways,

macrophages can make the transition between pro- and anti-inflammatory

phenotypes, thereby linking metabolic reprogramming to inflammatory responses

and the progression of several diseases, such as atherosclerosis, inflammatory bowel

disease (IBD), and acute lung injury (ALI). N6-methyladenosine (m6A) modification

has emerged as a critical regulatory mechanism during macrophage metabolic

reprogramming, broadly affecting RNA stability, translation, and degradation.

Therapeutic strategies targeting m6A modification can regulate the onset of

metabolic diseases by influencing macrophage metabolic changes, for instance,

small molecule inhibitors of methyltransferase-like 3 (METTL3) can affect glucose

metabolism and inhibit IBD. This review systematically explores recent findings on

the role and molecular mechanisms of m6A modification during macrophage

metabolic reprogramming in human diseases and animal models, underscoring its

potential as a therapeutic target for metabolic diseases.
KEYWORDS

M1/M2 macrophage reprogramming, glycolysis, tricarboxylic acid cycle, oxidative
phosphorylation, fatty acid oxidation, cholesterol transport
1 Background

Macrophages are a type of immune cell widely distributed across various organisms,

playing a central role in immune response and homeostasis. They are found in a variety of

species, ranging from invertebrates to vertebrates, and are involved in processes such as

pathogen defense, tissue repair, and immune regulation. However, in mammals, including
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both mice and humans, macrophages exhibit a higher level of

functional complexity, with their polarization states and

metabolic reprogramming being particularly important in diseases

such as inflammation, metabolic disorders, and cancer.

Macrophages, as one of the primary responders of the immune

system in mammals, are key participants in innate immunity and

serve as a bridge between innate and adaptive immune response

through the antigen presentation process (1). These cells exhibit

notable plasticity, with non-polarized M0 macrophages polarizing

into pro-inflammatory M1 or anti-inflammatory M2 cells

depending on the environmental cues, allowing them to play

pivotal roles in inflammation, tissue repair, and disease

progression (2). All cells require sufficient and appropriate

nutrients and oxygen to maintain metabolic homeostasis.

Macrophage metabolic reprogramming is an activity carried out

by optimizing the physiological pathways of macrophages in

response to their different metabolic demands during

polarization. After polarization to the M1 or M2 phenotype,

macrophages show modulated metabolic efficiency, reflected in

different pathways and metabolite levels, as illustrated in Figure 1.

Upon stimulation by factors such as lipopolysaccharide (LPS),

interferon gamma (IFN-g), tumor necrosis factor alpha (TNF-a),
and oxidized low-density lipoprotein (oxLDL), macrophages are

activated into the M1 phenotype and play a role in pro-

inflammatory and antimicrobial responses (3). Glycolysis is the

primary metabolic pathway used by M1 macrophages (4). Upon

activation, these cells exhibit a Warburg-like effect (5) to meet their

energy demands, shift ing from reliance on oxidative

phosphorylation (OXPHOS) to a more glycolytic-dependent

pathway. The dependence of M1 cells on glycolysis for ATP

production is due to blocks in the tricarboxylic acid cycle (TCA

cycle), which limit the production of NADH and FADH2 required

for the electron transport chain, thereby inhibiting OXPHOS (6). In
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contrast, upon stimulation by cytokines such as interleukin-4 (IL-

4), interleukin-13 (IL-13), interleukin-10 (IL-10), and transforming

growth factor-beta (TGF-b), macrophages are polarized into the

M2 phenotype, which can be further subdivided into M2a, M2b,

M2c, and M2d subtypes, contributing to anti-inflammatory

responses, tissue repair, and parasitic infections (7, 8). Aerobic

glucose oxidation and fatty acid oxidation (FAO) are the primary

metabolic pathways used by M2 macrophages. Oxidative

metabolism is also significantly enhanced in M2 cells (9, 10).

Unlike the demands of energy metabolism in M1 macrophages,

M2 cells maintain an intact TCA cycle, thus guaranteeing a smooth

process of ATP production by OXPHOS (11, 12). Indeed the

metabolic process in macrophages involves more than just

changes in metabolite levels and ATP production; it also

influences macrophage phenotype through the regulation of

transcriptional and post-transcriptional events.

N6-methyladenosine (m6A) modification refers to a chemical

modification in which a methyl group is added to the nitrogen at the

sixth position of adenosine in RNA molecules, making it the most

prevalent, abundant, and conserved post-transcriptional

modification in eukaryotic cells (13). This is widely present in

both mRNAs and non-coding RNAs and mainly concentrated in

coding sequences (CDS), 3′ untranslated regions (3′ UTR), long
introns, and near stop codons (14). RRACH sequences are

consensus motifs that are recognized and methylated by RNA

methyltransferases (14, 15). In mRNA, m6A modifications are

reversible and can be removed by demethylases. Reader proteins

recognize specific m6A sites and regulate mRNA stability,

localization, translation, splicing, and transport (13), and they

interact to determine the fate of mRNA. m6A modifications are

involved in the physiological and pathological processes of various

immune cell types, playing crucial roles in cell differentiation,

development, and disease pathogenesis (16). When macrophages
M1 macrophages M2 macrophagesM2 macrophages

GlycolysisGlycolysis

PPP activationPPP activation

LPS、oxLDL、IFN-γ、TNF-α

TCA cycleTCA cycle

ROS productionROS production

OXPHOSOXPHOS

IL-4, IL-13, IL-10, TGF-β

TCA cycleTCA cycle

OXPHOSOXPHOS

FAOFAO aerobic glucose oxidationaerobic glucose oxidation

FIGURE 1

Metabolic differences between M1 and M2 macrophages. M1 macrophages favor glycolysis and ROS production while limiting TCA cycle and
OXPHOS. In contrast, M2 macrophages rely on FAO, aerobic glucose oxidation, TCA cycle, and OXPHOS.
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polarize to the M1 phenotype, the expression of methyltransferase-

like 3 (METTL3) and methyltransferase-like 14 (METTL14) is

significantly upregulated, leading to m6A modification levels

being markedly increase (17, 18). Recent studies indicate that

m6A modifications are extensively involved in regulating

macrophage phenotypes, further influencing disease progression

by modulating metabolic pathways. In this paper, we are describing

the role of m6A modification in macrophage metabolic

reprogramming, including how this process alters metabolic

disease progression, and we highlight potential opportunities for

targeting m6A modifications to treat diseases.
2 m6A modification proteins
in macrophage

m6A modification is a dynamic and reversible process

controlled by three main types of proteins—writers, erasers, and

readers (19)—as summarized in Table 1.
2.1 Writers

m6A methyltransferases, such as METTL3, METTL14, Wilms’

tumor 1-associating protein (WTAP), methyltransferase-like 16

(METTL16), RNA-binding motif protein 15/15B (RBM15/15B),

zinc finger CCCH domain-containing protein 13 (ZC3H13),

HAKAI, zinc finger CCHC-type containing 4 (ZCCHC4), and

vir-like m6A methyltransferase associated (VIRMA, KIAA1429),

are writer proteins. METTL3, the first identified writer, is the only

catalytically active subunit in the m6A methyltransferase complex

(MTC) (72). In macrophages, METTL3 promotes glycolysis,

mitochondrial damage, and ROS production while suppressing

the TCA cycle and OXPHOS, thereby contributing to

inflammatory responses. In diseases such as atherosclerosis, non-

alcoholic steatohepatitis (NASH), non-alcoholic fatty liver disease

(NAFLD), obesity, myocardial infarction, endometriosis, sepsis,

acute lung injury (ALI), and inflammatory bowel disease (IBD),

METTL3 promotes glycolysis (18, 23–25, 27–29, 35), enhances

mitochondrial damage and ROS production (22, 31), and

suppresses the TCA cycle and OXPHOS (20, 21, 36) by regulating

the m6A modifications of key genes (see Table 1 for details).

Notably, M1 macrophages play a central role in driving

inflammation and disease progression in conditions such as

atherosclerosis, NASH, and sepsis (18, 23, 25, 26, 28–30). Also,

METTL3 orchestrates these effects by reprogramming macrophage

metabolism to favor M1 polarization and inflammatory responses.

The METTL3–METTL14 heterodimer, as the core of the MTC,

catalyzes the majority of mRNA m6A methylation (72). Although

METTL14 lacks catalytic activity, it structurally stabilizes the

interaction between METTL3 and RNA substrates, enhancing the

catalytic efficiency of the MTC (73). WTAP is a regulatory subunit

that anchors METTL3 toMETTL14 and facilitates the assembly and

nuclear localization of the MTC (13). Both METTL14 and WTAP

assist METTL3 in promoting M1 polarization and amplifying

inflammatory responses. In diseases such as atherosclerosis,
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NASH and corneal neovascularization, METTL14 (28, 29, 45),

and WTAP (51) enhance glycolysis, thereby promoting M1

polarization, inflammation, and disease progression.

While writers primarily enhance inflammation, they can also

inhibit inflammatory processes (41, 42). In diseases such as IBD and

atherosclerosis, writers can modulate the expression of solute

carrier family 37 member 2 (SLC37A2), macrophage scavenger

receptor 1 (MSR1), and scavenger receptor class B type 1 (SR-B1),

inhibiting glycolysis and lipid uptake while promoting cholesterol

efflux. This leads to anti-M1 and pro-M2 polarization, thereby

suppressing macrophage inflammatory responses at the metabolic

level (37, 39, 50). These findings suggest that macrophage m6A

modifications are complex and multifaceted, contributing to both

pro- and anti-inflammatory effects. The dual nature of this process

makes it a “double-edged sword” for host immunity.
2.2 Erasers

“Erasers” are m6A demethylases, including fat mass and

obesity-associated protein (FTO) and AlkB homolog 5

(ALKBH5). FTO was the first identified eraser (74). In diseases

like atherosclerosis and ALI, FTO promotes fatty acid oxidation,

inhibits lipid uptake, and accelerates cholesterol efflux, thereby

facilitating M2 polarization and suppressing inflammation (53,

54, 68, 75). ALKBH5, the second identified m6A demethylase,

shares a similar activity with FTO (19). It follows that m6A

modifications dynamically modulate macrophage metabolic

pathways in macrophages through the addition and removal of

methyl groups by writers and erasers, balancing the pro-

inflammatory M1 and anti-inflammatory M2 phenotypes.
2.3 Readers

“Readers” are m6A-specific reader proteins, including YTH

domain containing proteins 1/2 (YTHDC1/2), heterogeneous

nuclear ribonucleoproteins (hnRNPs), insulin-like growth factor 2

mRNA-binding protein 1/2/3 (IGF2BP1/2/3), and YTH domain

family proteins 1/2/3 (YTHDF1/2/3). The nuclear m6A reader binds

m6A-containing precursor RNAs in the nucleus and participates in

RNA-selective shearing. Intranuclear m6A readers include

YTHDC1 and hnRNP family members (13). YTHDC2, an RNA

helicase, aids in RNA binding and influences mRNA translation or

degradation (76). After being processed from the precursor

transcript, mature mRNAs are further regulated by cytoplasmic

m6A readers. YTHDF1 promotes mRNA translation, YTHDF2

facilitates mRNA degradation, and YTHDF3 contributes to either

process (77). The IGF2BP family, which includes IGF2BP1,

IGF2BP2, and IGF2BP3, stabilizes mRNA (78).

While the dynamic m6A levels are regulated by writers and

erasers, m6A-modified target mRNAs are primarily regulated by

readers. For example, YTHDF1 and YTHDF2 are required for the

inhibitory effect of METTL3/METTL14 on suppressor of cytokine

signaling 3 (SOCS3), nucleotide-binding oligomerization domain

containing 1 (NOD1), and receptor interacting protein kinase 2
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TABLE 1 Summary of m6A regulatory enzymes in macrophage polarization and inflammation.
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Writers METTL3 PGC-1a (20, 21) METTL3 inhibits PGC-1a, contributing to mitochondrial dysfunction
induced by oxLDL.

——

ApoC3 (22) METTL3 promotes ApoC3 expression, leading to mitochondrial damage
and enhancing calcium-dependent ROS generation.

——

HDGF (23) METTL3 facilitates HDGF expression, which drives aerobic glycolysis and
mitochondrial damage in response to IFN-g and LPS.

Pro-M1;

DDIT4 (24) METTL3 suppresses DDIT4, thereby promoting the activation of the
mTORC1 and NF-kB signaling pathways.

——

STAT1 (18, 25) METTL3 upregulates the expression of STAT1. Pro-M1;

circN4bp (26) Knockdown of METTL3 prevents the increase in circN4bp1 induced by
LPS stimulation.

Pro-M1;

TRAF6 (27) METTL3 influences sympathetic remodeling and impacts the TRAF6/NF-
kB pathway and oxidative stress levels.

——

NF-k B (28, 29) METTL3/METTL14 and NF-kB regulate each other. Pro-M1

Braf (30) METTL3 promotes Braf expression, activating the ERK signaling pathway. Pro-M1;

TTC4 (31) METTL3 increases mitochondrial damage and ROS production by
inhibiting the TTC4-HSP70 pathway.

——

USP8 (32) METTL3 activates pyroptosis through the METTL3/MALAT1/PTBP1/
USP8/TAK1 axis.

——

pri-miR-34A (33) METTL3 induces the maturation of miR-34a-5p, facilitating pyroptosis. ——

hsa_circ_0029589 (34) The METTL3/IRF-1 complex promotes pyroptosis by
downregulating circ_0029589.

——

Trib1 (35) METTL3 enhances Trib1 stability. Pro-M2

PGP (36) METTL3 inhibits PGP. anti-M2

SLC37A2 (37) METTL3 promotes SLC37A2 expression through YTHDF1. Pro-M2;

Pyk2 (38) METTL3 ablation upregulates pyk2, activating the AKT/MAPKs
signaling pathway.

——

MSR1 (39) METTL3 inhibits MSR1-induced lipid uptake. ——

PTX3 (40) METTL3 suppresses the PTX3/STX17 signaling axis. Pro-M1;

SOCS3 (41) METTL3 upregulates SOCS3, inhibiting the JAK2-STAT3 pathway. ——
t

a

a

a

a

a

a

https://doi.org/10.3389/fimmu.2025.1521196
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


TABLE 1 Continued

n
Inflammatory effect Disease association

——

M2 Anti-tumor B16

Colorectal cancer

Colon adenocarcinoma

2 Pro-inflammatory Atherosclerosis

Atherosclerosis, NASH

ALI, ARDS

MCAO, OGD/R

Anti-infection/inflammatory Bacterial infection

1 Anti-inflammatory UC

Atherosclerosis

Pro-inflammatory Corneal neovascularization

——

Anti-inflammatory Atherosclerosis

ALI

Pro-infection/inflammatory Bacterial infection

Pro-inflammatory Silica-induced
pulmonary inflammation

Anti-inflammatory Sepsis

Colorectal cancer

Anti-tumor Colorectal cancer

Anti-inflammatory IBD

Anti-infection Talaromyces marneffei

(Continued)

W
an

g
e
t
al.

10
.3
3
8
9
/fim

m
u
.2
0
2
5
.15

2
119

6

Fro
n
tie

rs
in

Im
m
u
n
o
lo
g
y

fro
n
tie

rsin
.o
rg

0
5

Enzyme type Enzyme
name

Key genes
targeted

Function in macrophages Impact on
polarizatio

NOD1/RIPK2 (42) METTL3 knockdown activates the NOD1/RIPK2 signaling pathway. Anti-M1

SPRED2 (43)
METTL3 deletion inhibits YTHDF1-mediated SPRED2 translation,
thereby promoting the ERK/STAT3 signaling pathway.

Anti-M1; anti

pri-miR-146b (44) METTL3 enhances miR-146b maturation and inhibits M2-type TAM
polarization mediated by the PI3K/AKT signaling pathway.

Anti-M2

Irakm (17) METTL3 promotes TLR4 signaling by inhibiting Irakm. Pro-M1

METTL14 Myd88 (45) METTL14 boosts the NF-kB/IL-6 signaling pathway by promoting Myd88. Pro-M1; anti-

NF-kB (28, 29) METTL3/METTL14 and NF-kB mutually regulate activity. Pro-M1

NLRP3 (46) METTL14 mediates NLRP3 activation. ——

KAT3B (47) METTL14 promotes KAT3B expression and induces pyroptosis via the
H3K27ac-STING-NLRP3 pathway.

——

SOCS1 (48) METTL14 maintains the negative feedback generated by SOCS1, inhibiting
inflammatory pathways.

——

TSC1 (49) METTL14 increases TSC1 expression, regulating the downstream MEK/
ERK and C/EBPb signaling pathways.

Pro-M2; anti-

SR-B1 (50) METTL14 enhances SR-B1 expression. ——

WTAP HIF-1a (51) WTAP enhances the secretion of VEGF by promoting HIF-1a expression. Pro-M1

p65 (52) WTAP mediates the nuclear translocation of p65 to regulate IL-
6 expression.

——

Erasers FTO PPARg (53) FTO regulates cholesterol transport by inhibiting PPARg expression. ——

ACSL4 (54) FTO decreases ACSL4 mRNA stability via YTHDF1. ——

Socs1 (48, 55) FTO inhibits SOCS1. ——

ALKBH5 Slamf7 (56) ALKBH5 downregulates Slamf7 and autophagy. ——

SR-A5 (57) ALKBH5 promotes the expression of SR-A5. ——

CPT1A (58) ALKBH5 enhances CPT1A expression. Pro-M2

Readers HNRNPA2B1 pri-miR-146b (44) HNRNPA2B1 promotes the maturation of miR-146b and inhibits M2-type
TAM polarization mediated by the PI3K/AKT signaling pathway.

Anti-M2

YTHDC1 RHOH (59) YTHDC1 promotes RHOH transcription. ——

YTHDC2 TLR (60) Knockdown of YTHDC2 after TM infection increases TLR2 expression. ——
-
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IFN-b (61)
ISG20 is activated by IFN-b early in viral infection, while YTHDC2
recruits ISG20 to degrade IFN-b mRNA later in the disease progression.

——

YTHDF1

JAK2/STAT3 (62)
YTHDF1 knockdown inhibits the translation of phosphorylated proteins
in the JAK2/STAT3 pathway.

——

NLRP3 (63) Overexpression of YTHDF1 promotes the translation of NLRP3. ——

Braf (30) YTHDF1 facilitates the translation of Braf mRNA. Pro-M1; an

SLC37A2 (37) YTHDF1 promotes the translation of SLC37A2 mRNA. Pro-M2; an

ACSL4 (54) YTHDF1 mediates ACSL4 mRNA degradation. ——

p65 (64)
YTHDF1 specifically enhance p65 mRNA its translation. ——

SOCS3 (41)
YTHDF1 promotes SOCS3 mRNA translation and inhibits the JAK2/
STAT3 pathway.

——

NOD1 、RIPK2 (42)
YTHDF1 mediates the degradation of NOD1 and RIPK2 mRNAs,
suppressing the NOD1/RIPK2 signaling pathway.

Anti-M1

Socs1 (48, 55) YTHDF1 stabilizes Socs1 mRNA. ——

SPRED2 (43)
YTHDF1 facilitates the translation of SPRED2, inhibiting the ERK/STAT3
signaling pathway.

Pro-M1; pr

YTHDF2

PGC-1a (20, 21) YTHDF2 mediates the degradation of PGC-1a mRNA. ——

Pyk2 (38)
YTHDF2 facilitates the degradation of Pyk2 mRNA, inhibiting the AKT/
MAPKs signaling pathways.

——

NOD1、RIPK2 (42) YTHDF2 mediates the degradation of NOD1 and RIPK2 mRNAs. Anti-M1

STAT1 (65) YTHDF2 is involved in the degradation of STAT1 mRNA. Anti-M1; p
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(RIPK2)-mediated inflammation (41, 42). These studies indicate

that the role of readers in macrophage regulation is dependent on

whether the target genes are pro- or anti-inflammatory. The role of

readers in macrophage regulation is complex, as it depends not only

on the nature of the target genes (pro- or anti-inflammatory) but

also on the disease context. Even within the same macrophage

mechanism, readers can exhibit different inflammatory effects

depending on the disease. For example, IGF2BP2 enhances the

stability of tuberous sclerosis complex 1 (TSC1) and peroxisome

proliferator-activated receptor gamma (PPAR-g) mRNAs,

promoting an anti-inflammatory response in IBD but a pro-

inflammatory response in allergic lung inflammation (68).
3 Role of m6A in
macrophage metabolism

Macrophage metabolic reprogramming involves dynamic

processes such as glycolysis, the TCA cycle, OXPHOS, FAO, and

cholesterol transport, with the specific roles of m6A modifiers in

these pathways summarized in Table 2.
3.1 Glycolysis

The activation of classical M1 macrophages is characterized by an

upregulation of glycolysis, which is accompanied by an increased

extracellular acidification rate (ECAR) and a decreased oxygen

consumption rate (OCR) (79). This shift ultimately results in

mitochondrial dysfunction, including reduced oxygen uptake and

ATP production (80). M1 macrophages become activated by

stimulating bone-marrow-derived macrophages with LPS for 24 h.

This leads to a significant upregulation of the glucose transporter

solute carrier family 2 member 1 (SLC2A1, also known as GLUT1)

and the glycolytic enzymes, hexokinase 3 (HK3), 6-phosphofructo-2-

kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), phosphoglucomutase

2 (PGM2), and alpha-enolase (ENO2), along with an accumulation of

the glycolytic product, lactate (81). See Figure 2 for additional

glycolytic enzyme and product changes. GLUT1 is the primary

glucose transporter in mouse macrophages and is upregulated 10-

fold and twofold in M1 and M2 macrophages, respectively, after

polarization from M0 cells (4). Macrophages use GLUT1 to take up

glucose in response to LPS stimulation (82). ECAR represents the rate

of glycolysis, while OCR indicates mitochondrial respiration. GLUT1

overexpression in macrophages effectively increases ECAR, reduces

OCR, and promotes macrophage polarization toward the M1

inflammatory phenotype (4). All m6A-regulated mechanisms of

macrophage glycolysis are summarized in Figure 2. During

atherosclerosis, METTL3 regulates hepatoma-derived growth factor

(HDGF) mRNA stability in macrophages through m6A modification,

increasing HDGF expression that, in turn, accelerates glycolysis and

enhances mitochondrial dysfunction. This is reflected in increased

glucose uptake and ECAR, decreased OCR, and reduced

mitochondrial membrane potential, thereby promoting M1

macrophage polarization (23).
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TABLE 2 Summary of m6A modifiers and their specific roles in macrophage metabolism.
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Signal transducer and activator of transcription 1 (STAT1) is a

hallmark transcription factor involved in M1macrophage polarization.

After stimulation with IFN-g or oxLDL, m6A modification increases

significantly in macrophages. METTL3 directly mediates m6A

modifications on the CDS and 3′UTR regions of STAT1 mRNA,

thereby enhancing the stability, gene expression, and transcriptional

activity of STAT1 (18, 25). STAT1, acting at both the transcriptional

and translational levels, upregulates key glycolytic enzymes, including

glucose-6-phosphate isomerase (GPI), fructose-bisphosphate aldolase

A (ALDOA), fructose-bisphosphate aldolase C(ALDOC),

triosephosphate isomerase (TPI), phosphoglycerate kinase 1 (PGK1),

phosphoglycerate mutase 1 (PGAM1), ENO1, pyruvate kinase M2

isoform (PKM2), and lactate dehydrogenase (LDH). Furthermore,

STAT1 promotes the upregulation of NADH, FADH2, and ATP

synthase to meet the increased energy demands of M1 macrophages

during polarization (83). In RAW264.7 macrophages, overexpression

of RNA-binding motif 4 (RBM4) promotes the binding of the reader

protein YTHDF2 to m6A sites on the STAT1 mRNA 3′UTR region,

inducing STAT1 mRNA degradation and reducing STAT1

transcriptional activity. Consequently, the expression of glycolysis-

related genes regulated by STAT1, such as ALDOA, ALDOC, and

GPI, is significantly decreased (65). This suppression of glycolysis is

reflected by decreased glucose uptake, reduced lactate production, and

downregulated ECAR profiles (65). Notably, overexpression of RBM4

inhibits IFN-g-induced M1 macrophage polarization without affecting

IL-4-induced M2 polarization, suggesting a selective regulatory role in

metabolic reprogramming (65).

IL-4-induced M2 macrophage activation is primarily dependent

on mitochondrial respiratory function. However, this process is also

accompanied by a moderate enhancement in glycolysis, as indicated

by delayed and slight increases in ECAR (79). While glycolysis is

well established as a key metabolic feature of M1 macrophage

polarization, emerging evidence suggests its involvement in M2

polarization under specific contexts. For instance, in endometriosis,

enhanced glycolysis is positively associated with the infiltration of

M2 macrophages into lesion sites, as evidenced by the increased

levels of PKM2 and lactate (35). High lactate concentrations

promote the stability of tribbles pseudokinase 1 (Trib1) mRNA

through METTL3-mediated m6A modifications, thereby increasing

Trib1 protein expression (35). Trib1 facilitates M2 macrophage

polarization through the activation of the ERK/STAT3 signaling

pathway (35, 84). Collectively, glycolysis may contribute to M2

macrophage activation in some contexts (35, 65), but its precise role

depends on the specific inflammatory immune environment.

Glucose-6-phosphate (G6P) is an intermediate in glycolysis.

SLC37A2, a phosphate-linked G6P antiporter, exhibits the highest

transcript abundance among the SLC37 family in macrophages.

LPS-induced glycolysis is increased in SLC37A2 knockout

macrophages, characterized by the rapid depletion of key

glycolytic intermediates such as G6P and dihydroxyacetone

phosphate (DHAP), alongside the increased accumulation of

downstream products, including pyruvate and lactate. This

metabolic shift is accompanied by elevated ECAR (85). Notably,

SLC37A2 expression is significantly reduced in the colorectal tissues

of IBD mouse models (37). In RAW264.7 macrophages, exosomes

derived from human umbilical cord mesenchymal stem cells
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(hucMSC-Ex) mediate the m6A modification of SLC37A2 3′UTR
mRNA through METTL3 and enhance the binding of the reader

protein YTHDF1 to SLC37A2, thereby promoting SLC37A2 mRNA

translation and expression (37). By downregulating glycolysis,

SLC37A2 mitigates macrophage inflammatory activation, thereby

alleviating intestinal inflammation in IBD (37).

Hypoxia-inducible factor 1 a (HIF-1a) is a key regulator of

glycolysis (86). The rate-limiting enzyme of glycolysis, pyruvate

kinase isozyme type M 2 (PKM2), is upregulated in LPS-treated

macrophages, and PKM2 dimers promote HIF-1a stabilization (87).

HIF-1a drives glycolysis by inducing the expression of several genes,

including GLUT1, hexokinase 2 (HK2), phosphofructokinase 1

(PFK1), LDH, and pyruvate dehydrogenase (PDH) (81, 86). In

corneal neovascularization, the methyltransferase, WTAP,

modulates the m6A enrichment level on HIF-1a and partially

affects its translation efficiency without changing its mRNA

stability, thereby promoting HIF-1a protein production (51).

LPS enhances HIF-1a mRNA transcription in macrophages by

inducing nuclear factor kappa B (NF-kB) activity, further amplifying

HIF pathway signaling (88, 89). Beyond its role in HIF-1a translation

(51), WTAP also facilitates the nuclear translocation of NF-kB p65 in

tamm-horsfall protein-1 (THP-1) macrophages (52), enhancing HIF-

1a stability and activity via NF-kB-dependent mechanisms (88, 89).

In LPS-stimulated macrophages, NF-kB recruits the RelA subunit

(NF-kB p65) to the HIF-1a promoter to regulate its transcription

(89). In BMDMs treated with the hypoxia mimetic drug

deferoxamine (DFX), IkB kinase b (IKKb) is indispensable for

HIF-1a accumulation (89). In the absence of IKKb, hypoxia-driven
HIF-1a expression and the transcription of its downstream targets,

such as vascular endothelial growth factor (VEGF) and GLUT1, are

significantly impaired (89). In LPS-stimulated liver macrophages
Frontiers in Immunology 10
(Kupffer cells), the NF-kB p65 subunit transcriptionally activates

METTL3 and METTL14 and increases global m6A modification

levels (29). The traditional Chinese herbal formula, Huatuo Zizao

pill (HTZZW), mitigates atherosclerosis by attenuating NF-kB
signaling. Specifically, HTZZW suppresses METTL3 and METTL14

expression in macrophages, reducing m6A modification within the

NF-kB mRNA 3′-UTR and ultimately lowering NF-kB mRNA

translation and protein expression (28). m6A modification

influences NF-kB activity through the methyltransferases, METTL3

and METTL14, which, in turn, regulates HIF-1a through NF-kB,
driving the expression of glycolytic genes and significantly promoting

M1 macrophage polarization.

In addition to NF-kB, the mechanistic target of rapamycin

complex 1 (mTORC1) also serves as an upstream regulator of HIF-

1a, inducing the transcription of glycolytic genes such as LDH and

PGK1 as well as VEGF (90). In METTL3-deficient macrophages,

the stability of DNA damage-inducible transcript 4 (DDIT4)

mRNA is significantly enhanced (24). DDIT4 inhibits mTORC1

and NF-kB signaling pathways, thereby reducing downstream HIF-

1a transcriptional activity. This suppression reduces glycolysis and

M1 macrophage activation, ultimately protecting against diet-

induced nonalcoholic fatty liver disease (NAFLD) and obesity (24).

MYC oncogene (c-MYC) is also a core regulator of glycolysis (91,

92). In pancreatic ductal adenocarcinoma (PDAC), the reader

IGF2BP2 interacts with LncRNA-PACERR to enhance the stability

and expression of krüppel-like factor 12 (KLF12) and c-MYC

mRNAs. This interaction further increases c-MYC expression

through KLF12\PETN\pAKT signaling (70). c-MYC overexpression

significantly increases the expression of GLUT1, SLC1A5, and the

glycolytic enzymes HK2, PKM2, and LDH, promoting the M2

polarization of tumor-associated macrophages (TAMs) (70, 91, 92).
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FIGURE 2

Role of m6A in glycolysis. In macrophages, m6A modifications influence the stability, translation, and expression of transcription factors (e.g., HIF-1a,
STAT1), then modulating glycolytic enzymes (e.g., HK2, PKM2).
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3.2 TCA cycle

All m6A-regulated mechanisms of TCA cycle in macrophages are

summarized in Figure 3. The TCA cycle remains intact in M2

macrophages (93). In colonic infiltrating macrophages from

METTL3-knockout IBD mice, YTHDF3-mediated upregulation of

phosphoglycolate phosphatase (PGP) mRNA and protein expression

has been observed (36). PGP enhances the TCA cycle, OXPHOS, and

the pentose phosphate pathway (PPP) in macrophages, while

glycolysis remains unaffected (36). This is evidenced by the increased

levels of TCA intermediates such as malate, citrate, and fumarate along

with elevated OCR. In addition, the PPP-related genes, including

glucose-6-phosphate dehydrogenase X (G6PDX), phosphogluconate

dehydrogenase (PGD), and 6-phosphogluconolactonase (PGLS), are

markedly upregulated, leading to an increased NADPH/NADP+ ratio.

Conversely, lactate levels, ECAR, and expression of the glycolytic

enzymes remain unchanged (36). The metabolic reprogramming in

METTL3-deficient macrophages promotes M2 polarization,

suppressing pathogenic Th1 cells and alleviating colitis (36).

In M1 macrophages, alongside the upregulation of glycolysis,

there is a marked reduction in the levels of key mitochondrial

enzymes, such as malate dehydrogenase (MDH1) and isocitrate

dehydrogenase (IDH2). This reduction, coupled with a significant

depletion of isocitrate in the mitochondrial respiratory chain,

indicates an impairment of the TCA cycle (81). The disruption of

the TCA cycle occurs at two key metabolic points: citrate

metabolism and succinate metabolism (94).

During citrate metabolism, LPS-, TNF-a-, or IFN-g-activated
M1 macrophages show a reduction in IDH expression (95), leading

to isocitrate depletion in the mitochondria. At the same time, the
Frontiers in Immunology 11
mitochondrial citrate carrier (CIC, also known as solute carrier

family 25 member 1, SLC25A1) is upregulated, facilitating the

export of citrate from the mitochondria to the cytoplasm in

exchange for malate. This results in the accumulation of citrate in

the cytoplasm (96, 97), where ATP-citrate lyase (ACLY) converts it

into acetyl-CoA and oxaloacetate (98). The increase in acetyl-CoA

promotes lipid synthesis, while oxaloacetate is converted into

malate by malic enzyme (ME1). This is accompanied by the

reduction of NADP+ to NADPH, enhancing the production of

nitric oxide (NO) and ROS (99). m6A modification at this first

interruption point in the TCA cycle has been identified in dental

pulp stem cells (DPSCs). In these cells, METTL3-IGF2BP2 mediates

the stability of ACLY mRNA, while METTL3-IGF2BP2/3 mediates

the stability of CIC mRNA (100). Additional research is required to

validate this observation in macrophages.

During succinate metabolism, activated M1 macrophages show a

significant upregulation of aconitate decarboxylase 1 (ACOD1, also

known as IRG1) (101). ACOD1 catalyzes the decarboxylation of cis-

aconitate to produce itaconate, thereby disrupting the TCA cycle

(101). Itaconate inhibits succinate dehydrogenase (SDH), preventing

succinate from further metabolizing into fumarate and leading to its

accumulation in the cell (102). Succinate acts as a competitive

inhibitor of a-ketoglutarate (a-KG), suppressing the activity of

HIF-1a hydroxylase (PHD) (81) and stabilizing and activating

HIF-1a, a key transcription factor for glycolysis (103). The m6A

modification at this second interruption point in the TCA cycle has

been observed in hematopoietic stem and progenitor cells (HSPCs).

In these cells, the a-ketoglutarate dehydrogenase complex (OGDH),

the rate-limiting enzyme in the conversion of a-KG to succinyl-CoA,

is regulated by the m6A demethylase ALKBH5. Deletion of ALKBH5
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increases m6A modifications on OGDH mRNA, which are

recognized by the m6A reader protein YTHDF2. This recognition

reduces OGDHmRNA stability, decreases OGDH protein levels, and

consequently slows TCA cycle progression (104). In macrophages, a-
KG upregulates the m6A demethylase, ALKBH5, reducing the m6A

modification of scavenger receptor class A member 5 (SR-A5),

enhancing SR-A5 expression, inhibiting M1 polarization, and

promoting M2 polarization, thereby alleviating the inflammatory

response in septic macrophages (57).
3.3 OXPHOS

IL-4-induced M2 macrophages are characterized by enhanced

oxidative metabolism, exhibiting high levels of OCR and spare

respiratory capacity (SRC) (10) and primarily relying on OXPHOS

and FAO (9). All m6A-regulated mechanisms of macrophage

OXPHOS are summarized in Figure 4. In response to IL-4, STAT6

directly binds to the high-mobility group AT-hook 2 (HMGA2)

promoter region, promoting the expression of the reader IGF2BP2

(68). IGF2BP2 enhances TSC1 and PPARg mRNA stability and

expression in an m6A modification-dependent manner (68). Among

them, PPARg promotes FAO and OXPHOS (105), while TSC1 inhibits

glycolysis and induces OXPHOS (90, 106). PPARg and TSC1

expression effectively elevates OCR and SRC production, enhancing

OXPHOS and mitochondrial respiration and promoting M2 cell

polarization (68). This process not only exacerbates allergic

pulmonary inflammation but also has a positive role in alleviating

colitis (68).

NADH and FADH2, generated during the TCA cycle, are

critical electron donors for OXPHOS. During M1 macrophage

activation, TCA cycle disruption leads to succinate accumulation,

causing reverse electron transfer (RET) in the mitochondria. This

increases electron leakage in the electron transport chain, reducing

OXPHOS efficiency and generating ROS (107). Excessive ROS can
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impair mitochondrial function, favoring a shift from OXPHOS to

glycolysis for ATP production. During ALI, METTL3 modulates the

stability and expression of apolipoprotein C3 (ApoC3) mRNA in

macrophages. ApoC3, through the SCIMP-SYK signaling pathway,

promotes calcium influx, damages the mitochondrial membrane

potential, impairs OXPHOS, generates ROS and activates the NOD-

like receptor family pyrin domain containing 3 (NLRP3)

inflammasome (22). METTL3 also suppresses the stability and

expression of tetratricopeptide repeat domain 4 (TTC4) 3’-UTR

mRNA in ALI macrophages, inhibiting downstream heat shock

protein 70 (HSP70) induction, increasing mitochondrial damage,

and activating the ROS/NLRP3 signaling pathway (31).

Peroxisome proliferator-activated receptor gamma coactivator

1-alpha (PGC-1a) is an important regulator of OXPHOS, binding

to various transcription factors and nuclear hormone receptors to

support mitochondrial biogenesis and oxidative metabolism. This

includes the activation of nuclear respiratory factor 1 (NRF-1),

estrogen-related receptor alpha (ERRa), yin yang 1 (YY1), and

myocyte enhancer factor 2C (MEF2C), which act on the

mitochondrial respiratory chain, and PPARa and PPARg, which
control FAO (108). During oxLDL-induced monocyte

inflammation, METTL3 mediates m6A modifications in the

coding region of PGC-1a. YTHDF2 specifically recognizes these

m6A modifications and promotes the degradation of PGC-1a
mRNA, reducing the PGC-1a levels (20, 21). The reduction in

PGC-1a further inhibits the expression of the nuclear-encoded

mitochondrial respiratory chain proteins, cytochrome c somatic

(CYCS), and NADH: ubiquinone oxidoreductase core subunit C2

(NDUFC2), thereby suppressing OXPHOS, increasing the

accumulation of cellular and mitochondrial ROS, reducing OCR,

and impairing mitochondrial function (20, 21). Matr3 participates

in the formation of the METTL3–METTL14 complex. While Matr3

overexpression does not directly affect the level of m6A in

polyadenylated RNA, this protein can assist METTL3 in

increasing the m6A modifications of PGC-1a mRNA (20, 21).
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Role of m6A in OXPHOS. In macrophages, m6A modifications regulate transcription factors (e.g., PGC-1a, PPARg), thereby affecting the electron
transport chain in OXPHOS and influencing ROS production.
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3.4 FAO

All m6A-regulated mechanisms of FAO in macrophages are

summarized in Figure 5. Oxidative metabolism in M2 macrophages

primarily depends on FAO and OXPHOS (9). The rate-limiting

step of FAO is mediated by carnitine palmitoyltransferase 1A

(CPTIA), which converts long-chain fatty acids into acyl-

carnitine, facilitating its transport into the mitochondrial matrix

(109) and making CPT1A the most critical transport enzyme for

FAO (110). FAO and ATP levels increase significantly when THP-1

macrophages are co-cultured with colorectal cancer (CRC) cells.

This is accompanied by a notable increase in OCR and a decrease in

ECAR, indicating that fatty acid metabolism and mitochondrial

respiration are increased in the macrophages, inducing TAM M2

polarization and promoting tumor growth (58). Notably, ALKBH5

mediates a reduction in the m6A modification of CPT1A, increasing

CPT1A mRNA stability and expression and thus regulating the

FAO pathway involved in M2 polarization (58).

Acyl-CoA synthetase long-chain family member 4 (ACSL4) is

involved in polyunsaturated fatty acid metabolism, promoting lipid

peroxide production during fatty acid oxidation (111). Inhibiting

ACSL4 enhances mitochondrial respiration and fatty acid

oxidation, as evidenced by increased OCR, mitochondrial

membrane potential, ATP production, and a higher expression of

genes, including PPARa, PGC1a, CPT1A, acetyl-CoA carboxylase

2 (ACC2), and acyl-CoA dehydrogenase long-chain (ACADL),

associated with mitochondrial fatty acid oxidation (111). During

ALI, FTO reduces the stability of ACSL4 mRNA via YTHDF1,

interrupting poly-unsaturated fatty acid metabolism, decreasing
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lipid peroxide production, and promoting FAO to suppress

macrophage inflammation and inhibit disease progression (54).

The FTO inhibitor FB23-2 exacerbates lung injury and

inflammation in ALI mice (54).

Peroxisome proliferator-activated receptor gamma (PPARg)
enhances fatty acid uptake by upregulating CD36 expression and

accelerates fatty acid entry into the mitochondria by promoting

CPT1 activity, thereby increasing FAO (105). m6A modifications

regulate PPARg expression, modulating the FAO process and

impacting M2 macrophage polarization. In BMDMs, IGF2BP2

recognizes the m6A modification on PPARg mRNA and enhances

its stability and expression, thus promoting M2 polarization (68). In

contrast, an FTO gene knockout reduces PPARg mRNA stability

and expression through YTHDF2 involvement, thereby hindering

macrophage M2 polarization (75).
3.5 Cholesterol transport

All m6A-regulated mechanisms of cholesterol transport in

macrophages are summarized in Figure 5. CD36 is a

transmembrane transport protein widely expressed in various

tissues, including adipose tissue, heart, and skeletal muscle, and it

is responsible for the uptake and transport of fatty acids and

cholesterol (53, 112). Low-density lipoprotein (LDL) is a

lipoprotein particle that carries cholesterol into peripheral tissue

cells. Upon oxidization, LDL forms oxidized low-density

lipoprotein (oxLDL) (113). CD36 facilitates the uptake of oxLDL

by macrophages, leading to the formation of foam cells, which can
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CPT1) as well as lipid transport proteins (e.g., ABCA1, ABCG1).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1521196
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1521196
induce inflammatory responses and contribute to atherosclerosis

(53). In RAW 264.7 macrophages, the eraser FTO inhibits PPARg
expression, suppressing CD36 uptake of oxLDL and preventing

foam cell formation (53). Like CD36, MSR1 is a scavenger receptor

that can also take up oxLDL and contribute to foam cell formation

(39). oxLDL promotes dead-box helicase 5 (DDX5) expression in

THP-1 macrophages . DDX5 then inh ib i t s METTL3

methyltransferase activity, reducing m6A modifications and thus

stabilizing MSR1 mRNA, increasing MSR1 expression, and

inducing lipid uptake and atherosclerosis (39).

Reverse cholesterol transport (RCT) is the process by which

cholesterol from lipid-laden peripheral cells is transported to the

liver via plasma high-density lipoprotein (HDL) and subsequently

excreted from the body through bile acids (114). Unlike lipid

uptake, RCT can inhibit the formation of macrophage foam cells

and the progression of atherosclerosis. RCT can be mediated by

three pathways: simple diffusion, scavenger receptor B1 (SR-B1)-

mediated facilitated diffusion, and efflux mediated by ATP-

binding cassette transporter A1 (ABCA1) or G1 (ABCG1)

(114). In mono- (2-ethylhexyl) phthalate (MEHP)-exposed

RAW 264.7 macrophages, m6A RNA methylation is significantly

reduced. MEHP inhibits SR-B1 expression by decreasing METTL14

expression, suppressing cholesterol efflux from macrophages,

and accelerating atherosclerosis (50). In contrast, FTO increases

ABCA1 and ABCG1 expression by phosphorylating AMPK,

thereby enhancing cholesterol efflux and hindering disease

progression (53).
4 Current status of m6A modification-
based treatment options

Recently, m6A modification has played a significant role in the

characterization of macrophage metabolic reprogramming and has

been identified as an important therapeutic target for macrophage-

related inflammatory diseases. Drugs that directly affect m6A

modification or the activity of m6A-modifying proteins are used

to modulate macrophage activation, polarization, and inflammatory

responses. For example, Hua Tuo Zai Zao Wan (HTZZW) reduces

the m6A levels in macrophages by inhibiting METTL3 and

METTL14, leading to destabilization and downregulation of NF-

kB mRNA, which suppresses macrophage polarization toward the

M1 phenotype, effectively alleviating atherosclerosis (28). Coptisine

(COP) increases macrophage m6A methylation by upregulating

METTL14, enhancing TSC1 mRNA stability, inhibiting M1

polarization, and promoting M2 polarization, effectively

alleviating ulcerative colitis (49). Astragalus mongholicus

polysaccharides (APS) counteract the LPS-induced elevation of

m6A levels in macrophages by inhibiting WTAP. This prevents

WTAP-mediated p65 nuclear translocation, reducing IL-6

e x p r e s s i o n and a l l e v i a t i n g ma c r oph a g e -med i a t e d

inflammation (52).

Moreover, several specially designed small-molecule inhibitors,

which exhibit good specificity and regulatory properties, are easy to

synthesize and modify, showing promising translational potential in

macrophage-related inflammatory diseases. For instance, the
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METTL3 inhibitor STM2457 suppresses the inflammatory

response of M1 macrophages by inhibiting the LPS-induced NF-

kB signaling pathway, thereby reducing the incidence of bone

marrow inflammation in mice (115). The METTL3 inhibitors

F039-0002 and 7460-0250 specifically inhibit METTL3 activity in

macrophages, regulating glucose metabolic reprogramming and

significantly alleviating intestinal inflammation (36). In lung

macrophages (MH-S), treatment with the METTL3 inhibitor 3-

deazaadenosine (DAA) nearly restores the elevated levels of

circN4bp1 induced by LPS stimulation to normal, inhibiting M1

macrophage activation and improving the prognosis of septic

patients (26). Conversely, the FTO inhibitor FB23-2 exacerbates

the inflammatory response, lung injury, and iron dysregulation in

ALI mice (54). Other METTL3 inhibitors include UZH1a and

UZH1b (116), RM3, and RSM3 (117); other FTO inhibitors

include CS1 and CS2 (118), R-2HG (119), and MA (120); and

other ALKBH5 inhibitors include IOX3 (121), Ena15 and

Ena21 (122), Cpd 20m (123), and DDO-2728 (124) have also

been developed. The efficacy of these inhibitors in treating

macrophage-r e l a t ed inflammatory d i seas e s requ i re s

further investigation.

While small molecule inhibitors have a high potential for

clinical translation, their long-term safety and side effects require

additional validation. Nanoparticle (NP) drug delivery systems may

help to enhance small molecule inhibitor specificity and safety. For

example, red blood cell microvesicles can deliver STM2457 to

activated monocytes, inhibiting NF-kB signaling-specific

inflammation. This method is used to treat monocyte

inflammation and fibrosis related to cardiac remodeling

associated with device implantation (125).

miRNAs and siRNAs are also delivered by NPs to alter

macrophage activation and polarization. For instance, miR-1208

in hucMSCs-EVs regulates the m6A levels of NLRP3 mRNA,

preventing the activation of the NLRP3 inflammasome and

inhibiting pro-inflammatory factors in macrophages, thereby

slowing the progression of knee osteoarthritis (126). NPs can also

encapsulate METTL3, METTL14, SPRED2 mRNA, or IRAKM

siRNA, specifically targeting TAMs and reprogramming them

from an M2 to an M1 phenotype, thus remodeling the tumor

microenvironment (TME) (127).
5 Conclusion

This article reviews recent findings on the role of m6A

modification in macrophage metabolic reprogramming. In

macrophages stimulated with LPS, oxLDL, or other pro-

inflammatory factors, metabolic stress can induce abnormal m6A

methylation and alter the expression of m6A-regulating proteins.

Conversely, m6A modification can directly impact key enzymes,

transporters, and transcription factors in various metabolic

pathways, influencing macrophage polarization and the

progression of inflammation. However, m6A-related studies have

predominantly focused on modulating metabolic enzymes

indirectly via transcription factors, such as HIF-1a involved in

glycolysis. This highlights the need for more research directly
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targeting specific metabolic enzymes. In particular, studies on how

m6A regulates the two breakpoints in the TCA cycle are also

limited, indicating that several mechanisms remain to be elucidated.

To address these gaps, future research should prioritize

uncovering how m6A modification directly regulates specific

metabolic enzymes in macrophages, including key players in

glycolysis, lipid metabolism, OXPHOS, and the TCA cycle.

Furthermore, studying the interplay between m6A modification and

the cellular microenvironment, including factors like hypoxia and

nutrient availability, will enhance our understanding of m6A’s broader

regulatory roles. Finally, developing new m6A-targeting small-

molecule inhibitors will offer a promising strategy for therapeutic

interventions in macrophage-driven inflammatory diseases.
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