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Animal models are indispensable for unraveling the mechanisms underlying

post-acute sequelae of COVID-19 (PASC). This review evaluates recent

research on PASC-related perturbations in animal models, drawing

comparisons with clinical findings. Despite the limited number of studies on

post-COVID conditions, particularly those extending beyond three months,

these studies provide valuable insights. Three hallmark features of PASC—lung

fibrosis, hyperglycemia, and neurological sequelae—have been successfully

replicated in animal models, paving the way for mechanistic discoveries and

future medical interventions. Although most studies have reported post-COVID

conditions within 14–60 days post-infection, they still offer critical reference for

future long-term research. This review also explores potential mechanisms of

persisting immune misfiring, a key factor in the chronicity of PASC symptoms.

Moreover, challenges in modeling PASC are also discussed, including the limited

genetic diversity in inbred animal strains and difficulties in accurately identifying

PASC-affected individuals. To address these issues, we propose methodological

improvements, such as comparing individual animal parameters with control

averages and incorporating genetically diverse populations like collaborative

cross models. These strategies will enhance the identification and

characterization of PASC endotypes in animal studies. By integrating findings

from animal models with clinical manifestations of PASC, future research can

providemore valuable insights into its mechanisms and support the development

of effective therapeutic strategies. Finally, we emphasize the urgent need for

longitudinal studies in animal models to fully uncover the mechanisms driving

PASC and guide interventions to mitigate its public health impact.
KEYWORDS
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1 Introduction

Microbial infections can induce long-term consequences

beyond acute diseases or chronic infections. In particular,

repeated viral exposure plays a key role in neurodegenerative

diseases (1–3). COVID-19 patients not only suffered from acute-

phase disease, but also experienced highly heterogeneous post-

COVID conditions (4). Furthermore, SARS-CoV-2 infection has

been associated with an increased risk of developing other non-

infectious diseases such as diabetes (5), cardiovascular problems (6),

autoimmune diseases (7), and neurological or psychiatric disorders

(8). These findings reinforce this correlation. In the post-COVID

era, PASC triggered by repeated infections from new variants of

SARS-CoV-2, will continue to pose a significant threat to public

health. Therefore, understanding the mechanisms behind long

COVID and advancing therapeutic innovations remain crucial.

However, currently, several limitations hinder the identification of

a clear, reproducible, and generalizable long COVID/PASC

signature, including sample accessibility, disease heterogeneity,

inconsistent PASC definitions, variations in sample collection

timing and methodologies, and uncontrollable factors such as

infection severity, reinfection, co-infection, and subsequent

in fec t ions . There fore , the deve lopment and care fu l

characterization of relevant animal models, which can can offer

better control over certain factors, are crucial for revealing the

underlying mechanisms of PASC.

Animal models are powerful tools for elucidating disease

pathomechanisms. While post-infection perturbations and

dyshomeostasis have been widely reported in COVID-19 models

(9), research specifically focused on PASC is far less extensive. A key

challenge is identifying PASC in animal models and appropriate

control groups, often limiting comparisons to infected versus

uninfected, vaccinated, or influenza-infected animals (10, 11).

Ideally, more rigorous comparisons should be made between

infected animals with and without PASC (12). Furthermore, the

limited intraspecific diversity of most inbred animal strains may

prevent them from fully exhibiting the heterogeneous symptoms

observed in humans. Although animal models may not fully

recapitulate the clinical manifestations of PASC, animal models

offer several advantages for PASC studies, as long as findings from

animal models are reproducible. 1. Systematic analysis can be

conducted in animal models at serial time points, such as

systematic histopathology analysis, multiple omics analysis, and

viral detection. 2. Consistent pathogenic features in animal models

can be profiled and reevaluated for further research. 3. Engineered

animal models or experimental interventions can be applied for

PASC research. Here, we systematically reviewed recently published

research (including preprints) on PASC or coronavirus infection

induced long-term perturbations, and present the similarities and

differences by comparing these models with clinical findings

(Table 1). Most importantly, these studies offer a valuable reference

for future PASC research. Applying improved methodologies for

identifying PASC in animals will offer more valuable insights though

rigorous comparisons between infected animals with and

without PASC.
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2 Short and long term post-acute
COVID-19 impact found in
animal models

Due to the very few animal studies revealed that long-term

sequelae of COVID-19 beyond three months, we employed a less

stringent criteria for selecting studies investigating post-COVID

conditions (9). According to the current consensus definition of

PASC, only five animal studies qualify as PASC research. Three of

these studies reported the fibrotic changes in rodent lungs (13–15),

one reported a neurological sequelae in mice (16), and another

reported hyperglycemia in a non-human primate model (17). Apart

from the post-COVID studies, four studies revealed sequelae post

mouse hepatic virus (MHV) infection were also included, including

two studies on central nerve system impacts (18, 19) and two studies

reflecting MHV-induced histopathological changes lasting for one

year (20, 21). The MHV model represents a natural coronavirus

infection process in mice. Although it may trigger different immune

response compared with SARS-CoV-2, it may help to reveal some

shared mechanisms of viral infection induced neurodegenerative

diseases. Moreover, extensive longitudinal systematic histopathology

examination is recommended in future PASC studies (20, 21).

While most included studies had durations of less than three

months, many observed signs of exacerbation or permanent injury

initiated during the acute phase of infection. These observations

suggest that these sequelae may extend beyond the study durations,

thus providing valuable references for future research. However,

some short-term sequelae, such as olfactory dysfunction, testicular

damage, and muscle atrophy (22–24), are likely to resolve within

one or two regenerative cycles. Despite this tendency toward

ceasing, it remains possible for individuals to experience long-

term impacts, such as persistent muscle weakness or anosmia.

Therefore, we compiled the main organ manifestations observed

in these studies, along with their similarities to clinical findings and

PASC sequelae at the study endpoints, in Table 1. Future research

should prioritize monitoring these manifestations over extended

timeframes to reveal the mechanisms underlying PASC. Findings

from these animal models substantiate three pillars underlying the

PASC (Figures 1A, B): 1. Damage caused during the acute infection

phase that does not fully recover after viral resolution. 2. Subsequent

and persistent damage caused by immune perturbations or other

dyshomeostasis, with or without viral persistence. 3. Maladaptive

tissue repair leading to conditions like interstitial pulmonary

fibrosis and alveolar bronchiolization.

While most of the included post-COVID studies reported

resolution of coronavirus infection within the acute phase, two

PASC studies documented prolonged viral replication: one lasting

121 dpi (15) and the other persisting for 6 weeks post-infection

(dpw) (17). However, recent research suggests that viral remnants,

rather than actively replicating virus, may be responsible for the

neurological sequelae of COVID-19 (25). Therefore, future PASC

research employing small-micelle-mediated organ-efficient clearing

and labeling techniques could be crucial in determining the

duration of viral remnant persistence and their presence in

relevant animal models.
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TABLE 1 Organ manifestations.

Time scale Manifestations Tendency at study endpoint Reference

Nervous system

31 days At 31 dpi, permanent injury to the lung and kidney was observed,
characterized by peribronchiolar metaplasia and tubular atrophy,
respectively. Transcriptional alterations in lungs, kidneys, heart and
brain persisted up to 31 dpi. SARS-CoV-2 infection resulted in
transient olfactory dysfunction in mice, resolving by 15 dpi. Similar
to clinical findings, anosmia is normally resolved within 2-3 weeks
(63). Notably, SARS-CoV-2 infection in mice induced persistent
olfactory inflammation and reduced burying activity at 26 dpi, an
assay commonly used to assess rodent repetitive and anxiety-
like behaviors

Gene set enrichment analysis revealed an expansion of
pathways involved in microtubular motor activity and
axoneme assembly in the lungs, consistent with
bronchiolization. Prolonged elevation of canonical
interferon-stimulated genes and Cxcl10 was observed in
the olfactory bulb and epithelium, with a gradual
decline. However, Ccl5 expression kept increasing, as
well as Iba1 levels, a biomarker for microglial and
macrophage activation.

(11)

28 days Neurological changes, such as reactive astrocytes and microglia,
brain hypoxia, perivascular cuffs, degeneration of Purkinje cells,
brain microhemorrhages with/without vascular injury, neuronal
injury and apoptosis, were found in SARS-CoV-2 infected non-
human primates, only with sparse viral infection in brain. Hypoxic-
ischemic injury, reactive astrocytes and microglia observed align
with autopsy findings in human brains (64).

While this study did not specifically compare early and
late stages, neuronal apoptosis appeared to increase over
time. Apoptosis was completely absent in primates that
succumbed at acute phase, while exhibited more
severe microhemorrhages.

(32)

14 days Fibrotic scarring in lung and microglial activation and perivascular
blood cuffing were also observed in brain at 14 dpi, even though no
viral RNA and N protein were detected at this time point. SARS-
CoV-2 infection through intranasal droplets leads to lethal outcomes
and is not suitable for long-COVID model.

Lung pathology worsened, and brain Iba1 levels
increased over time. Permanent damage caused during
the acute phase may leave long lasting consequences.

(35)

21 days Distinct infectivity and immune patterns were observed among
variants. The expression of several cytokines remained elevated in
the lungs, brain, and heart up to 21 dpi, varying depending on the
viral strain. A resurgence in the numbers of B cells, dendritic cells,
and macrophages at 14 dpi in bronchoalveolar lavage fluid was
noted. A gradual accumulation of tau pathology was observed in
cortex, hippocampus, striatum, and amygdala up to 21 dpi.

The expression of several cytokines (viral strain specific)
and Tua pathology (AT8 staining) increased with time.

(34)

31 days A type 1 IFN triggered neuropathic transcriptome alteration in
dorsal root ganglia, coincided with SARS-CoV-2–specific mechanical
hypersensitivity mechanical hypersensitivity, was found up to
31 dpi.

An expansion of differentially expressed genes was
observed at 31 dpi compared to 4 dpi

(65)

4 months Extensive longitudinal behavioral studies in mice surviving severe
SARS-CoV-2 infection revealed a broad spectrum of neurological
abnormalities in neuropsychiatric state, motor behavior, autonomic
function, and reflex and sensory function. Minimal astrocyte
activation and minimal to mild microglial activation were detected
in brain, alongside with brain transcriptomic alteration in pathway
related to complement activation, phagocytosis recognition, and
humoral immune response mediated by circulating immunoglobulin
up to 4 mpi. Persistent complement activation is revealed as a key
feature of human long-COVID (30).

Abnormalities in spontaneous activity, tail position, and
tremor increased, while gait, whisker response, ear
twitch, and palpebral reflex decreased over the 4-month
period. Mild inflammation persisted in the brain. The
levels of IL-6, CCL5, CXCL10, and CCL11 in lungs
remain elevated.

(16)

61 days Persistent mild brain lesions with gliosis and hyperemic blood
vessels and neuropsychiatric sequelae were observed up to 60 days
after MHV infection. Extensive behavioral examination revealed
female were more susceptible for post coronavirus infection
syndrome, mirroring the sex difference observed in long-COVID
(67). Persistent microglial activation and increased IL-6 levels were
detected in both sexes. Female exhibited reduced marble burying
activity at 34 dpi and significant cognitive dysfunctions at 60 dpi.
The olfactory dysfunction in female was resolved by 38 dpi.

A resurgence of increased Iba1 levels was observed in
the brain at 60 dpi. IL-6 levels remained elevated,
particularly in males. Elevated levels of S100B+ cells
were detected in females

(19)

30 days SARS-CoV-2 infection triggered monocyte infiltration and
microglial activation in central nervous system. Myeloid cell-derived
IL-1b impaired hippocampal neurogenesis, contributing to
subsequent cognitive deficits. Adenoviral-vectored spike vaccination
mitigated hippocampal degeneration.

T cells and myeloid cells remained elevated. Reduced
double cortin-positive neuroblasts returned to bassline.
Proliferating neuroblasts and synapses remain lower.

(10)

60 days SARS-CoV-2 infection increases the Parkinson’s disease
susceptibility and cellular toxicity in a humanized Parkinson’s
disease model pretreated with human preformed fibrils by inducing

Astrocyte and microglial activation were
gradually subsiding.

(68)

(Continued)
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TABLE 1 Continued

Time scale Manifestations Tendency at study endpoint Reference

Nervous system

a persisting astrocyte and microglial activation, even when the virus
is undetectable.

30 days Expanded CD8+ T cells found in the brain of aged mice after MHV
infection caused neuronal cell death, neuronal regeneration in
hippocampus, and subsequent spatial learning impairment, rather
than microglial activation. These cytotoxic T cells induce neuronal
apoptosis via IFNg pathway, instead of antigen-specific killing.
in vitro

Sustained microglial activation and elevated levels of
IFN-g and TNF-a were found in the central nervous
systems of aged mice.

(18)

30/60 days Microglial activation and lose of neuronal marker NeuN persisted in
hippocampus of MA10 infection mice by 60 dpi. Perivascular
lymphocyte cuffing was observed by 30 dpi.

Perivascular lymphocyte cuffing increased over time by
30 dpi.

(66, 69)

No infection IgG from long COVID-19 patients can cause persistent sensory
hypersensitivity or reduced locomotor activity in mice. These IgG
can target on murine heart, skeletal muscles and spinal
cord neurons.

(53)

No infection Spike protein induced a long-term cognitive dysfunction via TLR4
signaling. Knockout of TLR4 and TLR4 blocking improves the
synapse elimination and memory dysfunction.

(70)

Lung

121 days Aged hamsters suffered from persistent sub-pleural and interstitial
pulmonary fibrosis, as well as alveolar bronchiolization, until 112
dpi after a mild physical exercise. A decrease of CK8+ alveolar
differentiation intermediate cells and a dominated CK14+ airway
basal cells population is correlated with bronchiolization.

Azan+ area, an indicator of fibrosis gradually increased
by 121 dpi.

(14)

30 days Sustained lung inflammation, injury and airway wall thickening
alongside with long‐term neutrophil recruitment, fibrotic changes,
and increased NET formation were observed in the lungs of mice
for up to 30 dpi.

Net formation gradually increased from 5 dpi to 30 dpi. (71)

35 days IFNg secreted by resident T cells recruited profibrotic macrophages
to caused fibrosis in both human and mice model. Blocking IFNg
reduced lung inflammation and fibrosis.

Lung pathology and T cells peaked at 21 dpi and
subsequently decline, while remained elevated by 35 dpi.
IFNg signaling waned by 35 dpi.

(12)

120 days MA10 infection induced a heterogeneous and persistent pulmonary
lesions in aged mice, mainly manifested as fibrosis and chronical
inflammation in lungs. Similar severity in lungs were detected at
acute phase between young and aged mice, while most young mice
resolve these damage by 121 dpi.

Histopathological score and recruitment of
macrophages and lymphocytes persisted up to 120 dpi.

(13)

120 days SARS-CoV-2 persistently replicated in lungs of hamster from 42 dpi
to 120 dpi, alongside with alveolar consolidation, chronic
inflammation, alveolar-bronchiolization and fibrotic changes in
lungs. Increased proliferation and differentiation of CK14+ cells lead
to alveolar bronchiolization

IL13, IL33, several gene involved with fibrosis
remained elevated.

(15)

31 days SARS-CoV-2 infection induced a long-term and sex-differential
changes in lung proteome of hamsters with no remaining of virus.

Seven proteins remained elevated. Persistent
upregulation of Muc5AC is found in other studies
(13, 15).

(72)

14 days A dysregulated alveolar regeneration is found in hamster model by
14 dpi even with no detectable viral antigen in hamster.

(73)

Heart

24 weeks Spike protein of SARS-CoV-2 induced a systematic suppression of
mitochondrial genes and caused cardiac fibrosis and decreased
ejection fraction in obese mice.

(74)

Heart

4 weeks Hamsters experienced a triphasic cardiac conduction system
dysfunction, which peaked at 1‐3 dpi, ceased by 7dpi and recurred

Cardiac conduction system dysfunction redeveloped at
28 dpi.

(75)

(Continued)
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3 Animal models of PASC

3.1 Lungs

Lung fibrosis, a consequence of maladaptive repair mechanisms

following lung damage, is a key feature of PASC, which is significantly

influenced by age (26). Two studies reported fibrosis and alveolar-

bronchiolization in aged rodents over a three-month period,

supporting this age-related predisposition (13, 14). Notably, in

BALB/c mice, while similar mortality rates and subpleural opacities

were observed in both young and aged animals, aged mice exhibited

slower recovery and tendency toward fibrotic changes and chronic

inflammation (13). Another study demonstrated that mild treadmill

exercise at 21 dpi after the Delta variant infection re-induced lung

dysfunction and fibrotic changes after apparent recovery (14).

Moreover, long-term fibrosis can also be triggered by chronic viral
Frontiers in Immunology 05
infection in young hamsters (15). Notably, shared mechanisms

underlying post-COVID sequelae in lungs between young and aged

hamsters involve the CK14+ cells’ proliferation and differentiation

into SCGB1A+ club cells, leading to fibrosis and alveolar

bronchiolization (14, 15). Mechanistically, dysregulated lung

regeneration has been correlated with increased Notch3 and Hes1

protein expression (15). Given that Notch4 has been shown to hinder

regulatory T-cell-mediated tissue repair and induce severe

inflammation in an influenza model (27), these findings suggest

that Notch signaling may disrupt normal tissue repair following

viral infections.

Heterogeneity in damage resolution is observed both within the

same strain and between different mouse strains, such as BALB/c

and C57BL/6J (13), after MA10 infection. The resolution of fibrosis

in some individuals highlights host-specific differences in damage

repair. Recent research has identified IFNg as a key factor in post-
TABLE 1 Continued

Time scale Manifestations Tendency at study endpoint Reference

Heart

and persisted up to 28 dpi. Persistent cardiac conduction system
injury and dysfunction along with increased cardiac cytokines,
interferon‐stimulated gene expression, and macrophage remodeling
in SARS-CoV-2 infected hamster model.

Skeleton muscle

60 days SARS-CoV-2 infection left a long-lasting skeleton muscle atrophy
and metabolisms suppression. Mitochondrial function is impaired
by IFN-g and TNF-a.

A significant decrease in myofiber cross-sectional area
and an expansion of differentially expressed genes in
muscles were detected by 60 dpi.

(24)

Intestine

12 months Nests of erythrocytosis, diffused inflammation and the infiltration of
lymphocytes are found in mouse intestines 12 months after MHV-
1 infection.

(21)

Testis

4 weeks Testicular morphological alterations, including interstitial edema,
various tubular defects, and germ cell abnormalities, peaked during
the acute infection phase (5 dpi). Most of these injuries resolved by
30 days post-infection, which mirrors the clinical findings (76).
SARS-CoV-2 induces a transcriptomic changes in dysregulation of
inflammatory, cell death, and steroidogenic pathways.

TNF and IL-6 levels in testis remained higher at 30 dpi,
alongside with increased immune cells infiltration.

(23)

Gut-brain axis

No infection Mice that receives fecal transplantation from post-COVID patients
exhibits poor cognitive performance.

(77)

Blood and liver

18 weeks SARS-CoV-2 infection induces a long-term elevation of blood
glucose and a dysregulated blood chemokine signature in African
green monkeys. No viral replication and inflammation are found in
in the liver and pancreas, and an enhanced activity of gluconeogenic
enzyme phosphoenolpyruvate carboxykinase is thought to
cause hyperglycemia.

(17)

Skin

12 months The loss of hair follicles, damage to adipose tissues, and injury to
epidermal layer are found in MHV infected mouse 12 months
post infection.

(20)
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1521029
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dai et al. 10.3389/fimmu.2025.1521029
COVID respiratory sequelae. By comparing single-cell RNA

sequencing data from bronchoalveolar lavage fluid of

convalescent donors with and without persistent respiratory

complications, researchers found that IFNg secreted by lung-
Frontiers in Immunology 06
resident T cells recruits pro-fibrotic monocyte-derived

macrophages, contributing to fibrosis (12). Interestingly, blocking

IFNg alleviates fibrosis only in C57BL/6J mice and has no effect in

BALB/c mice following MA10 infection (12). These findings
FIGURE 1

(A) Three pillars underlie long-COVID: acute phase damage, persistent inflammation or perturbations and maladaptive repair. Persistent inflammation
can be caused by perturbations in immune tolerance (acquired immunity) and persisting activation of innate immunity by unknown reasons. In
Figure (A), four classes are represented by distinct colors. These colors correspond to the same classes depicted in (B). (B) Timeframes for long-
COVID animal models. In addition to only recording organ manifestations in long-COVID models, viral clearance and inflammation resolution can
provide valuable insights into the underlying mechanisms. We put only one study with a duration of less than 2 weeks’ here to address the
importance of acute damage. Dpi, wpi, mpi and ypi represent days, weeks, months and years post infection respectively. .
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emphasize the distinct underlying mechanisms driving similar

long-term pathological changes in these genetically different

mouse strains.
3.2 Metabolism perturbations

A study reveals SARS-CoV-2 infection induces a lasting

hyperglycemia for 18 weeks in African green monkeys without

detectable virus or inflammation in the liver and pancreas, along

with a dysregulated blood chemokine signature (14). Increased liver

glycogen was found in this model, and an enhanced gluconeogenesis

was thought to be a main cause of hyperglycemia. This research

presents a lasting stress response in glycometabolism post-infection

and highlights a link between immune response and metabolism.

Apart from the previously reported pancreatitis from the same task

group (28), this research provides insights into and may open a new

avenue for immunometabolism perturbations after infection.

Moreover, an increased risk of Type 2 diabetes is also found in

children after COVID-19 (29). Future research on how an infection

can induce a disorder in glycogen metabolism as well as insulin

resistance is required.
3.3 Neurological sequelae

A four-month longitudinal study extensively monitoring mouse

behavior after severe SARS-CoV-2 infection revealed a broad

spectrum of neurological abnormalities in neuropsychiatric state,

motor behavior, autonomic function, and reflex and sensory

function (16). Minimal astrocyte activation and mild microglial

activation persisted in the brain, accompanied by transcriptomic

changes related to complement activation, phagocytosis, and

humoral immune response and gene expression levels associated

with ataxia telangiectasia, impaired cognitive function and memory

recall, and neuronal dysfunction and degeneration. Notably,

lingering complement activation is also revealed in PASC

patients , which is correlated with the persistence of

autoantibodies and antibodies against herpesviruses (30). This

convergence of findings suggests a potential link between

complement activation and neuropathological changes in both

animal models and human PASC. Therefore, future research

should focus on identifying the specific antibodies or other

pathways triggering complement activation and mediating these

neuropathological changes. The autoimmunity resulting from

SARS-CoV-2 infection and its impact on immune tolerance will

be discussed in the “Immune Tolerance” section.

Interestingly, although mild brain inflammation persisted

throughout the study, some abnormalities in gait, whisker

response, ear twitch, and palpebral reflex abnormalities, decreased

over time. Others, including body position, grip strength, touch

escape, and reach touch, remained relatively constant. Conversely,

abnormalities in spontaneous activity, tail position, and tremor

increased over the four-month period. These results suggest that the
Frontiers in Immunology 07
impact on the brain may stem from three distinct types of damage:

permanent damage incurred during the acute phase, reversible

damage incurred during the acute phase, and subsequent damage

that gradually develops after the acute phase. The latter on aligns

with the gradual exacerbation of cognitive deficits in some

asymptomatic patients (31) highlighting the need for future PASC

models induced by less severe infections.
4 Manifestations of short-term
neuropathology changes

4.1 Persistent neuroinflammation

The most consistent finding across these studies is the

persistence of neuroinflammation, primarily characterized by

microglial activation (10, 11, 32), elevated levels of Iba1, elevated

pro-inflammatory cytokines, such as IL-1b (10), IL-6 (16, 19), TNF-

a (18), IFN-g (18), and chemokines such as CCL5 and CXCL10

(11). While microglial activation is a normal response to infection

or injury, its persistence can have detrimental effects on neuronal

function and contribute to neurodegeneration. The prolonged

elevation of these inflammatory mediators can disrupt neuronal

signaling, impair synaptic plasticity, and promote neuronal damage

or death. Notably, a research revealed gliosis in the mouse brain

after MHV infection (19). Gliosis, as an end stage of microglial

activation, is thought to be a main feature and driver for persistent

depressive and cognitive symptoms in patients (33). In some cases,

astrocyte activation (16, 32), tau pathology (34), and perivascular

lymphocyte/blood cuffing (32, 35) can be salient in some

animal models.
4.2 Neuronal damage and dysfunction

Several studies provide evidence of neuronal damage and

dysfunction (32), including neuronal cell death (18, 32), impaired

neurogenesis (36), and reduced synapses (10). These findings

indicate that coronavirus infection can have a direct and lasting

impact on neuronal function. Notably, one study revealed the

neuronal apoptosis gradually increase over time in primates, and

is absent in the acute phase (32), suggesting different damage in

separate phases.
4.3 Age and sex bias changes

Aged animals often exhibit more severe and prolonged effects

due to a heighten tone of basal inflammation (18), and female-

specific neuropathological changes (19), which both mirroring the

clinical findings. These findings highlight the importance of

considering individual variability when studying the neurological

impact of coronavirus infection.
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5 Lasting immune misfiring caused by
dysregulated immune tolerance

Perturbation of immune tolerance can lead to an autoimmune

response. Immune tolerance serves as a supervisor in determining what

our immune response should react to and what it should not react to.

Perturbations of immune tolerance encompass two key concepts:

failure to respond to a substance that should elicit an immune

response, and responding to a substance that should be be indifferent

to. During the pathogen infection, immune tolerance is expected to

protect our normal tissue from immune misfiring and not to favor

pathogen replication by tolerating pathogen. However, in the SARS-

CoV-2 infection, it seem immune tolerance turn into malfunctioning

mode to cause damage to innocent tissue, and lead to viral persistence.

The process of PASC is a long-term immune misfiring of both innate

and adaptive immune response triggered by infection.
5.1 Aspect from acquired immunity

For pathogens like viruses, the best way to evade our immunity is

to mimic host molecular traits. Several studies reveal that SARS-CoV-

2 can trigger self-reactive antibodies and T cells due to molecular

mimicry between host proteins and virus (37, 38), which can trigger a

post-infection malaise, such as multisystem inflammatory syndrome

in children (39). Apart from the mimicry strategies, SARS-CoV-2

infection is known to manipulate (40) or relax (41–43) our immune

tolerance and to trigger an autoimmunity (44, 45), resulting in both

acute symptoms and post-COVID sequelae. For instance,

autoantibodies in cerebrospinal fluid against brain antigens are

found in COVID-19 patients with neurological symptoms (46).

Moreover, disruption of peripheral tolerance in the pancreas caused

by SARS-CoV-2 infection is thought to be a key driver of type 1

diabetes (5). Thus, within the large infected population, a subset of

critical COVID-19 patients may have a previous immune tolerance

dysregulation, resulting in the production of autoantibodies against

immunomodulatory proteins (47) and interferons (48). This

dysregulation can ensue from genetic deficiency in the NF-kB
pathway (49) or age induced (50, 51) tolerance loss. Individuals in

this group are more susceptible to SARS-CoV-2 infection and more

likely to develop a lasting self-reactive acquired immune response,

leading to immune misfiring (43). If these immune misfirings cannot

be eliminated by central or peripheral tolerance, they may lead to

long-term conditions.

Circulating autoantibodies have been linked to PASC, and their

levels can predict PASC symptoms (46, 52). Recently, a study

demonstrated that transferring IgGs from stratified PASC

subgroups based on Glial Fibrillary Acidic Protein and type-I

interferon expression can lead to sensory hypersensitivity or

reduced locomotor activity in mouse models, depending on IgG

cohorts (53). Even though the mechanisms by which these two

cohorts of antibodies can trigger different symptoms in mice remain

elusive, this research does necessitate the stratification of PASC

patients and highlights the diverse mechanisms underlying PASC.

Indeed, another research reveal similar finding that passive transfer
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of IgG from long-COVID patients with neurocognitive and

neurological symptoms can cause increased sensitivity and pain

(54). They further demonstrate these antibodies target mouse sciatic

nerves, spinal cord, and meninges, which can lead to loss of balance

and coordination in mice. Similar findings also reported in clinical

that bispecific antibodies targeted on both spike protein and neural

tissue were found in patients with neurological symptoms (55). In a

mouse model, SARS-CoV-2 infection can also trigger anti-platelet

factor-4 antibody production, causing coagulopathy (56). Apart

from the interfering self-antigens’ function, the activation of

complement system is also a key driver of PASC (30). Further

screening of human extracellular and secreted proteins will help to

reveal what self-antigens are the antibodies from PASC patients

react to (47), similar methods can be applied in animal models

with PASC.

Similar to B cell tolerance, T cell dysfunction is also considered

a significant driver of PASC. A recent study found that PASC

patients can maintain robust SARS-CoV-2-specific T cells for two

years compared to non-PASC controls (57). However, there are no

report of immune misfiring caused by autoreactive cytotoxic CD8+

T cells. Only one research revealed children with multisystem

inflammatory syndrome had both anti-SNX8 autoantibodies and

cross-reactive T cells engaged both the SNX8 and the SARS-CoV-2

nucleocapsid protein epitopes (39). Future screening of the T cells

function may offer a clearer vision of the mechanisms of PASC (36).
5.2 Aspect from innate immunity

In a MHV post infection model, activated spike protein non-

specific CD8+ cells were increased in the brains of aged mice and

correlated with neuronal death, further leading to cognitive decline

(18). The authors further revealed these CD8+ cells can induce

primary neuronal cell death in vitro. Therefore, we may have

underestimated the dysregulated T cell in PASC (58). The

correlation of IFN-g released by activated CD8+ cells with PASC

patients is also reported in clinical investigations (59, 60). Similarly,

these CD8+ were also found in an EBV infection-induced

Alzheimer model (61). Moreover, expanded activated CD8+ cells

are found to be a key signature of Alzheimer’s disease (61, 62). Thus,

dysregulated T cells play a key role in dementia caused by different

viral exposures. Furthermore, more research reflecting how these T

cell responses leave a long-term impact on health is needed. Unlike

the cytotoxic T cells, their functions relied on the target that react to.

These by stander T cells in PASC can be evaluated by their

populations. Therefore, future studies monitoring these by

stander T cells in SARS-CoV-2 infection are required.
6 Challenge for PASC research in
animal model and future prospect

Two main obstacles hinder the study of PASC in animal

models: the limited heterogeneity of PASC symptoms due to the

relatively low genetic diversity of inbred animals, and the difficulty
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in accurately identifying PASC-affected animals. To address the first

issue, using collaborative cross populations in future PASC studies

could increase genetic diversity, facilitating the identification of

genetic associations with PASC. However, the challenge of

distinguishing PASC-affected animals remains. Simply comparing

infected animals with uninfected controls or animals infected with

other viruses may cover individuals with PASC and PASC

phenotypes. For instance, female mice are predisposed to

developing post-coronavirus syndrome. Therefore, to better

discriminate PASC phenotypes, comparing individual animal

parameters with the average of the control group is necessary

(16). Furthermore, comparing each individual’s pre-infection and

post-infection parameters is also crucial (17). By combining these

approaches with reference from human post-COVID sequelae,

researchers can make more robust comparisons between animals

with and without PASC, leading to valuable insights into PASC

mechanisms and, ultimately, promoting the development of

effective therapies.
7 Methods

1000 articles were scraped from Google scholar after searching

for animal models of long-COVID and manually screened

for eligibility.
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