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Certain insect-specific viruses (ISVs), specifically the mosquito alphaviruses, Eilat and

Yada Yada viruses, and orthoflaviviruses, Binjari, Aripo, YN15-283-02 and Chaoyang

viruses, have emerged as potential platforms for generation of whole virus vaccines

for human and veterinary applications. These ISVs are remarkably tolerant of the

substitution of their structural polyproteins with those of alphaviruses and

orthoflaviviruses that are pathogenic in humans and/or animals. The resulting ISV-

based chimeric vaccines have been evaluated in mouse models and have

demonstrated safety and efficacy in non-human primates, crocodiles and pigs.

Targets include chikungunya, Venezuelan and eastern equine encephalitis, dengue,

Zika, yellow fever, Japanese encephalitis and West Nile viruses. ISV-based chimeric

vaccines provide authentically folded tertiary and quaternary whole virion particle

structures to the immune system, a key feature for induction of protective antibody

responses. These vaccines are manufactured in C6/36 or C7-10 mosquito cell lines,

where they grow to high titers, but they do not replicate in vertebrate vaccine

recipients. This review discusses the progress of these emerging technologies and

addresses challenges related to adjuvanting, safety, and manufacturing.
KEYWORDS

vaccine, arbovirus, Eilat virus, Binjari virus, Yada Yada virus, Aripo virus, YN15-283-02
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1 Introduction

The WHO announced the Global Arbovirus Initiative in 2022 in response to the

growing concerns over expanding outbreaks of arboviral diseases (1), which are primarily

caused by pathogenic viruses in the genus Alphavirus (family Togaviridae) and the genus

Orthoflavivirus (family Flaviviridae) (2). Urbanization, globalization, human mobility, and

climate change, with the ensuing expansion of mosquito vectors, are all anticipated to

increase the global burden of arboviral diseases (1, 3). A key intervention has been the

development of vaccines (2) and herein we describe an emerging set of technologies that
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use mosquito alphaviruses and orthoflaviviruses to generate

chimeric arboviral vaccines for human and veterinary applications.

Insect-specific viruses (ISVs) are viruses that replicate only in

insects, and are distinct from arboviruses, which can replicate both

in arthropod vectors (including insects) and vertebrate animal hosts. A

range of factors prevent ISVs from infecting vertebrate cells, with such

restriction occurring at various stages in the replication cycles (4–11).

ISVs arguably represent the dark matter of virology, with vast numbers

of ISVs identified by metagenomics (12–17), but only a few isolated

and their behavior studied in vivo and in vitro (18). Studies so far

indicate that ISVs are generally transmitted vertically from infected

females to their offspring via the eggs (9, 19). Some ISVs appear to

exhibit a narrow host range, with, for instance, some mosquito ISVs

reported to infect only a limited number of mosquito species (12, 20,

21). ISVs are being explored as potential biological control agents for

insects that threaten agricultural crops (22). Of some interest has also

been the infection of mosquitoes with certain ISVs in order to inhibit,

via various mechanisms, replication of pathogenic arboviruses in those

mosquitoes (2, 23–26). However, herein we focus on six ISVs from

mosquitoes, specifically, two alphaviruses, Eilat virus (EILV) and Yada
Frontiers in Immunology 02
Yada virus (YYV) and four orthoflaviviruses, Binjari virus (BinJV),

Aripo virus (ARPV), YN15-283-02 virus and Chaoyang virus (CYV).

For these ISVs, their structural genes can be exchanged with the

structural genes from a range of pathogenic alphaviruses and

orthoflaviviruses, respectively. A resulting chimeric virus would thus

encode the structural proteins of a pathogenic arbovirus and the non-

structural polyproteins of one of the aforementioned ISVs. These

chimeric viruses are able to replicate efficiently in mosquito cell lines,

but are unable to replicate in vertebrate cells. This has allowed the

development of a range of ISV-based chimeric vaccines for a number of

arboviral diseases (Figure 1).

A series of chimeric vaccines based on EILV, YYV, BinJV, ARPV,

YN15-283-02 and CYV have now been described. They are

manufactured in mosquito cell lines and resemble virus-like-particle

(VLP) vaccines, as they essentially represent whole-virus, protein-based

vaccines that cannot generate viral progeny in vertebrate vaccine

recipients (Figure 1). They differ from VLP vaccines (27) in that they

contain a fully functioning viral genome that is replication competent

in mosquito cells. ISV-chimeric vaccines also differ from licensed live-

attenuated orthoflavivirus chimeric virus vaccines such as Imojev, for
FIGURE 1

Mosquito-derived ISVs used to generate chimeric virus vaccines against pathogenic alphaviruses and orthoflaviviruses. The mosquito alphaviruses,
Eilat virus and Yada Yada virus, and the mosquito orthoflaviruses, Binjari virus, Aripo virus, YN15-283-02 and Chaoyang virus have been used to
generate chimeric viruses encoding the structural polyproteins of pathogenic alphaviruses (C-E3-E2-6K-E1) and orthoflaviviruses (CprME),
respectively. The chimeric viruses replicate to high titers in mosquito cell lines to produce authentically folded virion particles that can be used as
whole-virion vaccines that have provided protective immune responses in a number of animal species. (?) - YN15-283-02 was derived from midge
(Culicoides) samples, but the virus was described as a mosquito orthoflavivirus.
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Japanese encephalitis virus (JEV) and Dengvaxia for dengue virus

(DENV), which are replication competent in vaccine recipients. The

latter encode the structural proteins of JEV and DENV, but are

attenuated as they encode the non-structural proteins of the yellow

fever virus (YFV) 17D vaccine strain (2). An experimental chimeric

live-attenuated alphavirus vaccine has also been reported for

Venezuelan Equine Encephalitis virus (VEEV), and encodes the

structural proteins of VEEV (TC-83 vaccine strain) and the non-

structural proteins of Sindbis virus (28). Thus, chimeric vaccines for

alphaviruses and orthoflaviviruses are well described; however, in

contrast to the aforementioned live-attenuated chimeric vaccines,

ISV-based chimeric vaccines are naturally replication-defective in

vaccine recipients as the ISV RNA replication complex, encoded by

the non-structural proteins, is non-functional in vertebrate cells. Like

many VLP vaccines [e.g. (29, 30)], ISV-based chimeric vaccines present

authentically folded structural proteins of the pathogenic arboviruses to

the immune system and thereby promote induction of effective

neutralizing antibody responses (2).

Herein we describe the ISV-based chimeric vaccine

technologies and focus on the immunological issues associated

with these technologies including potential self-adjuvanting

activity, formulation with adjuvants, provision of authentic

tertiary and quaternary structures, safety issues and manufacturing.
2 The ISV-based chimeric virus
vaccine platforms

2.1 The Eilat virus platform for alphavirus
vaccine development

Eilat virus (EILV) is an alphavirus isolated from a pool of

Anopheles coustani mosquitoes from the Negev desert of Israel (31)

and arguably represents the “poster child” for using ISV chimeras for

vaccine development (32, 33). Standard cloning methodology, using an
Frontiers in Immunology 03
infectious cDNA clone of EILV, was used to generate the EILV

chimeras with the structural polyprotein (C-E3-E2-6K-E1) of

pathogenic alphaviruses replacing those from EILV to generate

chimeric viruses (Figure 1) (32, 34). These chimeric viruses are

unable to replicate in vertebrate cells even after electroporation of

chimeric RNA genomes into vertebrate cell lines. Furthermore, no

overt adverse outcomes were seen even after intracranial injections into

Ifnar-/- mice (35).

A number of chimeras were generated including, Mayaro virus

(EILV/MAYV), o’nyong-nyong virus (EILV/ONNV), Sindbis virus

(EILV/SINV) and western equine encephalitis virus (WEEV) (32).

In addition, EILV-based chimeric viruses have been evaluated as

vaccines for Venezuelan equine encephalitis virus (EILV/VEEV),

eastern equine encephalitis virus (EILV/EEEV) (33), and

chikungunya (EILV/CHIKV) (35, 36). These vaccines, without

adjuvant formulation, provided protection against challenge in

mouse and non-human primate (NHP) models after a single

immunization (Figure 1, Table 1, Supplementary Table 1).
2.2 The Yada Yada virus platform for
alphavirus vaccine development

Yada Yada virus (YYV) was initially identified by metagenomic

sequencing of mosquitoes trapped as part of the Victorian

Arbovirus Disease Control Program (Australia) in 2016 (37).

YYV shows a 75.7% amino acid identity with EILV (37)

(GenBank QGR15363.1). Infectious YYV was generated using

circular polymerase extension reaction (CPER) methodology, with

transfection of C6/36 cells (38). In brief, CPER involves stitching

together overlapping synthetic dsDNA fragments covering the

complete viral genome, with a circularizing linker fragment

containing a promoter for transcribing viral RNA in cells.

Replicating virus is then recovered after direct transfection of

CPER into mammalian or insect cells capable of supporting
TABLE 1 Eilat virus (EILV) chimeric vaccines for pathogenic alphaviruses evaluated in mice and NHPs.

Pathogenic
alphavirus

Chimera Animal
Dose, route
of administration

Adjuvant Readouts Ref

Chikungunya
virus (99659)

EILV/CHIKV

Mice: young C57BL/6
8.8 log10PFU live or
formalin-inactivated s.c.

No adjuvant

Neutralizing antibodies, CD8 T
cells. Protection
against challenge (35)

Mice: adult Ifnar-/-
8.5 log10PFU live or
formalin-inactivated s.c.

Neutralizing antibodies.
Protection against challenge.

Mice: C57BL/6 104-108 PFU i.p
IgM and IgG antibodies,
memory B cell and CD8+

T cells
(34)

NHPs (Macaca fascicularis)
1.3 x 106 or 1.3 x 108

PFU i.m.

Neutralizing anti-bodies, B and
T cells, RNA-Seq. Adopted
transfer protection in mice.

(36)

Venezuelan equine
encephalitis virus

EILV/VEEV Mice: CD-1 108 PFU s.c.
Neutralizing antibodies.
Protection against challenge

(33)
Eastern equine
encephalitis virus

EILV/EEEV Mice: CD-1 108 PFU s.c.
Neutralizing antibodies.
Protection against challenge.
fro
Please see Supplementary Table 1 for details
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replication (8, 39–42). A simplified schematic explaining the CPER

methodology is provided in Supplementary Figure 1.

CPER was used to generate YYV chimeric viruses, with the

structural polyprotein of YYV replaced with those from pathogenic

alphaviruses. The chimeras included CHIKV (YYV/CHIKV), SINV

(YYV/SINV), as well as Ross River virus (YYV/RRV) and Barmah

Forest virus (YYV/BFV) (Figure 1), with both YYV and the YYV-

chimeras unable to replicate in vertebrate cell lines (38). RRV and BFV

are Australasian arthritogenic alphaviruses with symptoms similar to,

but usually less severe than, CHIKV (43–45). An inactivated whole

virus RRV vaccine was previously shown to be well tolerated and

immunogenic in a phase 3 human trial (46). The YYV/CHIKV

chimera (38) is currently undergoing evaluation as a vaccine to

protect against CHIKV in an adult wild-type mouse model (47).
2.3 The Binjari virus platform for
orthoflavivirus vaccine development

Binjari virus (BinJV) was isolated in 2016 from a pool of Aedes

normanensis mosquitoes trapped at the Bradshaw Field Training
Frontiers in Immunology 04
Area (Northern Territory, Australia). The sequence (GenBank;

MG587038) illustrated that BinJV grouped with the lineage II

insect-specific flaviviruses (5, 48). BinJV chimeric virus vaccines

were generated using the CPER methodology, with the prME

genes of BinJV replaced with the prME genes of pathogenic

orthoflaviviruses (Figure 1), with both BinJV and the BinJV-

chimeras unable to replicate in vertebrate cell lines (48). BinJV-

based chimeric vaccines have now been generated for a range of

pathogenic flaviviruses and evaluated in mouse models, crocodiles

and pigs (Table 2; Supplementary Table 2).

Farmed crocodiles in Africa (Crocodylus niloticus) and Australia

(C. porosus) and alligators (Alligator mississippiensis) in the USA

can be infected by West Nile virus (WNV), with an outbreak of

severe neurological disease reported in an alligator farm in Florida

in 2002 (49). In Australia, farmed saltwater crocodiles (C. porosus)

can develop dark spotted “pix” skin lesions, which results in loss of

value or rejection of the hides. These lesions arise from infection

with Kunjin virus, the Australian strain of WNV, which shows low

virulence or is non-pathogenic in humans (50), but affects horses

and crocodiles (51, 52). Two intra-muscular (i.m.) vaccinations of

hatchling crocodiles with BinJV/WNVKUN vaccine resulted in no
TABLE 2 Binjari virus (BinJV) chimeric vaccines for pathogenic orthoflaviviruses evaluated in mice, crocodiles and pigs.

Pathogenic
flavivirus

Chimera Animal
Dose, route
of
administration

Adjuvant Readouts Ref

Zika virus (Natal) BinJV/ZIKV

Mice: Male Ifnar-/- 2 µg and 20 µg i.m.
AddaVax
(InvivoGen)
or unadjuvanted ELISA and neutralizing antibody

titers.
Protection against challenge.

(48)

Mice: Female Ifnar-/-
2x 10 µg and 20
µg i.m.

AddaVax
(InvivoGen)
or unadjuvanted

Mice
Pregnant Ifnar-/-

1x 20 µg i.m. No adjuvant
Antibodies as above. Protection
against fetal brain infection &
fetal abnormalities

(198)

Mice: Female Ifnar-/- 1x 10 µg i.m. No adjuvant
Antibodies at 14 m and protection
from challenge at 15 m.

(139)

West Nile
virus (WNVKUN)

BinJV/WNVKUN
Mice: Male and
female CD1

Live or UV
inactivated,
2x 1 µg and
1x 5 µg s.c.

Advax (Vaxine Pty
Ltd)
or unadjuvanted

ELISA and neutralizing antibody
titers.
Protection against
WNVNY99 challenge

(106)

Dengue virus
(DENV2 D220)

BinJV/DENV2 Mice: Female AG129

1x and 2x micro-
array patch.
Also 3x 1 µg s.c.
or i.d.

No adjuvant
on patch.

ELISA and neutralizing antibody
titers.
Protection against challenge.

(68)

Yellow fever virus
vaccine strain
(YFV 17D)

BinJV/YFV17D Mice: Female Ifnar-/-
2x 5 µg, 10 µg or 20
µg of i.m.

MPLA/QS-21
Neutralizing antibodies. Protection
against challenge.

(199)

Japanese encephalitis
virus (JEVNSW/22)

BinJV/JEVNSW/22

Mice: Female
C57BL/6J
and Ifnar-/-

2 x 1 µg i.m No adjuvant
Neutralizing antibody titers.
Protection against challenge.

(54)

Young pigs (manuscript in preparation)
Antibodies. Protection
against challenge.

(55)

West Nile virus (Kunjin) BinJV/WNVKUN
4 month hatchling
saltwater crocodiles

2x 10 µg live or UV-
C inactivated i.m.

With and without
Advax

Neutralizing antibodies. Protection
against WNV skin lesions

(52)
frontier
Please see Supplementary Table 2 for details.
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detectable skin lesions after WNVKUN challenge (52) (Table 2;

Supplementary Table 2).

An unprecedented outbreak of JEV genotype IV occurred in

humans (45 cases, 7 deaths) and pigs (>80 piggeries) in Australia in

2022 (53). Although sera from Imojev (genotype 3) vaccinated

humans cross-reacted with a virus isolated from the 2022 outbreak

(JEVNSW/22), JEVNSW/22 was neutralized at significantly lower

serum dilutions when compared with genotype 3 JEV isolates

(53). This prompted the generation of a BinJV/JEVNSW/22 vaccine,

which showed efficacy in a mouse model (54), with a media release

also reporting a successful trial of this vaccine in pigs (55).
2.4 The Aripo virus platform for
orthoflavivirus vaccine development

Aripo virus (ARPV) was isolated from Psorophora albipes

mosquitoes collected in Trinidad in 2008 (56) (Figure 1). A

chimeric ARPV/ZIKV vaccine was unable to replicate in

vertebrate cells (57) and vaccination of C57BL/6J dams resulted
Frontiers in Immunology 05
in protection of the ~4 week old offspring from ZIKV challenge (58)

(Table 3; Supplementary Table 3). A follow-up study suggested that

antibodies played the primary role in protection mediated by the

ARPV/ZIKV vaccine, with cell mediated responses playing a minor

role (59).
2.5 The YN15-283-02 virus platform for
orthoflavivirus vaccine development

YN15-283-02 is a mosquito orthoflavivirus that was identified

by sequencing the supernatant of C6/36 cells inoculated with a

midge homogenate collected in Yunnan, China, with virus

recovered using an infectious clone (60). A chimeric YN15-283-

02/WNV vaccine was constructed, harvested from the supernatants

of infected C6/36 cells, and used to vaccinate C57/BL6 mice. The

mice generated Th1 biased antibody responses and were protected

fromWNV challenge (61) (Table 3; Supplementary Table 3). YN15-

283-02/WNV was unable to replicate in vertebrate cells and was

also non-pathogenic in Ifnar-/- mice (61).
TABLE 3 Aripo virus (ARPV), YN15-283-02 virus and Chaoyang virus chimeric vaccines for pathogenic orthoflaviviruses evaluated in mice.

Pathogenic virus Chimera Animal
Dose, route
of
administration

Adjuvant Readouts Ref

Zika virus
(DakAr D)

ARPV/ZIKV

Mice: 4 week IFNa/bR-/-

109 genome copies
(GC) s.c.

No adjuvant

Neutralizing antibodies.
Protection against challenge

(57)Mice: 4 week C57BL/6

Neutralizing antibodies.
Protection against challenge.
CD8 and CD4 T
cell responses.

Mice: dams IFNa/bR-/-
Neutralizing antibodies.
Protection against challenge

Mice: 4 week C57BL/6J 108 to 1012 GC s.c.

Neutralizing antibodies.
Protection against challenge
(after anti-IFNAR blocking
antibody); at 1012 GC dose

(58)

Mice: 4 week C57BL/6J
pups

Passive transfer.

Pups from vaccinated dams.
Neutralizing antibodies.
Protection against challenge
(after anti-IFNAR
blocking antibody)

Mice:
IFNa/bR-/-

Passive transfer

After transfer of serum from
vaccinated C57BL/6J mice.
Neutralizing antibodies
Protection against challenge

(59)

West Nile virus
(WNV 3356)

YN15-283-02/WNV
Mice:
C57BL/6

3 x 106 FFU i.p.
ELISA antibody titers.
Protection against challenge

(61)

Chaoyang virus
(CYV)

CYV/ZIKV

Mice: Ifnar-/- 104 FFU s.c.
Neutralizing antibodies.
Protection against challenge

(62)

Mice: Ifnar-/-
Multiple bites from
CYV/ZIKV
infected mosquitoes

Not applicable
Neutralizing antibodies.
Protection against challenge

(63)
fro
Please see Supplementary Table 3 for details.
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2.6 The Chaoyang virus platform for
orthoflavivirus vaccine development

Chaoyang virus (CYV) was initially isolated from Aedes vexans

in China, with a single CYV/ZIKV vaccination providing partial

protection from ZIKV challenge (62) (Table 3; Supplementary

Table 3). In addition, immunization of mice via bites from

mosquitoes infected with CYV/ZIKV, elicited ZIKV-specific

immune responses (increasing after 2 and 3 bites) and conferred

protection against ZIKV challenge (63) (Table 3; Supplementary

Table 3). No virus replication was detected in Ifnar-/- mice bitten by

such mosquitoes (63), and no signs of infection were seen in one

day old suckling in Ifnar-/-mice inoculated intracranially with CYV/

ZIKV (62).
3 Adjuvant issues for ISV-based
chimeric virus vaccines

3.1 Self-adjuvanting properties of ISV-
based chimeric vaccines?

RNA-Seq studies have suggested that ISV-based chimeric

vaccines may mediate self-adjuvanting properties via the

induction of type I interferon (IFN) responses, triggered via Toll-

like receptors (TLRs) and RIG-I (DDX58) (34, 36, 56, 64). TLR and

RIG-I agonists, primarily via induction of type I IFNs, are well

known to provide adjuvant activity (65–67). Several reports of

effective immune response generation without formulation of

ISV-based chimeric vaccines with adjuvants (Tables 1-3;

Supplementary Tables 1-3) would appear to support the

contention of self-adjuvanting activity. However, although

purification processes have been developed (34, 68), to date these

vaccines have not been shown to have been purified to Good

Laboratory Practice (GLP) or Good Manufacturing Practice

(GMP) standards. Given they are isolated from supernatants of

infected insect cell lines, contamination with material from infected

cells (69) or cell debris is likely, although cytopathic effects in

infected insect cell lines may be moderate rather than overt (70, 71).

Contaminants with TLR-stimulating activity might include mRNA

and genomic/mitochondrial DNA from the insect cell line, as well

as unencapsidated chimeric viral genomic single-stranded RNA

(ssRNA), subgenomic RNA, and/or double-stranded RNA

(dsRNA) replication intermediates. RNA-Seq data and subsequent

bioinformatic analyses would be unable convincingly to distinguish

between stimulation of type I IFN stimulated genes (ISGs) via TLR-

stimulating contaminates versus true self-adjuvanting activity, such

as might be mediated by stimulation of cytoplasmic sensors (like

RIG-I). The two pathways induce an extensively overlapping set of

ISG mRNAs.

Notwithstanding the aforementioned issues, delivery of ISV-

based chimeric vaccine ssRNA into the cytoplasm of vertebrate cells

would appear likely, although no clear viral RNA replication has

been detected in wild-type vertebrate cells (5, 6, 10, 33, 35, 48, 52).

Capping of viral RNA substantially reduces RIG-I stimulation (72).
Frontiers in Immunology 06
However, as many alphavirus virions can contain uncapped ssRNA

genomes (73), incoming viral nucleocapsids containing viral RNA

with exposed 5′-triphosphates may trigger RIG-I, without the

requirement for viral RNA synthesis/replication (74). Whether a

significant proportion of incoming orthoflavivirus chimeric vaccine

RNA genomes would be uncapped remains unclear. Other sensors

like Protein Kinase R (PKR) and ZAP could also detect cytoplasmic

vaccine ssRNA. ZAP binds ssRNA rich in CpG dinucleotides (11,

75) and potently promotes RIG-I signaling (76), with CpGs present

with relatively high frequencies in ISVs (10, 77). PKR recognizes

short (∼15 bp) stem-loop RNA structures containing flanking

ssRNA sequences (78), which are present in alphaviral and

orthoflavivirus genomes, both in the untranslated (79–82), and

likely also in the translated regions of the genomes (83). PKR has a

role in NLRP3 inflammasome activation (84, 85), a pathway also

stimulated by aluminium-based adjuvants (86). PKR stimulation

also stabilizes IFNb mRNA, thereby promoting type I IFN

responses (87). Also conceivable is stimulation of TLR7, although

this would require release of encapsidated vaccine ssRNA from the

virion (presumably within or into an endosome), RNA processing,

and then access of the products to TLR7 in endosomes (88).

In summary, self-adjuvant activity arising from genomic ssRNA

delivered by ISV-based chimeric vaccines can be envisaged.

However, this has yet to be formally distinguished from

immunostimulatory contaminants by illustrating that purified

material produced to GLP/GMP standards, retains adequate self-

adjuvanting activity.
3.2 Formulation with adjuvants

ISV-based chimeric vaccines provide authentically folded virus

particle immunogens to the immune system, much like many

established VLP-based vaccines. Most VLP vaccine products

currently in the market are adjuvanted (89, 90), and some pre-

clinical studies on BinJV-based chimeric vaccines have also used

adjuvant formulations (Table 2). For instance, formulation of the

BinJV/WNVKUN vaccine with Advax slightly improved neutralizing

antibody titers in crocodiles, although this did not reach

significance (52). A baculovirus manufactured COVID-19 vaccine

formulated with Advax, SpikoGen, recently received marketing

authorization in Iran (91).

Adjuvants provide dose sparing (less immunogen thus required

per dose), with the cost of immunogen manufacture often relatively

high for cell culture-derived VLP-based vaccine products (92). Cost

considerations are amplified for livestock vaccines, where, despite

their clear benefits (93), commercial cost-benefit calculations

usually require livestock vaccines to be considerably cheaper than

human vaccines. In addition to standard aluminium-based

adjuvants (94), new adjuvants for human use and applied to VLP

vaccine products (90) have emerged in recent years and include

MF59 (95) and the AS0 series (GSK) (e.g. Cervarix, AS04) (96). New

adjuvants for livestock products include (i) ImpranFLEX, a

proprietary water-based polymer adjuvant used in Ciroflex

(Boehringer Ingelheim), a baculovirus-generated VLP product for
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porcine circovirus type 2, (ii) light liquid paraffin used in Porcilis

PCV (Intervet), a baculovirus-generated VLP vaccine for porcine

circovirus type 2 (97), (iii) Emulsigen (MVP adjuvants), a new oil-

in-water adjuvant that has USDA approval for use in pigs, and (iv)

Montanide adjuvants (SEPPIC) approved in the EU.
4 Inactivation of ISV-based chimeric
virus vaccines?

An ISV-based chimeric vaccine would be viewed as a

Genetically Modified Organism (GMO) in most regulatory

environments. A series of potential ensuing risks can be perceived

after release of these organisms into the environment (see below),

with a range of varied restrictions applied in different countries (98,

99). To avoid such risks, ISV-based chimeric vaccines have been

inactivated using traditional methods such as formalin fixation (35,

55), UV-irradiation (52) or X-ray irradiation (63). The former

clearly reduced induction of neutralizing antibody responses to

EILV/CHIKV chimeras, with formalin fixation preventing cell entry

(35) and reducing immunogenicity (100) by inter alia irreversibly

modifying lysine residues [discussed in (101)]. Nevertheless,

formalin inactivated ISV-based chimeric vaccines, just like many

formalin-inactivated whole virus vaccine products (2), can provide

protective immune responses (35, 55). Manufacturing and

regulatory processes for formalin inactivation of whole virus

vaccines are also well established (102). UV-inactivation of RNA

viruses is primarily achieved through uracil and cytosine dimer

formation (103). However, irradiation technologies are still

primarily in the research and development phase for whole virus

vaccines (104, 105) and are not currently used for commercial

whole arbovirus vaccine products (2). Delivering the correct

irradiation dose safely, evenly and consistently during large scale

manufacture (i.e. enough to inactivate, but not too much to damage

immunogenicity) represent challenges for these processes. For

instance, although a UV-inactivated BinJV/WNVKUN vaccine still

afforded protection in mice, neutralizing antibody levels induced by

the UV-inactivated vaccine were significantly reduced (106).

Arguably, inactivation of ISV-based chimeric vaccines negates a

key advantage of this technology as these vaccines are already

intrinsically “inactive”, being unable to replicate in vertebrates.

Avoiding the down-stream processes for inactivation and

validation of inactivation protocols should represent a key

advantage for these ISV-based technologies. Inactivation would

remove the GMO classification, and thus the ensuing regulatory

hurdles (99), as in most jurisdictions an organism would be defined

(in this context) as a replication competent entity. Environmental

risks of dissemination and recombination would clearly also be

removed by inactivation. However, it should be noted that use of

replication competent GMOs as vaccine products is already well

established, with a number of licensed live-attenuated arboviral

vaccines classed as GMOs e.g. (i) Ixchiq (Valneva), the recently

approved CHIKV vaccine that has a 186 nucleotide (62 amino acid)

deletion in nsP3, (ii) Imojev (Sanofi), a JEV vaccine, which has the

non-structural proteins from YFV 17D, (iii) Dengvaxia (Sanofi), a
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DENV vaccine, also with a YFV backbone, and (iv) Qdenga

(Takeda), where all four serotypes have the non-structural

proteins of DENV2. Recombinant virally vectored vaccines are

also classified as GMOs with a range of these now also licensed,

e.g. (i) Covishield (AstraZeneca) a recombinant adenovirus vaccine

for COVID-19, (ii) Raboral (Boehringer Ingelheim), a recombinant

vaccinia veterinary vaccine for rabies, and (iii) Trovac-NDV

(Boehringer Ingelheim), a recombinant fowlpox livestock vaccine

for Newcastle disease (107).
5 The role of authentic tertiary and
quaternary structures

The importance of presenting the immune system with

authentically folded arboviral vaccine immunogens is widely

recognized (92, 108), with protective antibodies often targeting

quaternary epitopes (109–111). Currently licensed orthoflavivirus

and alphavirus vaccines likely deliver antigens with authentically

folded tertiary and quaternary protein structures, facilitated by the

robust ability of orthoflavi- and alpha-viral structural polyproteins

to self-assemble into virion particles in a range of settings (2).

ISV-based chimeric vaccines are fully functional viruses in

insect cells and assemble into authentic virion particle structures

(33, 48, 61, 112). For instance, low resolution analysis of BinjV

chimeras by cryo EM revealed that the virus particles accurately

mimic the virion structure of the wild-type pathogens (112).

However, subtle differences may emerge to be important, for

instance, ortho flavivirus envelope proteins are able to “breath”,

adopting more “bumpy” versus “smooth” configurations at the

virion surface. Ensuring that an ISV-based chimeric vaccine has

the same structure or conformational dynamics as the

contemporary pathogenic orthoflavivirus being targeted by the

vaccine, may be important for optimizing vaccine efficacy (113).

Authentically folded immunogens are important for induction

of antibodies capable of high-affinity and high-avidity binding to

the target arbovirus virions and arbovirus infected cells. The

vaccine-induced antibodies can be both neutralizing and non-

neutralizing, with the latter also mediating a range of protective

activities that are generally difficult to measure in clinical trial

settings (2). Indirect evidence for a protective role for non-

neutralizing, vaccine-induced, antibodies in humans comes from

inter alia a phase III trial of Qdenga, where neutralizing antibody

titers against DENV2, DENV3 and DENV4 did not correlate with

protection (114).
6 The role of non-structural proteins
and CD8 T cell responses

For all the ISV-based chimeric vaccines the non-structural

proteins of the pathogenic arboviruses are not present as vaccine

antigens. These proteins are nsP1, nsP2, nsP3, nsP4 for

alphaviruses, and NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5 for

orthoflaviviruses (Figure 1). The ISV versions of these non-
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structural proteins are synthesized in the insect cell lines used to

manufacture the chimeric vaccines. ISV-based chimeric vaccines

also contain ssRNA chimeric genomes, which encode the non-

structural proteins of the ISV (but are not translated in vaccine

recipients) (Figure 1).

Ixchiq, the recently approved, live-attenuated CHIKV vaccine,

would present CHIKV nsPs to vaccine recipients, whereas this

would not occur for non-replicating VLP-based or ISV-based

chimeric vaccines. Anti-nsP responses likely do not play a

significant role in protection against pathogenic alphavirus

infections, a contention supported inter alia by successful phase 3

trials recently reported for an aluminum hydroxide adjuvanted,

CHIKV VLP vaccine (115). Anti-alphaviral CD8 T cell responses

may play a minor role in protection, but they are generally viewed as

secondary to antibody responses (116–120). CHIKV appears able to

evade surveillance by antiviral CD8 T cells, in part, by nsP2-

mediated disruption of MHC-I antigen presentation (121).

Nevertheless, induction of CD8 T cells was shown for the EILV/

CHIKV vaccine in mice (34) and NHPs (36), and for the ARPV/

ZIKV vaccine in mice (59), suggesting that these vaccines can infect

and endosome escape, thereby delivering structural protein antigens

into the MHC-I processing pathway (122).

In contrast to alphaviruses, protective immune responses

directed at orthoflaviviral non-structural proteins, in particular

NS1, are well described, with a number of groups pursuing the

development of NS1-based vaccines (123–127). Although cross-

reactivity of anti-ZIKV NS1 responses with self has been described

(128), a causal link to autoimmune disease (129) has yet to be

established (130, 131). NS1 proteins of flaviviruses show a degree of

sequence homology (132), so live attenuated vaccines such as

Dengvaxia (Sanofi) and IMOJEV (Sanofi Pasteur) with a YFV

17D backbone, would likely induce anti-NS1 responses capable of

cross-reacting with DENV and JEV NS1 proteins, respectively.

Qdenga (Takeda), with a DENV2 backbone, would arguably

induce better anti-DENV NS1 responses (2), as sequence

homologies between NS1 from DENV2 versus DENV1, 3 and 4

are more substantial (132). However, even if anti-NS1 protein

responses can mediate effective protection, a number of licensed

orthoflavivirus vaccines achieve adequate protection without

inducing such responses, specifically, the inactivated vaccines for

(i) JEV, Ixiaro (Valneva), (ii) tick-borne encephalitis virus, Encepur

(Bavarian Nordic), and (iii) West Nile virus, Innovator (a horse

vaccine from Zoetis). An inactivated virus vaccine for ZIKV was

also recently shown to be effective in pregnant marmosets (133).
7 Induction of long-term protective
immune responses

An ideal characteristic for many alphavirus and orthoflavivirus

vaccines would be provision of long-term protective immunity, an

issue particularly pertinent for human vaccines in resource poor

settings, although clearly less of an issue for short-lived livestock.

Perhaps a standout is the YFV 17D vaccine, which provides

life-long immunity in humans after a single vaccination (134).
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Non-replicating, protein-based vaccines are often viewed as

providing poor long-term protection. However, this is not entirely

accurate with, for instance, the whole-virion-based, formalin

inactivated, aluminium hydroxide adjuvanted, hepatitis A vaccine

providing protection for >20 years, and the VLP-based, aluminium

hydroxide adjuvanted, human papilloma virus vaccine (Gardasil),

providing protection for up to 14 years (135). The current COVID-

19 mRNA vaccines would appear to perform poorly with respect to

durability of protective responses, with neutralizing antibody

responses waning within 6 months (136). However, this may be

related to an inability to generate spike-specific, long-lived plasma

cells (137). The durability of protection after vaccination with

mRNA vaccines against arboviruses has yet to be evaluated (138).

The same goes for ISV-based chimeric vaccines, and may depend on

the choice of adjuvant. Perhaps encouraging, a single dose of a

BinJV/ZIKV vaccine, with no adjuvant formulation, provided

protective immunity in Ifnar-/- mice for 15 months (139).
8 Vaccine manufacture

Manufacture of human and animal vaccines need to adhere to a

series of production and quality control standards, with

requirements for human vaccines considerably more onerous

than for animal vaccines (140, 141). The number of cell lines

available for manufacture of human products is limited, but

include CHO (142), HEK293 (143) and Vero cells (144), as well

as baculovirus systems that use insect cells from Spodoptera

frugiperda (armyworm moth) (29, 145). However, to date, no

large-scale vaccine production systems have been developed for

mosquito cell lines. A desirable property of C6/36 cells is that they

do not contain adventitious viruses (146), with such agents having

caused problems for human and veterinary vaccine products in the

past (147, 148). Another desirable property of ISV-chimeric virus

vaccines is that they often grow to higher titers in insect cell lines

than their parental viruses (34), with, for instance, the BinJV/ZIKV

chimera produced yields of up to ~109.5 CCID50/mL or ~7 mg/liter

(48). Production and purification of EILV/CHIKV vaccine in C7-10

cells has been described, with culture in serum free medium for 18 h

before harvest, followed by Cellufine sulfate column and then

sucrose gradient purification (34). This purified vaccine, delivered

once i.m. at up to 1.3 x 108 PFU, showed no overt adverse effects in

NHPs (36). Manufacturing and purification processes for BinJV

chimeric vaccines have also been developed and involve growth in

C6/36 cells and purification by density gradient centrifugation (54,

68). A serum free, suspension culture system was recently described

for production of BinJV chimeras in C6/36 cells, representing an

important step in the development of a scalable manufacturing

system (149).

A number of critical steps remain for development of human

ISV-based vaccines. These include (i) regulatory clearance for a

master cell bank of a suitable mosquito cell line, (ii) characterization

of impurities and development of GLP/GMP vaccine production

and purification processes, (iii) identification of suitable excipients

and storage protocols that preserve vaccine immunogenicity, and
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(iv) development of quality control processes to monitor vaccine

production. Thereafter, phase I human trials, which primarily

determine safety, might be initiated. For veterinary vaccines,

depending on the animal species, a priority is often cost-

effectiveness, so manufacturing costs will generally need to be

low (150).
9 Safety considerations

9.1 Reversion to virulence

Reversion to virulence for ISV-based chimeric vaccines is

unlikely as ISV replication is blocked or restricted at various

levels in the vertebrate host (4–8). Viral proteins have evolved to

interact with various host proteins to promote efficient replication,

and to interfere with the hosts anti-viral responses (151–153). These

virus-host interactions (or interactomes) are often quite species

specific, with, for instance, some ISVs only replicating in a limited

number of mosquito species (12, 20, 21). The probability of ISV

non-structural proteins undergoing extensive mutations to

overcome the multiple restrictions (4–11) and provide an ISV-

based chimeric vaccine with the capacity to replicate in vertebrate

vaccine recipients with any degree of efficiency, might thus be

viewed as extremely low.
9.2 Mosquito cell line derived impurities as
potential allergens

Mosquitos are found on every continent of the world except

Antarctica, with over half the world’s population at risk from

diseases spread by mosquitoes (154). Individuals bitten by

mosquitoes are exposed to mosquito allergens that are present in

the mosquito saliva and injected into the skin by mosquitoes taking

a blood meal. Saliva proteins, once injected, generally stimulate a

series of acute immune responses (155–158) and induce a local itch

response that usually involves IgE-mediated hypersensitivity (159).

Local allergic reactions to mosquito bites are usually clinically mild

and self-limiting, but in certain individuals can be more severe. For

instance, Skeeter syndrome, arising from IgE and IgG responses

against mosquito saliva, can occur in immunocompromised

individuals, resulting in large local inflammatory reactions,

occasionally accompanied by fever and, more rarely,

lymphadenopathy (159, 160). However, few, if any, human deaths

have occurred as a result of anaphylactic shock caused by a

mosquito bite (161). In addition, salivary gland proteins are being

considered as potential vaccines for mosquito borne diseases (to

induce IgG rather than IgE responses) (162).

C6/36 and C7-10 cells are derived from Aedes albopictus larvae,

and likely share allergens (or contain immunologically cross-

reactive allergens) with mosquito saliva proteins, as supernatants

from C6/36 cultures injected into human skin can induce

hypersensitivity and anaphylactic reactions (163). Unfortunately,

no C6/36 allergens doses (i.e. µg of protein per injection) were
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provided in this study. The EILV/CHIKV vaccine, purified by

Cellufine sulfate affinity chromatography column (AMS-BIO) and

sucrose gradient centrifugation (34), was shown to cause little or no

skin hypersensitivity reactions in mice or guinea pigs sensitized to

mosquito bites (34, 36). The level of purification and thus the

allergen dose is likely to be a central issue. For instance, pre-existing

egg allergy is no longer considered a contra-indication for modern

egg-derived influenza vaccines (164). This is not the case for the

yellow fever vaccine, which contains higher levels of egg allergens

(165). Future research will likely need to characterize the mosquito-

derived proteins that co-purify with the ISV-based vaccines, and

compare these with allergenic mosquito salivary proteins (166) in

order to better understand the potential risks. Nevertheless,

predisposition to Skeeter syndrome (and perhaps other

anaphylactic conditions) may emerge to be a contra-indication

for C6/36 and C7-10-derived vaccines.
9.3 Transmission to mosquitoes

As determined for other live attenuated arboviral vaccines, like

the YFV 17D vaccine (167, 168) and the VEEV vaccine (TC-83)

(169), the capacity of ISV-based chimeric vaccines to be transmitted

to, and by, mosquitoes may need to be characterized. Concerns

might arise from (i) introduction of a GMO into the environment

and (ii) the potential of the vaccine to interact with the mosquito

virome (see below), although both ISV and pathogenic arbovirus

genes are already present in the environment. Another potential

concern is transmission of a GMO to other humans without their

consent; however, given the small doses delivered by mosquito bites

and the absence of replication post-delivery, human welfare is

unlikely to be impacted.

As ISV-based chimeric vaccines do not replicate in the vaccine

recipient, the mosquito would need to be infected by virus from the

vaccine inoculum. The mosquito would thus need to take a blood

meal at or near the injection site and close to the time of

inoculation. The mosquito proboscis penetrates about 2-3 mm

into the skin to reach a blood capillary, whereas subcutaneous

(and certainly intramuscular) injections are usually deeper, with

dissemination into local capillaries likely to be transient. The titers

imbibed by the mosquito would also need to be high enough to

initiate infection and transmission, with a number of threshold

barriers to infection and transmission recognized for mosquitoes.

These barriers primarily regulate virus escape from the midgut,

entry into the salivary glands, replication in the salivary glands, and

release of virus into the saliva (170–172). CYV/ZIKV was able to

infect and disseminate to the saliva in Aedes aegypti, and less so in

Aedes albopictus, after artificial blood meals containing 108 FFU/mL

(63). Once initiated, amplification of ISV-based chimeric vaccines

in the mosquito might be expected, given the high titer replication

of ISV-based chimeric viruses in insect cell lines (35, 48).

Formulation of the ISV-based chimeric vaccines with adjuvants,

for instance, by adsorption onto aluminium-based adjuvants or by

formulation in emulsion adjuvants, would likely reduce the

probability of uptake and infection of mosquitoes.
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9.4 Recombination

The ability of alphaviruses to recombine is well described (173,

174), whereas orthoflaviviruses appear to have a much lower

propensity to recombine (175, 176). Recombination would

require the ISV-based chimeric vaccine and another virus to

replicate in the same cell, something which would likely only be

possible after infection of mosquitoes. Superinfection exclusion may

mitigate against ISV-based chimeric vaccine and another virus

infecting the same cell in the mosquito (2, 177). Nevertheless, any

potential interactions with complex mosquito viromes might be

viewed as unpredictable, given our limited understanding of these

complex ecosystems (12, 13, 178). However, ISVs and pathogenic

arboviruses have already extensively co-infected mosquitoes, with

all the genes in ISV-based chimeric vaccines thus having already

been present in mosquito populations over evolutionary

time periods.
10 Needle-free delivery opportunities

Needle-free vaccine delivery overcomes needle-phobia,

eliminates needle-stick injuries and the necessity for sharps

disposal, and may emerge to be attractive and cost-effective in

mass vaccination campaigns, especially in resource poor settings

(179). Two devices have been licensed for delivery of vaccines,

Stratis (PharmaJet) for delivery of inactivated influenza vaccine

(Afluria, Seqirus) in the USA, and Tropis (PharmaJet) for delivery

of the ZyCoV-D DNA COVID-19 vaccine (Zydus Lifesciences) in

India (180) for Restricted Use in Emergency Situations. These

devices are applied to the skin and deliver vaccines via a narrow

precise fluid stream that penetrates the skin. Similar needle free

systems have also been developed for the livestock industry and

have the advantage of reducing pain, saving time, avoiding lesions

in muscles (meat products), as well as avoiding the aforementioned

safety issues associated with needle use (181).

An alternative needle-free vaccine delivery technology involves

microarray patches or microprojection arrays (182), which involves

dry coating of vaccine onto microprojections arrayed on small

patches that are applied to the skin and that deliver antigen to skin

antigen presenting cells (183, 184). A number of microarray patches

have been evaluated in phase I human trials for inter alia influenza,

measles, rubella, and SARS-CoV-2 vaccines. They were generally

regarded as safe and well tolerated, inducing similar or increased

immune responses when compared with conventional needle-based

vaccination (185–188).

The technology developed by Vaxxas (188–190) has been used

to deliver a BinJV-based chimeric vaccine for DENV that provided

protection in a mouse model (68, 191).
11 Conclusions

A number of mosquito ISV-based chimeric vaccines for

human arboviral pathogens have been developed and been
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shown to generate protective immunity in preclinical studies in

mice and NHPs. However, human vaccine applications will

require a certified mosquito cell line and GMP manufacturing

and purification processes to be established, with evaluation of

different adjuvant formulations also likely required. Ultimately,

ISV-based chimeric vaccines may have to compete with mRNA

vaccine technologies (192, 193) on inter alia cost of goods,

durability of responses, and/or safety. Manufacture of ISV-based

vaccines is at an early stage and data is currently limited.

Conceivably, the manufacturing performance of mosquito cell

line systems might emerge to be comparable with baculovirus

systems (145); however, cell line-derived, whole-virus vaccines

that need inactivation and adjuvanting generally have a relatively

high cost of goods (194). Future developments in mRNA vaccine

technology may also reduce the costs of this new technology (195).

Specific adjuvants may be required to promote responses and

durability of protection of ISV-based chimeric vaccines in humans

(2, 135). New developments may also lead to improvements in the

durability of responses after vaccination with mRNA vaccines

(196). The safety profile of mRNA vaccines is now well established

with billions of doses delivered globally (197). The safety profile

for ISV-based vaccines has yet to be formally established and must

await phase I human trials.

Livestock applications have been illustrated for BinJV/

WNVKUN for crocodiles and BinJV/JEV for pigs. Although

unable to replicate in vaccine recipients, inactivation (e.g.

formalin) of ISV-based chimeric vaccines removes the regulatory

hurdles associated with release of GMOs and avoids any risk of

transmission to mosquitoes. Whether such vaccines would emerge

to be cost-effective enough for livestock markets has yet to

be determined.
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