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Heart failure (HF) has emerged as a significant global public health challenge

owing to its high rates of morbidity and mortality. Activation of the NOD-like

receptor protein 3 (NLRP3) inflammasome is regarded as a pivotal factor in the

onset and progression of HF. Therefore, inhibiting the activation of the NLRP3

inflammasome may represent a promising therapeutic approach for preventing

and treating HF. The active ingredients serve as the foundation for the

therapeutic effects of traditional Chinese medicine (TCM). Recent research has

revealed significant advantages of TCM active ingredients in inhibiting the

activation of the NLRP3 inflammasome and enhancing cardiac structure and

function in HF. The study aimed to explore the impact of NLRP3 inflammasome

activation on the onset and progression of HF, and to review the current

advancements in utilizing TCM active ingredients to inhibit the NLRP3

inflammasome for preventing and treating HF. This provides a novel

perspective for the future development of precise intervention strategies

targeting the NLRP3 inflammasome to prevent and treat HF.
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GRAPHICAL ABSTRACT
1 Introduction

Heart failure (HF) is the terminal stage of the progression of

diverse functional or organic cardiovascular diseases, characterized by

impaired ventricular filling and ejection capacity, with prevalent risk

factors including hypertension, myocardial infarction, and myocardial

disease (1). Epidemiological studies have indicated a global total of > 64

million patients with HF, with a prevailing trend toward a younger age

of onset (2, 3). HF has emerged as a significant public health issue,

posing risks to human health and escalating societal burden (2).

Currently, the standard pharmacological interventions for HF

management include angiotensin receptor-neprilysin inhibitors,

angiotensin-converting enzyme inhibitors, angiotensin receptor

blockers, sodium-glucose co-transporter 2 inhibitors, beta blockers,

aldosterone receptor antagonists, and diuretics (4). Although they

ameliorate HF to a certain extent, uncertainties persist concerning

their long-term effects, and the potential adverse events associated with

long-term medication are concerning. Therefore, there is an urgent

need to develop safe and effective therapeutic strategies. HF is a clinical

syndrome encompassing a range of complex pathological processes,

including myocardial inflammation, myocardial fibrosis, myocardial

hypertrophy, impaired angiogenesis, abnormal cardiac electrical signal

conduction, energy metabolism disorders, and abnormal

cardiomyocyte apoptosis (5–9). The activation of the NOD-like

receptor protein 3 (NLRP3) inflammasome plays a crucial role in

driving these pathological changes (5–8, 10). As an intracellular

multiprotein complex, persistent or excessive activation of the

NLRP3 inflammasome serves as a critical driver of both the onset

and progression of HF, with the extent of its activation being strongly

correlated with disease severity and patient prognosis (5, 11, 12).

Therefore, inhibiting the activation of the NLRP3 inflammasome

holds promise as a novel breakthrough in the prevention and

treatment of HF.
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Traditional Chinese medicine (TCM) has been recognized as a

promising therapeutic strategy for HF, owing to its ability to effectively

reverse adverse cardiac remodeling, lower rehospitalization and

mortality rates, and enhance the quality of life of patients (13, 14).

The active ingredients of TCM are the material basis for its therapeutic

effects and constitute the focal point of research on TCM. Relevant

studies have indicated that the active ingredients of TCM can mitigate

the onset and progression of HF by inhibiting the NLRP3

inflammasome (15–17). Thus, this study summarizes the role of

NLRP3 inflammasome activation in the onset and progression of

HF, as well as the current research on the use of TCM active

ingredients to prevent and treat HF through targeted inhibition of

the NLRP3 inflammasome, aiming to provide insights for future basic

research and novel drug development.
2 NLRP3 inflammasome

2.1 Structure of the NLRP3 inflammasome

The innate immune system is the first line of defense in the

human body. Innate immune cells activate inflammasome by

recognizing pathogen-associated molecular patterns and damage-

associated molecular patterns via pattern recognition receptors,

subsequently initiating inflammatory responses (12). The NLRP3

inflammasome is the most widely and intensively studied

inflammasome and is a multiprotein complex comprising the

NLRP3 protein, apoptosis speck-like protein containing a caspase

recruitment domain (ASC), and caspase-1 precursor (pro-caspase-1)

(12) (Figure 1). NLRP3 acts as a sensor and consists of a central

NACHT domain, a leucine-rich repeat (LRR) domain at the

carboxyl-terminal (C-terminal), and a pyrin domain (PYD) at the

amino-terminal (N-terminal). The NACHT domain primarily
frontiersin.org
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facilitates NLRP3 protein oligomerization and contains an adenosine

triphosphatase active site, enabling the regulation of NLRP3 protein

activity through adenosine triphosphate (ATP) hydrolysis (18). The

LRR domain mediates protein–protein interactions and plays a

crucial role in NLRP3 inflammatory signaling by recognizing and

interacting with both exogenous and endogenous molecules (19).

PYD recruits downstream effector signaling molecules that trigger

inflammasome assembly (20). ASC functions as an adaptor with two

domains: the N-terminal PYD and the C-terminal caspase activation

and recruitment domain (CARD) (21). The PYD of ASC corresponds

to the homotypic PYD of NLRP3 proteins, which mediates the

interaction between ASC and NLRP3 proteins (20, 21). The CARD

of ASC is responsible for binding pro-caspase-1 (21). Pro-caspase-1

functions as an effector and comprises three domains: the N-terminal

CARD, central large catalytic subunit domain p20, and C-terminal

small catalytic subunit domain p10 (22). The CARD of pro-caspase-1

is responsible for interactions with the CARD of ASC (22).
Frontiers in Immunology 03
Subsequently, p20 and p10 facilitate the cleavage of the interleukin-

1b precursor (pro-IL-1b) and interleukin-18 precursor (pro-IL-18)

into mature forms of IL-1b and IL-18.

When an organism encounters an external stimulus, NLRP3

interacts with the PYD of ASC via its PYD. The CARD of ASC

recruits and binds to the CARD of pro-caspase-1, triggering self-

cleavage of pro-caspase-1 to yield active caspase-1. Caspase-1

cleaves pro-IL-1b and pro-IL-18 to generate mature IL-1b and

IL-18, thus initiating an inflammatory response (Figure 1).
2.2 Mechanism of NLRP3
inflammasome activation

Three distinct pathways exist for NLRP3 inflammasome

activation: canonical NLRP3, non-canonical NLRP3, and

alternative NLRP3 inflammasome activation (23) (Figure 2).
FIGURE 1

Structure of the NLRP3 inflammasome.
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2.2.1 Canonical NLRP3 inflammasome activation
Canonical activation of the NLRP3 inflammasome involves two

distinct processes: priming and activation (24). The priming phase

involves transcriptional regulation and posttranslational modifications

of NLRP3. Recognition of pathogen-associated molecular patterns or

damage-associated molecular patterns by the corresponding pattern

recognition receptors (25–27) triggers nuclear factor-kB (NF-kB)
translocation and transcription, leading to increased expression of

NLRP3, pro-IL-1b, and pro-IL-18 within the nucleus. Furthermore,

priming signals trigger posttranslational modifications of NLRP3,

including phosphorylation (28), ubiquitination (29), alkylation (30),

S-nitrosylation (31), acetylation (32), and sumoylation (33), all of

which are crucial for modulating the activation or inhibition of

NLRP3. During the activation phase, NLRP3 responds to activating

stimuli, subsequently initiating the assembly of the NLRP3

inflammasome, activation of caspase-1, and processing pro-IL-1b
and pro-IL-18. This process ultimately produces proinflammatory

cytokines IL-1b and IL-18, which are subsequently secreted into the

extracellular space to trigger an inflammatory response.

Previous studies agree that the stimulus signals for NLRP3

inflammasome activation include potassium ion (K+) efflux (34),

chloride ion (Cl-) efflux (35), mitochondrial dysfunction (36, 37),

endoplasmic reticulum stress (38), trans-Golgi network catabolism

(39), and the release of tissue protease B from damaged lysosomes

(40). Remarkably, the interplay between some of these stimuli

complicates the activation phase of NLRP3 (41).

2.2.2 Non-canonical NLRP3
inflammasome activation

Non-canonical activation of the NLRP3 inflammasome primarily

relies on the mediation of human caspase-4/5 or mouse caspase-11.

CARDs of caspase-4/5/11 directly recognize lipopolysaccharides (LPS)
Frontiers in Immunology 04
from gram-negative bacteria, prompting their oligomerization of

caspase-4/5/11 (42–44). This leads to the cleavage of GSDMD into

its active form, GSDMD-NT, which in turn induces pyroptosis by

creating pores in the cytoplasmic membrane (42–44). Notably, while

inducing pyroptosis, caspase-4/5/11 do not directly cleave pro-IL-1b
(45, 46). They are required to indirectly promote the cleavage of pro-

IL-1b and the release of IL-1b through NLRP3-dependent activation of
caspase-1 (45, 46). Research has revealed that caspase-4/5/11 can

trigger the release of mitochondrial reactive oxygen species (mtROS)

and mitochondrial DNA (mtDNA) by enhancing the pore-forming

capability of GSDMD in the mitochondria, thereby contributing to the

activation of the NLRP3 inflammasome (47, 48). The orphan receptor

Nur77 is activated upon binding to LPS and mtDNA (48).

Subsequently, Nur77 interacts with NLRP3, triggering activation of

the NLRP3 inflammasome (48). After LPS stimulation, caspase-4/5/11

trigger intracellular K+ efflux, one of the pathways by which caspase-4/

5/11 mediates NLRP3 inflammasome activation (46, 49). Furthermore,

the activated caspase-11 triggers the cleavage of pannexin-1 channels,

leading to the release of ATP into the extracellular environment (50).

Subsequently, the P2X7 receptor (P2X7R) responds to extracellular

ATP, triggering the assembly of NLRP3 inflammasome and the release

of IL-1b (50). The scaffold structural domain of pro-caspase-11

facilitates the activation of NLRP3 through interaction with the

LRRs and PYD of NLRP3 (51). Intriguingly, this activation is

mediated by the co-induction of live gram-negative bacterial mRNA

and LPS (51). In addition to LPS, oxidized phospholipids (oxPAPC)

serve as endogenous ligands for caspase-11 (52). It induces the

oligomerization of caspase-11 by binding to its catalytic domain in

dendritic cells, thereby promoting the assembly of the NLRP3

inflammasome and inflammation (52). Nevertheless, indications

suggest that oxPAPC exerts an anti-inflammatory effect as it can

diminish the non-canonical activation of the macrophage NLRP3
FIGURE 2

Three pathways and related mechanisms of NLRP3 inflammasome activation.
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TABLE 1 Role of NLRP3 inflammasome activation in the onset and progression of HF.

Effects
Targets or related
signal pathways

Models
References

In vivo In vitro

Exacerbate
myocardial
inflammatory
injury

mTOR↑, NLRP3↑ Male SD rats
Lipid emulsion and LADCA ligation-induced
HF model

a. CD4+ T cells
PMA/Ionomycin Mixture and IL-2-induced cell
inflammation model
b. THP-1 macrophages
LPS and ATP-induced cell inflammation model

(59)

Hsp90, SGT1↑,
Drp1↑, NLRP3↑

Male Wistar rats
LCA ligation-induced HF model

NRVMs
LPS and nigericin/ATP-induced cell
inflammation model

(60)

P2X7R/NLRP3↑ Male CD1 mice
LCA ligation-induced AMI model

HL-1 cells
LPS and nigericin/ATP-induced cell
inflammation model

(61)

TLR4/MyD88/NF-
kB/NLRP3↑

Male SD rats
LADCA ligation-induced MI model

- (62)

NLRP3↑ Male CD-1 mice
LCA ligation and release-induced MI/R model

- (63)

MicroRNA-148a↓, TXNIP/
TLR4/NF-kB/NLRP3↑

SD rats
LADCA ligation and release-induced MI/
R model

NRCMs
H/R-induced cell damage model

(64)

AMPK↓, NLRP3↑ Male SD rats
Langendorff perfusion-induced MI/R model

NRVMs
H/R-induced cell damage model

(65)

SIRT1↓, Akt/PDH/
ROS/NLRP3↑

C57BL/6J WT, SIRT1-KO and PDH E1a-KO
mice
LADCA ligation and release-induced MI/
R model

- (66)

MARCH2↓, PGAM5/
MAVS/NLRP3 ↑

Male C57BL/6J WT and MARCH2-KO mice
LADCA ligation and release-induced MI/
R model

HL-1cells and NMCMs
H/R-induced cell damage model

(67)

TAOK1↓, YAP↓,
TEAD↓, NLRP3↑

SD rats
DOX intraperitoneal injection-induced
HF model

H9c2 cells
IL-17-induced cell inflammation model

(69)

NLRP3↑ Male C57BL/6J mice
DOX intraperitoneal injection-induced
HF model

H9c2 cells
DOX-induced cell toxicity model

(68)

FTO↓, TLR4/NF-
kB/NLRP3↑

Serum samples from healthy volunteers and
HF patients

H9c2 cells
DOX-induced cell toxicity model

(71)

TLR4/MyD88/NF-
kB/NLRP3↑

Blood samples from healthy volunteers, atrial
fibrillation patients and HF patients

- (70)

NOX1↑, NOX4↑,
Drp1↑, NLRP3↑

Female and male C57BL/6J WT, NLRP3-KO,
and caspase-1-KO mice
DOX intraperitoneal injection-induced
DCM model

H9c2 cells and NRVCs
DOX-induced cell damage model

(72)

NLRP3↑ a. Male C57Bl/6 mice
TAC-induced HF model
b. Male Dahl salt-sensitive rats
High-salt diet-induced HF model

Human cardiomyocytes and murine
macrophages
LPS-induced cell inflammation model

(74)

CaMKIId/NLRP3↑ Female and male CaMKIId floxed and CaMKIId-
KO mice
TAC-induced cardiac pressure overload model

- (75)

CaMKIId/NF-kB/NLRP3↑ Male CaMKIId floxed, CaMKIId -KO and
NLRP3-KO mice
Ang II intraperitoneal injection-induced
hypertension model

AMVMs and NRVMs
Ang II-induced cell hypertension model

(76)

(Continued)
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TABLE 1 Continued

Effects
Targets or related
signal pathways

Models
References

In vivo In vitro

NLRP3↑ a. Male SD rats
Monocrotaline subcutaneous injection induced-
PAH models
b. Male SD rats
Sugen-5416 ubcutaneous injection combined
with H/R induced-PAH models
c. Male SD rats
Pulmonary artery banding induced-HF models
d. RV tissue from healthy volunteers and
HF patients

NRCMs and peripheral blood mononuclear cells
(from rats treated with Monocrotaline)
co-cultivation

(78)

NLRP3↑ SD rats
a. Monocrotaline intraperitoneal injection
induced-PAH model
b. LPS intraperitoneal injection induced-acute
right ventricular failure model

H9c2 cells and BMDMs
LPS-induced cell inflammation model

(79)

IL-30↓, NLRP3↑ Male C57BL/6 WT and IL-30-KO mice
Cecum ligation and puncture induced-
myocardial dysfunction model

BMDMs
LPS-induced cell inflammation model

(77)

Aggravate
adverse
myocardial
fibrosis

NLRP3↑ Male C57BL/6 mice
LCA ligation-induced myocardial
infarction model

CFs
Hypoxia-induced cell damage model

(86)

TLR4/MyD88/NF-
kB/NLRP3↑

Male C57BL/6J mice
LADCA ligation-induced MI model

- (87)

CaSR↑, Beclin-1↑, LC3-II/
I↑, NLRP3↑

Male Wistar rats
LADCA ligation-induced MI model

Peritoneal macrophages (from MI model rats) (88)

NF-kB↑, NLRP3↑ Male Dahl salt-sensitive rats
High-salt diet-induced HF model

- (89)

NF-kB/NLRP3 ↑ Male C57BL/6J mice
Aortic banding-induced cardiac pressure
overload model

- (90)

SGK1/NLRP3↑ Male B6/129S mice
Ang II subcutaneous permeabilization-induced
hypertension model

BMDMs and MCFs
LPS and Ang II-induced cell
inflammation model

(85)

IMD1-53/cAMP/PKA↓,
IRE1a/NLRP3↑

Male SD rats
Ang II subcutaneous injection-induced
myocardial fibrosis model

NRCFs
Ang II-simulated fibrosis model

(91)

CTRP3↓, P2X7R/NLRP3↑ Male WKY rats and SHRs
Hypertension model

NRCFs
Ang II-simulated fibrosis model

(92)

Lp-PLA2/NLRP3↑ Male C57BL/6J mice
Ang II subcutaneous permeabilization-induced
hypertension model

BMDMs and RCFs
LPS and Ang II-induced cell
inflammation model

(84)

NLRP3↑ Female C57BL6/J mice
High-fat diet and Ang II-induced HF model

- (93)

NLRP3/TGF-b/Smad4↑ Male C57BL/6J mice
TAC-induced pathological cardiac remodeling

- (94)

AGTR1/NLRP3/TGF-
b1↑, AQP1↑

Male SD rats
LADCA ligation-induced HF model

- (95)

nNOS↓, TLR4/NLRP3↑,
TGF-b1/IL-1b↑

Male 129sv mice
ISO subcutaneous injection-induced left
ventricular fibrosis model

HCFs
LPS and ATP-induced cell inflammation model

(96)

NLRP3/ROS/TGF-b/
R-Smad↑

Male C57BL6 WT, NLRP3-KO, ASC-KO, and
caspase-1-KO mice

a. CFs
AngII or TGF-b-simulated fibrosis model

(97)

(Continued)
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TABLE 1 Continued

Effects
Targets or related
signal pathways

Models
References

In vivo In vitro

Ang II subcutaneous permeabilization -induced
cardiac fibrosis model

b. Peritoneal macrophages
LPS and ATP-induced cell inflammation model

Intensify
pathological
myocardial
hypertrophy

Trim31↓, NLRP3↑ Male and female C57BL/6N WT, Trim31 floxed
and Trim31-KO mice
ISO subcutaneous injection-induced HF model

- (99)

GRK2↑, Nrf2↓,
NLRP3↑, OS↑

- H9c2 cells
ISO-induced cell hypertrophy model

(102)

RAGE/NF-kB/NLRP3↑ - H9c2 cells
Ang II-induced cell hypertrophy model

(103)

PRMT5↓, E2F-1/NF-
kB/NLRP3↑

Male SD rats
TAC-induced cardiac hypertrophy model

AC16 cells and HCMs
Ang II-induced cell hypertrophy model

(104)

Sema4D/MAPK/NF-
kB/NLRP3↑

Male C57BL/6 mice
TAC-induced cardiac hypertrophy model

NRCMs
Ang II-induced cell hypertrophy model

(105)

NLRP3↑,
Calcineurin↑, MAPK↑

Male C57BL/6J mice
TAC-induced pathological cardiac
remodeling model

- (94)

ROS/NLRP3/caspase-1↑ Male F344 rats
SiNPs intratracheal instillation-induced
pathological cardiac hypertrophy model

CMs and AC16 Cells
SiNPs-simulated hypertrophy model

(106)

SNO-MLP/TLR3/RIP3/
NF-kB/NLRP3↑

a. Male SHRs, WKY rats, C57BL/6 WT mice
TAC coarctation-induced pathological cardiac
remodeling model
b. Myocardial samples from patients undergoing
heart valve replacement surgery

NRCMs
Ang II or phenylephrine-induced cell
hypertrophy model

(107)

Inhibite
angiogenesis

ROS/TXNIP/NLRP3↑ Male C57BL/6 mice
LADCA ligation and release-induced MI/
R model

NMCMs and CMECs
Hypoxia/hypoglycemic and normoxia/normal-
glucose-induced cell damage model

(10)

MicroRNA-495↓, NLRP3↑ Male C57BL/6 mice
LADCA ligation and release-induced MI/
R model

CMECs (from MI/R mice) (111)

Disturb
cardiac
electrical
signal
conduction

NLRP3↑ a. Blood and left and right ventricular
myocardial tissue samples from healthy
volunteers and HF patients
b. Male Dsg2 gene mutation and WT mice
Knockout of the Dsg2 Gene in Cardiomyocytes-
induced arrhythmogenic right ventricular
cardiomyopathy model

- (6)

NLRP3↑ Male C57BL/6 mice
TAC-induced HF model

- (115)

NLRP3↑ WT and MD1-KO mice
Uninephrectomy combined with d-aldosterone
perfusion and high-salt diet-induced HF model

- (117)

P2X7R/NLRP3↑ Male SD rats
LADCA ligation-induced HF model

- (118)

SOX2-OT/microRNA-
2355-3p/NLRP3↑

Male SPF SD rats
Aortic coarctation and constant current
stimulation of left carotid sympathetic nerve
node-induced HF-VA model

- (116)

NLRP3↑, CaMKII↑ Male Dahl salt-sensitive rats
High-salt diet-induced HF model

- (119)

P2X7R/NLRP3/IL-1b↑ Male SD rats
LCA ligation-induced AMI model

Macrophages
a. LPS and IFN‐g-induced M1 macrophage
polarization model

(120)

(Continued)
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inflammasome and dampen the inflammatory response through

competitive binding of LPS to caspase-4 and caspase-11 (53).

Consequently, further investigations are warranted to explore the

potential divergent effects of oxPAPCs on non-canonical NLRP3

inflammasome activation across different cell types.

2.2.3 Alternative NLRP3 inflammasome activation
In contrast to the previously mentioned activation pathways, the

alternative activation pathway requires only one step to activate the

NLRP3 inflammasome and lacks the features of canonical and non-

canonical NLRP3 inflammasome activation, such as K+ efflux,

pyroptosis, or pyroptosome formation (54). This activation

pathway exhibits species specificity and has been identified

exclusively in human and porcine monocytes (54). Research
Frontiers in Immunology 08
revealed that toll-like receptor (TLR) 4 in human monocytes

triggered the NLRP3 inflammasome through the TRIF/RIPK1/

FADD/caspase-8 signaling pathway upon stimulation by LPS,

eliminating the need for a secondary signal for mediation (54).

Tumor necrosis factor-a (TNF-a), a closely associated cytokine in

psoriasis, selectively induces the initiation of the NLRP3

inflammasome through the TNFR/caspase-8 pathway even without

an initial signal (55). Apolipoprotein C3 (ApoC3), an endogenous

mediator, selectively triggers activation of the NLRP3 inflammasome

in human monocytes (56). This process involves the formation of

heterodimers between TLR2 and TLR4, initiating a pathway

dependent on SCIMP/Lyn/Syk for calcium influx and ROS

production, leading to caspase-8 activation and ultimately

triggering activation of the NLRP3 inflammasome (56).
TABLE 1 Continued

Effects
Targets or related
signal pathways

Models
References

In vivo In vitro

b. IL-4-induced M2 macrophage
polarization model

Camk2n1↓, CaMKIId/p38
MAPK/JNK/NLRP3↑

Male WT and Camk2n1-KO mice
LADCA ligation-induced MI model

MCFs and NMVMs
Hypoxia-induced cell damage model

(121)

NLRP3/IL-1b/p38 MAPK↑ Male SD rats
LADCA ligation-induced MI model

- (123)

NLRP3/caspase-1/IL-
1b/p38↑

Male SD rats
LADCA ligation-induced MI model

H9c2 cells
Hypoxia-induced cell damage model

(122)

Disturb
cardiac
energy
metabolism

NLRP3↑, CD36↓, CPT1b↓,
GLUT4↓, p-PDH↑,
AKT↑, AMPKa↓

Male C57BL/6J mice
High-fat diet and TAC-induced HF model

- (7)

NLRP3↑, RISK↓ - Isolated hearts (from male Wistar rats)
Langendorff perfusion-induced MI/R model

(127)

NLRP3↑ Male C57BL/6J WT and NLRP3-KO mice
Ang II osmotic minipump-induced
cardiomyopathy model

- (125)

ROS/NF-kB/
TXNIP/NLRP3↑

SD rats
High-fat diet and streptozotocin intraperitoneal
injection-induced diabetic
cardiomyopathy model

H9c2 cells
High glucose-induced cell damage model

(126)

Exacerbate
cardiomyocyte
apoptosis

MicroRNA-30a-5p↑,
SIRT1↓, NF-kB/NLRP3↑

Male SD rats
Aortic coarctation-induced HF model

- (8)

CaSR/NLRP3↑ a. Blood samples from healthy volunteers and
AMI patients
b. Male Wistar rats
Coronary artery ligation-induced AMI model

- (132)

ZNF561-AS1/microRNA-
223-3p/NLRP3↑

Male Kunming mice
MI model

HCMs
Hypoxic-induced cell damage model

(133)

NLRP3/caspase-1↑ Male SD rats
LADCA ligation and release-induced MI/
R model

H9c2 cells
H/R-induced cell damage model

(134)

lncRNA HULC↓,
microRNA-377-5p/
NLRP3/caspase-1/IL-1b↑

Neonatal SD rats
LADCA ligation and release-induced MI/
R model

H9c2 cells
H/R-induced cell damage model

(135)

STING/IRF3/NLRP3↑ Male C57/B6 mice
LPS intraperitoneal injectione-induced
cardiomyopathy model

NRCMs and H9c2 cells
LPS-induced cell inflammation model

(136)
↑ indicates activation; ↓ indicates inhibition.
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3 Role of NLRP3 inflammasome
activation in the onset and
progression of HF

Upon systematically reviewing studies on NLRP3 inflammasome

activation in HF, we discovered that its activation promotes the
Frontiers in Immunology 09
onset and progression of HF by exacerbating multiple crucial

pathophysiological processes. These pathological changes include

myocardial inflammatory injury, adverse myocardial fibrosis,

pathological myocardial hypertrophy, inhibited angiogenesis,

abnormal cardiac electrical signal conduction, disturbed cardiac

energy metabolism, and abnormal cardiomyocyte apoptosis

(Table 1). Among these processes, myocardial inflammatory injury
FIGURE 3

Signaling pathways regulating NLRP3 inflammasome activation in HF: (A) Signaling pathway exacerbating myocardial inflammatory injury.
(B) Signaling pathway aggravating adverse myocardial fibrosis. (C) Signaling pathway intensifying pathological myocardial hypertrophy. (D) Signaling
pathway inhibiting angiogenesis. (E) Signaling pathway disturbing cardiac electrical signal conduction. (F) Signaling pathway disturbing cardiac energy
metabolism. (G) Signaling pathway exacerbating cardiomyocyte apoptosis. ↑ indicates activation; ↓ indicates inhibition.
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stands as a central nexus, where chronic inflammation not only

directly harms the myocardium but also has the potential to initiate a

cascade of events that worsen other pathological alterations in HF.

Notably, the activation of the NLRP3 inflammasome involves the

modulation of multiple signaling pathways, which are pivotal in

mediating the aforementioned pathological processes (Figure 3).
3.1 Exacerbate myocardial
inflammatory injury

An appropriate inflammatory response serves as a protective

mechanism that eliminates harmful stimuli and repairs damaged

tissues (57). However, excessive or prolonged inflammation

escalates the risk of cardiac dysfunction and adverse cardiac

remodeling (57, 58).

In the cardiac tissues of HF rats, increased NLRP3-positive

spots, caspase-1 shear activation, and elevated levels of mature

IL-1b were accompanied by a heightened inflammatory response

(59, 60). These findings suggest that the NLRP3 inflammasome

plays a contributory role in the development of myocardial

inflammation in HF (59, 60). During acute myocardial infarction

(AMI), dying heart myocytes initiate the assembly of the NLRP3

inflammasome by activating P2X7R via ATP release (61). This

process amplifies cardiac inflammation, leads to further loss of

functional myocardium, and even results in HF (61). Following

myocardial infarction (MI), myocardial injury triggers the

activation of the NLRP3 inflammasome, which exacerbates the

myocardial inflammatory response, leading to enlargement of

the infarct and worsening of cardiac dysfunction (62). Nicorandil

pretreatment decreased NLRP3 inflammasome activation by

inhibiting the TLR4/myeloid differentiation primary response

protein 88 (MyD88)/NF-kB pathway, thereby alleviating the

detrimental effects of MI on the heart (62). Activation of the

NLRP3 inflammasome plays a crucial role in promoting

myocardial ischemia/reperfusion (MI/R) injury (63). MI/R injury

results in decreased microRNA-148a expression in myocardial cells,

which increases the expression of thioredoxin-interacting protein

(TXNIP) (64). Subsequently, TXNIP activates the TLR4/NF-kB/
NLRP3 signaling pathway, promoting the release of inflammatory

factors IL-1b and IL-18, thereby increasing inflammatory cell death

in myocardial cells, leading to more extensive myocardial damage

and worsening of cardiac function (64). Furthermore, studies have

revealed that signaling pathways including adenosine 5′-
monophosphate (AMP)-activated protein kinase (AMPK) (65),

silent information regulator of transcription (SIRT) 1/serine/

threonine protein kinase B (Akt)/pyruvate dehydrogenase (PDH)/

ROS (66), and E3 ubiquitin ligase membrane-associated RING

finger protein 2 (MARCH2)/phosphoglycerate mutase 5

(PGAM5)/mitochondrial anti-viral-signaling protein (MAVS)

(67) contribute to the exacerbation of cardiac inflammatory injury

by activating the NLRP3 inflammasome, thereby exacerbating

adverse cardiac outcomes caused by MI/R.

Activation of the NLRP3 inflammasome is a pivotal factor

contributing to increased inflammatory damage in the non-
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ischemic myocardium. Activation of the NLRP3 inflammasome led

to increased cardiomyocyte pyroptosis and reduced proliferative

capacity in the doxorubicin (DOX)-induced HF model, collectively

exacerbating the pathogenic progression of HF (68, 69).

Mechanistically, activation of the TLR4/MyD88/NF-kB signaling

pathway serves as an upstream event that triggers the activation of

the NLRP3 inflammasome, thereby exacerbating cardiomyocyte

pyroptosis and myocardial inflammation in DOX-induced HF (70,

71). Myocardial tissues from patients with dilated cardiomyopathy

(DCM) exhibit aberrant NLRP3 inflammasome activation and

pronounced pyroptosis, which are correlated with diminished

cardiac function (72). In a DOX-induced DCM mouse model,

DOX triggered the hyperactivation of the NLRP3 inflammasome

by upregulating NOX1 and NOX4 expression and activating

dynamin-related protein 1 (Drp1)-dependent mitochondrial

fragmentation (72). This process exacerbates cardiomyocyte

pyroptosis and contributes to the progression of cardiac

dysfunction (72). Macrophages play a pivotal role in the regulation

of cardiac inflammation (73). In the HF state, the activation of the

NLRP3 inflammasome in myocardial tissue promotes macrophage

infiltration into the heart (74). Mechanistic study has demonstrated

that cardiomyocytes activate NLRP3 through the calmodulin-

regulated kinase d (CaMKIId) signaling pathway, promoting the

release of pro-inflammatory cytokines IL-1b, IL-18, and IL-6, as

well as the production of monocyte chemotactic protein-1 (MCP-1)

and macrophage inflammatory protein 1a (75). These factors

synergistically promote macrophage migration to myocardial tissue,

thereby further amplifying cardiac inflammation (75). Furthermore,

activation of myocardium-specific CaMKIId can also mediate the

activation of the NLRP3 inflammasome through the NF-kB
pathway, leading to increased macrophage recruitment to the

damaged myocardium and exacerbating the cardiac inflammatory

cascade (76). Interestingly, macrophages demonstrate two

pro-inflammatory effects, pyroptosis and pro-inflammatory

polarization, upon recruitment to the heart (77–79). In pulmonary

arterial hypertension (PAH)-induced right ventricular failure, there

was a significant increase in the number of macrophages within the

right ventricle, accompanied by an elevated expression of the NLRP3

inflammasome in these macrophages (78). The elevated expression of

the NLRP3 inflammasome not only promoted macrophage

pyroptosis, but also drove macrophages toward a pro-inflammatory

M1-type phenotype (78). This shift exacerbated the inflammatory

response in the right ventricle, contributing to further deterioration of

right ventricular dysfunction (78). Additionally, cardiomyocyte

NLRP3-dependent pyroptosis further stimulates macrophage

polarization toward a pro-inflammatory M1 phenotype in

myocardial tissues through the release of pro-inflammatory

cytokines and MCP-1 (79). Similarly, in sepsis-induced cardiac

inflammatory injury and dysfunction, macrophage pyroptosis in

cardiac tissues, along with the polarization of Ly6Chigh

macrophages, is positively regulated by NLRP3 complex activation

(77). These studies confirm that activation of the NLRP3

inflammasome exacerbates the cardiac inflammatory cascade by

promoting macrophage recruitment to the heart and stimulating

macrophage pyroptosis and pro-inflammatory polarization.
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3.2 Aggravate adverse myocardial fibrosis

Myocardial fibrosis is characterized by abnormal proliferation

and differentiation of cardiac fibroblasts (CFs) and excessive

accumulation and abnormal distribution of the extracellular

matrix (ECM). Myocardial fibrosis is a critical reparative response

aimed at maintaining cardiac integrity after myocardial injury (80).

However, excessive myocardial fibrosis results in diminished

myocardial compliance and cardiac diastolic and systolic

dysfunction, serving as a pivotal pathological foundation for the

onset and progression of HF (81, 82).

Myofibroblasts play a crucial role as mediator cells in the

progression of myocardial fibrosis (83). They induce cardiac fibrous

scar formation and dysfunction by synthesizing significant quantities

of ECM and collagen, secreting pro-fibrotic cytokines, and expressing

a-smooth muscle actin (a-SMA) (83). IL-1b was identified as a key

mediator in promoting the proliferation and differentiation of CFs

into myofibroblasts, indicating that NLRP3 inflammasome activation

is an important factor mediating the progression of myocardial

fibrosis (84, 85). MI leads to a notable upregulation in the

expression of fibrotic markers in myocardial tissues, including

collagen I, collagen III, and a-SMA (86). Importantly, the degree of

NLRP3 inflammasome activation is positively correlated with the

severity of myocardial fibrosis (86). Myocardial ischemia triggered

the activation of the TLR4/MyD88/NF-kB signaling pathway, which

facilitated the assembly and activation of the NLRP3 inflammasome,

thereby exacerbating cardiac inflammation (87). The progression of

inflammation enhances fibrosis, resulting in increased cardiac

stiffness and reduced cardiac pumping function (87). The

expression of calcium-sensitive receptor (CaSR) is elevated in

myocardial tissue following MI (88). CaSR exacerbates both

inflammation and fibrosis post-MI by activating the autophagy/

NLRP3 inflammasome pathway (88).

In pressure overload-induced HF, the activation of the NLRP3

inflammasome was identified as a critical factor driving the

progression of myocardial fibrosis (89). Mechanistically, chronic

stress overload initiates the activation of the NF-kB/NLRP3

inflammasome pathway (90). This pathway amplifies the aberrant

activation of cardiac fibroblasts and promotes the over-synthesis of

collagen associated with fibrosis, thereby fueling the adverse

progression of cardiac fibrosis (90). Administration of angiotensin

II (Ang II) induced myocardial fibrosis in mice, as indicated by the

excessive deposition of collagen fibers, elevated expression levels of

transforming growth factor-b (TGF-b) and connective tissue

growth factor, along with NLRP3 inflammasome activation in

cardiac tissues and heightened IL-1b secretion (85). Notably,

treatment with MCC950 successfully reversed these pathological

alterations (85). Inositol-requiring enzyme 1a (IRE1a) acted as a

sensor of endoplasmic reticulum stress, capable of triggering

NLRP3 inflammasome activation, thereby exacerbating the

progression of myocardial fibrosis (91). The endogenous

cardiovascular protective peptide, intermedin1-53 (IMD1-53), had

the ability to reduce the expression of IRE1a through the activation

of the cyclic adenosine monophosphate (cAMP)/protein kinase A

(PKA) pathway, leading to the inhibition of NLRP3 inflammasome
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activation and mitigation of Ang II-induced cardiac fibrosis (91).

Reduced expression of C1q/TNF-related protein-3 (CTRP3) in

myocardial tissue is linked to the advancement of cardiac fibrosis

(92). The restoration of CTRP3 expression ameliorated Ang II-

induced myocardial fibrosis by inhibiting the P2X7R/NLRP3

inflammasome pathway to reduce a-SMA, collagen I/III, and

matrix metallopeptidase (MMP) 2/9 expression (92).

TGF-b is a central signaling pathway in the promotion offibrosis.

In HF, activation of the NLRP3 inflammasome is considered a

significant factor in the upregulation of TGF-b gene expression in

the cardiac tissue (93). Specifically, the activated NLRP3

inflammasome promotes the advancement of cardiac fibrosis by

triggering the TGF-b/Smad4 signaling pathway to enhance the

expression levels of collagen type I, collagen type III, MMP-2,

MMP-9, and a-SMA (94). Further study has demonstrated that

Ang II receptor type 1 (AGTR1) accelerates myocardial fibrosis

progression by activating the NLRP3 inflammasome and enhancing

the production of TGF-b1 (95). Concurrently, activation of the TLR4

receptor also triggers NLRP3 inflammasome activation, initiating a

signaling cascade that enhances the pro-fibrotic effects of the TGF-

b1/IL-1b axis, promotes cardiac myofibroblast differentiation,

increases interstitial collagen deposition, and ultimately exacerbates

fibrosis (96). Additionally, a study revealed the mitochondrial

localization of NLRP3 in CFs and demonstrated that NLRP3 is

involved in the development of cardiac fibrosis by enhancing

mitochondrial ROS production, promoting activation of the TGF-

b/R-Smad pathway, and facilitating CF differentiation (97).
3.3 Intensify pathological
myocardial hypertrophy

Pathological myocardial hypertrophy is an adaptive response of

the heart to prolonged pressure or increased volume overload.

Nevertheless, as myocardial hypertrophy advances to a certain

level, it can exert significant adverse effects on the cardiac

structure and function, thereby increasing the risk of HF (98).

In the context of cardiac remodeling, the activation of the NLRP3

inflammasome promotes not only cardiac inflammation and fibrosis

but also aggravates pathological myocardial hypertrophy,

consequently exacerbating symptoms of HF (99). Elevated levels of

G protein-coupled receptor kinase 2 (GRK2) were identified in

hypertrophied myocardial tissue (100, 101). Mechanistically, GRK2

promotes the activation of the NLRP3 inflammasome and induces

oxidative stress (OS) by downregulating the expression of nuclear

factor erythroid-2-related factor 2 (Nrf2), thereby exacerbating

isoproterenol (ISO)-induced pathological cardiac hypertrophy

(102). The receptor for advanced glycation endproducts (RAGE)

participated in Ang II-induced pathological cardiomyocyte

hypertrophy by activating the NF-kB/NLRP3/IL-1b pathway (103).

Under pressure overload, there is a reduction in protein arginine

methyltransferase 5 (PRMT5) expression in hypertrophic myocardial

tissues. Low PRMT5 expression triggered the activation of the E2F-1/

NF-kB signaling pathway, leading to the activation of the NLRP3

inflammasome that promotes maladaptive cardiac hypertrophy
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induced by transverse aortic constriction (TAC) or Ang II (104). The

overexpression of Sema4D contributed to pressure overload-induced

cardiac hypertrophy (105). It promotes the assembly and activation

of NLRP3 complexes by activating the mitogen-activated protein

kinase (MAPK)/NF-kB signaling pathway, thereby exacerbating

TAC-induced pathological cardiac hypertrophy and dysfunction

(105). Elevated levels of calcineurin and MAPK phosphorylation

were observed in the TAC surgery group of pressure-overloaded mice

(94). In contrast, MCC950 ameliorates pathological cardiac

hypertrophy and enhances cardiac function by inhibiting

calcineurin expression and the MAPK signaling pathway (94).

Silica nanoparticles (SiNPs) contributed to the exacerbation of

cardiac hypertrophy (106). SiNPs worsen myocardial hypertrophy

by inducing cardiomyocyte pyroptosis via activation of the ROS/

NLRP3/caspase-1 signaling pathway (106). Transfection of

cardiomyocytes with si-NLRP3 or the caspase-1 inhibitor VX-765

limited SiNP-induced pathological cardiac hypertrophy (106).

S-nitrosylated muscle LIM protein (SNO-MLP) expression is

markedly elevated in patients and animals with myocardial

hypertrophy (107). This upregulation primarily facilitated the

interaction between TLR3 and receptor-interacting protein

kinase 3 (RIP3), thus initiating activation of the NF-kB/NLRP3
inflammasome pathway, ultimately fostering the progression of

myocardial hypertrophy (107).
3.4 Inhibite angiogenesis

Angiogenesis generates new blood vessels from existing

capillaries or capillary post-veins. When the heart is exposed to

ischemic and hypoxic stimuli, angiogenesis enhances its blood

supply, thereby mitigating damage and preserving cardiac

function resulting from ischemia and hypoxia (108, 109).

However, the progression of cardiac pathological remodeling

inhibits angiogenesis, resulting in decreased microvascular density

and ultimately leading to HF (109).

Coronary microvessel rarefaction and decreased blood flow

reserve have been identified as the primary drivers of diastolic

dysfunction in patients with HF with a preserved ejection fraction

(HFpEF) (9). Moreover, decreased cardiac microvascular density is

intricately linked to NLRP3 inflammasome activation (110).

Phosphorylation of microfibrillar-associated protein 4 (MAP4)

downregulates the expression of angiogenic markers, such as

CD31, CD34, VEGFA, VEGFR2, ANG2, and TIE2 (110).

Mechanistically, MAP4 inhibited angiogenesis via NLRP3

inflammasome activation, leading to reduced cardiac microvessel

density (110). Endothelial cells (ECs) serve as primary effector cells

in cardiac angiogenesis, and any damage to or aberrant apoptosis of

these cells significantly affects their capacity for cardiac

angiogenesis. During MI/R injury, microvascular endothelial cells

(CMECs) mediated interactions between TXNIP and NLRP3 by

generating excessive ROS (10). This action subsequently escalates

the activation level of the NLRP3 inflammasome, exacerbating

damage to cardiac microvascular endothelial cells (10). In

ischemia-reperfused myocardial tissues, there was a reduction in

microRNA-495 expression, which facilitates the activation of the
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NLRP3 inflammasome, worsening inflammatory damage and

apoptosis in CMECs (111). Conversely, elevating the expression

of microRNA-495 or suppressing the NLRP3 gene decreases

apoptosis and enhances the proliferation of CMECs by shifting

the cell population from the G0/G1 phase to the S phase (111). This

observation implies that the suppression of NLRP3 inflammasome

activation may facilitate the repair and angiogenesis of cardiac

microvessels. SIRT3 deficiency resulted in diminished expression

of hypoxia-inducible factor-2a, VEGF, and angiopoietin-1, leading

to decreased angiogenesis and subsequently causing coronary

microvessel rarefaction and cardiac diastolic dysfunction (112).

Trimethylamine N-oxide (TMAO) induces vascular inflammation

by suppressing SIRT3 expression and superoxide dismutase 2

(SOD2) activity in endothelial cells, subsequently triggering

mtROS/NLRP3 inflammasome signaling (113). Therefore, SIRT3

deficiency may impede coronary microvascular angiogenesis by

activating the NLRP3 inflammasome.
3.5 Disturb cardiac electrical
signal conduction

Ventricular arrhythmias (VAs) are common triggers and causes

of death in HF (114). The cardiac electrical conduction system is

crucial for maintaining normal heart function, and conduction

abnormalities are the underlying precursors of arrhythmias.

Numerous studies have established that the activation of the

NLRP3 inflammasome is a key factor in disrupting the electrical

signaling in the heart and inducing malignant arrhythmias,

particularly in the context of HF (6, 115–119). The activation of the

NLRP3 inflammasome not only enhances myocardial inflammatory

responses but also promotes the development of cardiac hypertrophy

and fibrosis, creating a pro-arrhythmic environment (115).

Additionally, NLRP3 inflammasome activation results in changes to

myocyte ion channel functions, including a reduced expression of ion

channel proteins such as Kv4.2, KChIP2, and Cav1.2, which affect the

timing and morphology of cardiac action potentials and contribute to

the development and maintenance of arrhythmias (115).

Simultaneously, sympathetic nervous hyperactivity contributes to an

increased susceptibility to HF-related ventricular arrhythmias due to

NLRP3 inflammasome activation (117, 118). In particular, the

activation of the NLRP3 inflammasome exacerbates cardiac

sympathetic hyperactivity by promoting the release of the

proinflammatory cytokine IL-1b, and this inflammatory-neural

interaction results in altered electrophysiological properties of the

heart, such as prolongation of the action potential duration and

shortening of the effective refractory period, which increases the risk

of ventricular arrhythmias (117, 118). In the myocardial tissues of rats

with HF-related ventricular arrhythmias (VAs-HF), there was a notable

increase in the expression of SOX2-overlapping transcript (SOX2-OT)

and NLRP3 (116). Furthermore, silencing of the SOX2-OT gene

reduced NLRP3 inflammasome activation levels by regulating

microRNA-2355-3p, thus alleviating HF symptoms and diminishing

VAs (116). In HFpEF, the activation of the NLRP3 inflammasome

facilitates the development of atrial fibrillation through the promotion

of atrial fibrosis, by prolonging the atrial action potential duration,
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increasing the dispersion of action potential duration, and activating

inflammation-associated signaling pathways (119). Following MI,

P2X7R facilitates the upregulation of nerve growth factor, tyrosine

hydroxylase, and growth-associated protein 43 by mediating the

activation of the NLRP3/IL-1b pathway, thereby fostering

sympathetic sprouting (120). This cascade leads to altered cardiac

electrophysiological characteristics and an increased susceptibility to

arrhythmias (120). After MI, the expression of Camk2n1 is markedly

reduced in the infarct border zone, leading to the activation of the

CaMKIId/p38 MAPK/C-Jun N-terminal kinase (JNK)/NLRP3

inflammasome signaling pathway (121). This exacerbates myocardial

fibrosis and increases the vulnerability to premature ventricular

contractions, tachycardia, and ventricular fibrillation (121). Connexin

43 (Cx43) is a key regulator of cardiac electrical signal conduction (122,

123). The activation of the NLRP3 inflammasome within

the myocardial infarct zone diminishes the expression of Cx43 in

myocardial tissue, resulting in compromised intercellular

communication and heightened vulnerability to VAs (122, 123).

Conversely, restoring the expression of Cx43 in the heart by

inhibiting the NLRP3/IL-1b/p38 MAPK pathway helps enhance

cardiac conduction function and decrease the heart’s susceptibility to

VAs (122, 123).
3.6 Disturb cardiac energy metabolism

The heart, as an organ with high energy and oxygen demands,

relies on homeostasis of its energy metabolism as the foundational

mechanism for maintaining the stability of the cardiac tissue structure

and internal environment (124). The myocardial energy metabolism

relies heavily on mitochondrial oxidative phosphorylation. When

mitochondria are damaged, myocardial energy substrate utilization is

altered, leading to decreased cardiac energy production and lactic acid

build-up, which in turn affects cardiac energy metabolism and

cardiomyocyte survival and accelerates the malignant progression of

HF (124).

A complex interplay exists between NLRP3 inflammasome

activation and myocardial energy metabolism disruption.

Mitochondrial dysfunction is the trigger for the activation of the

NLRP3 inflammasome (36, 37), while the activation of the NLRP3

inflammasome further impairs mitochondrial function and

homeostasis (7, 125–127). In an obesity-associated HF model,

overactivation of the NLRP3 inflammasome results in an imbalance

between cardiac energy supply and demand, as evidenced by decreased

fatty acid utilization and increased reliance on glycolysis and glucose

oxidation in cardiomyocytes, thereby triggering cardiac metabolic

reprogramming (7). This metabolic transition was concomitant with

the downregulation of genes associated with mitochondrial energy

transfer and respiratory pathways, consequently intensifying the

advancement of HF (7). During MI/R injury, the inhibition of the

NLRP3 inflammasome activates the reperfusion injury salvage kinase

(RISK) pathway, subsequently enhancing the expression of markers

associated with mitochondrial biogenesis and energy metabolism, such

as mitochondrial transcription factor A, nuclear respiratory factor-1,

and mitochondrial creatine kinase (127). These findings suggest an

association between disturbed myocardial energy metabolism and the
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formation of the NLRP3 inflammasome complex during MI/R injury,

indicating that inhibition of NLRP3 inflammasome activation

contributes to the improvement of cardiac energy metabolism,

thereby enhancing the resistance of cardiomyocytes to ischemic and

hypoxic injury (127). In the Ang II-induced cardiomyopathy model,

increased NLRP3 inflammasome activity was accompanied by

decreased mtDNA copy number, reduced ATP synthase activity,

increased ROS production, as well as mitochondrial structural

alterations, including swelling, disordered matrix organization, and

fragmentation (125). The knockdown of the NLRP3 gene mitigated

Ang II-induced mitochondrial structural and functional damage, as

well as alleviated cardiac dysfunction (125). In rats with diabetic

cardiomyopathy, cardiomyocyte mitochondria exhibit swelling and

matrix disorders, along with activation of the NLRP3 inflammasome

(126). Silencing of the NLRP3 gene aided in restoring mitochondrial

structure and reducing glycogenolysis and lipid accumulation in

cardiomyocytes, suggesting an enhancement in cardiomyocyte energy

metabolism (126).
3.7 Exacerbate cardiomyocyte apoptosis

Cardiomyocyte apoptosis is a type of programmed cell death that is

genetically regulated (128). Cardiomyocytes, which are primary cardiac

cells, are responsible for contraction (129). Excessive apoptosis of

cardiomyocytes is a significant contributor to the structural

alterations and functional deterioration of the heart. Moreover, it is a

crucial driver of HF onset and progression (130, 131).

During the pathological progression of HF, the overactivation of

NLRP3 exerts a pro-apoptotic effect on cardiomyocytes (8).

Mechanistically, microRNA-30a-5p activates the NF-kB/NLRP3
signaling cascade by targeting SIRT1, thereby exacerbating

cardiomyocyte apoptosis (8). CaSR expression is markedly elevated

in the neutrophils of patients and rats with AMI (132). This

upregulation facilitated NLRP3 inflammasome activation, release of

IL-1b through the PLC-IP3 pathway, and calcium release from the

endoplasmic reticulum (132). IL-1b interacted with the IL-1 receptor

on cardiomyocytes, leading to an increase in Bax expression and

caspase-3 cleavage, while decreasing Bcl2 expression, thereby

effectively promoting cardiomyocyte apoptosis (132). In the

myocardial tissue of MI mice, the expression of the long noncoding

RNA zinc finger protein 561 antisense RNA 1 (ZNF561-AS1) is

significantly upregulated (133). This upregulation leads to the

inhibition of cardiomyocyte proliferation and augmentation of

cardiomyocyte apoptosis via activation of the microRNA-223-3p/

NLRP3 inflammasome pathway (133). During MI/R injury,

activation of the NLRP3 inflammasome results in increased

cardiomyocyte apoptosis through the upregulation of Bax protein

expression and downregulation of Bcl2 expression (134). In

myocardial tissues injured by ischemia reperfusion, the expression

of long noncoding RNA highly up-regulated in liver cancer (lncRNA

HULC) is downregulated (135). The decrease in lncRNA HULC

expression results in heightened microRNA-377-5p activity,

triggering the NLRP3/caspase-1/IL-1b signaling pathway (135).

This cascade amplifies caspase-3 and cleaved-caspase-3 expression,

ultimately worsening cardiomyocyte apoptosis (135). In a mouse
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TABLE 2 Mechanisms of active ingredients in TCM regulating the NLRP3 inflammasome in HF.

Active ingredients Mechanisms Effects
Models References

In Vivo In Vitro

Flavonoids and
their glycosides

Astragaloside IV NLRP3↓, GDF15↓,
CRP↓, IL1RL1↓,
MCP-1↓, PDH↑

Alleviate myocardial
inflammation, fibrosis
and hypertrophy, and
improve cardiac
energy metabolism

Male C57BL/6N mice
High-fat diet and
administration of N-w-
Nitro-L-Arginine methyl
ester induced-HF model

- (17)

ROS/NLRP3/
caspase-1/GSDMD↓

Alleviate myocardial
inflammation, fibrosis
and hypertrophy

Male SPF C57BL/6J
mice
LADCA ligation-
induced MI model

BMDMs
LPS-induced cell
inflammation model

(137)

LC3II↑, p62↓,
ROS/NLRP3↓

Alleviate myocardial
inflammation
and hypertrophy

Male SD rats
Abdominal aortic
constriction-induced
cardiac
hypertrophy model

RCMs
Mechanical stretch-
induced cell
hypertrophy model

(138)

SIRT1↑, NLRP3↓ Alleviate
myocardial
inflammation

Male C57BL/6J mice
DOX intraperitoneal
injection-induced
myocardial
toxicity model

H9c2 cells
DOX-induced cell
toxicity model

(139)

Phloretin NLRP3/caspase-1/
IL-1b/p38↓

Alleviate myocardial
inflammation and
fibrosis, and improve
electrical
signal conduction.

Male SD rats
LADCA ligation-
induced MI model

H9c2 cells
Hypoxia-induced cell
damage model

(122)

Scutellarin Akt↑,
mTORC1/NLRP3↓

Alleviate myocardial
inflammation and
reduce
cardiomyocyte apoptosis

Male SD rats
LADCA ligation and
release-induced MI/
R model

H9c2 cells
OGD/R-cell
damage model

(140)

Hydroxylsafflower
yellow A

AMPK↑,
mTOR/NLRP3↓

Alleviate myocardial
inflammation and
reduce
cardiomyocyte apoptosis

Male SD rats
LADCA ligation and
release-induced MI/
R model

- (143)

AMPK↑, NLRP3↓ Alleviate myocardial
inflammation, improve
energy metabolism, and
reduce
cardiomyocyte apoptosis

- H9c2 cells
H/R-induced cell
damage model

(142)

NLRP3/caspase-
1/GSDMD↓

Alleviate
endothelial
inflammation

- HUVECs
OGD/R-induced cell
damage model

(141)

Formononetin ROS/
TXNIP/NLRP3↓

Alleviate myocardial
inflammation and
reduce
cardiomyocyte apoptosis

Male SD rats
LADCA ligation and
release-Induced MI/
R model

NRCMs
LPS and nigericin-
induced cell
inflammation model

(144)

Luteolin TLR4/NF-
kB/NLRP3↓

Alleviate
myocardial
inflammation

Male SD rats
LADCA ligation and
release-induced MI/
R model

H9c2 cells
H/R-induced cell
damage model

(145)

SIRT1↑, NLRP3/
NF-kB↓

Alleviate myocardial
inflammation and
improve electrical
signal conduction

Male SD rats
LADCA ligation and
release-induced MI/
R model

- (146)

Biochanin A TLR4/NF-
kB/NLRP3↓

Alleviate
myocardial
inflammation

Male SD rats
LADCA ligation and
Release-induced MI/
R model

- (147)

(Continued)
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TABLE 2 Continued

Active ingredients Mechanisms Effects
Models References

In Vivo In Vitro

Irisin NLRP3↓ Alleviate myocardial
inflammation, fibrosis
and hypertrophy

Male C57BL/6J mice
TAC-induced cardiac
hypertrophy model

CMs
Ang-II-induced cell
hypertrophy model

(148)

Amentoflavone STING/NLRP3↓ Alleviate myocardial
inflammation, fibrosis
and hypertrophy, and
reduce
cardiomyocyte apoptosis

Male C57BL/6J mice
DOX intraperitoneal
injection-induced
myocardial
toxicity model

ventricular CMs, MDA-
MB-231 cells and MCF-
7 cells
DOX-induced cell
toxicity model

(149)

Calycosin SIRT1↑,
NLRP3↓, OS↓

Alleviate myocardial
inflammation and
fibrosis, and reduce
cardiomyocyte apoptosis

Male Kunming mice
DOX intraperitoneal
injection-induced
myocardial
toxicity model

H9c2 cells
DOX-induced cell
toxicity model

(150)

Terpenoids and
their glycosides

Gentiopicroside Nrf2↑, NLRP3↓ Alleviate myocardial
inflammation and
reduce
cardiomyocyte apoptosis

SD rats
LADCA ligation-
induced AMI model

H9c2 cells
H/R-induced cell
damage model

(151)

Celastrol NLRP3↓ Alleviate myocardial
inflammation and
fibrosis, improve
electrical signal
conduction, and reduce
cardiomyocyte apoptosis

Male SD rats
LCA ligation induced-
HF model

H9c2 cells
Hypoxia-induced cell
damage model

(16)

NLRP3↓ Alleviate myocardial
inflammation
and fibrosis

Male SD rats
LADCA ligation-
induced MI model

NRCFs
LPS and ATP-induced
cell inflammation model

(152)

Muscone NLRP3/IL-1b/
p38 MAPK↓

Alleviate myocardial
inflammation and
fibrosis, and improve
electrical
signal conduction

Male SD rats
LADCA ligation-
induced MI model

- (123)

ROS↓, NF-kB↓,
NLRP3 ↓

Alleviate
myocardial
inflammation

Male C57BL/6J mice
LADCA ligation-
induced MI model

BMDMs
Starvation and LPS-
induced cell
inflammation model

(153)

Oridonin NLRP3↓ Alleviate myocardial
inflammation
and fibrosis

Male C57BL/6 mice
LCA ligation-induced
MI model

BMDMs
LPS-induced cell
inflammation model

(154)

OS↓, NLRP3↓ Alleviate
myocardial
inflammation

Male C57BL/6 mice
LADCA ligation and
release-induced MI/
R model

- (155)

Sweroside CaMKIId/ROS/NF-
kB/NLRP3↓

Alleviate myocardial
inflammation, fibrosis
and hypertrophy

Male C57BL/6 N mice
TAC and Ang II
perfusion induced-
HF model

H9c2 cells, AC16 cells
and NRCMs
Ang II-induced cell
hypertrophy model

(156)

Keap1↓, Nrf2↑,
OS↓, NLRP3↓

Alleviate
myocardial
inflammation

- a. Myocardial tissue
(from male Wistar rats)
O2-saturated Krebs–
Henseleit solution-
induced MI/R model
b. H9c2 cells
H/R-induced cell
damage model

(157)

Geniposide AMPK↑, ROS/
TXNIP/NLRP3↓

Alleviate myocardial
inflammation and

Male C57BL/6J mice
LADCA ligation and

(158)

(Continued)
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TABLE 2 Continued

Active ingredients Mechanisms Effects
Models References

In Vivo In Vitro

improve cardiac
energy metabolism

release-induced MI/
R model

NRVMs and H9c2 cells
H/R-induced cell
damage model

Loganin GLP-1R↑, NLRP3↓ Alleviate myocardial
inflammation and
reduce
cardiomyocyte apoptosis

Male SD rats
LADCA ligation and
release-induced MI/
R model

H9c2 cells
OGD/R-induced cell
damage model

(159)

Artemisinin NLRP3↓,
autophagy↓, OS↓

Alleviate myocardial
inflammation and
fibrosis, improve
mitochondrial function,
and reduce
cardiomyocyte apoptosis

Male SD rats
LCA ligation and
release-induced MI/
R model

- (160)

Betulin SIRT1↑, NLRP3/
NF-kB↓

Alleviate myocardial
inflammation and
improve electrical
signal conduction

Wistar rats
LADCA ligation and
release-induced MI/
R model

- (161)

Triptolide NLRP3/TGF-
b1/Smad3↓

Alleviate myocardial
inflammation, fibrosis
and hypertrophy

Male C57/BL6 mice
TAC-induced cardiac
remodeling model

- (162)

MyD88↓, JNK↓,
ERK1/2↓, NLRP3/
TGF-b1/Smad↓

Alleviate myocardial
inflammation
and fibrosis

male C57 WT, NLRP3-
KO mice
ISO subcutaneous
injection-induced
myocardial
fibrosis model

CFs
Ang II-simulated
fibrosis model

(163)

Ginsenoside Rg3 SIRT1↑, NF-kB/
NLRP3↓, OS↓

Alleviate myocardial
inflammation, fibrosis
and hypertrophy

SD rats
TAC-induced cardiac
hypertrophy model

AC16 cells and HCMs
Ang II-induced cell
hypertrophy model

(164)

Ginsenoside Rb1 DUSP-1/TMBIM-6/
VDAC1↑, NLRP3↓

Alleviate myocardial
inflammation, fibrosis
and hypertrophy,
improve cardiac energy
metabolism, and reduce
cardiomyocyte apoptosis

Male C57BL/6 WT,
DUSP-1-KO, DUSP-1-
KI, VDAC1-KO and
VDAC1-KI mice
TAC-induced HF model

Ventricular myocytes
H/R-induced cell
damage model

(165)

NLRP3↓, calcium
overload
↓

Alleviate myocardial
inflammation, improve
electrical signal
conduction and
mitochondrial structure,
and reduce
cardiomyocyte apoptosis

Male SD rats
Aconitine gavage
administration-induced
cardiac toxicity model

HiPSC-CMs and
ARVMs
Aconitine-induced cell
toxicity model

(166)

Ginsenoside Rg1 TLR4/NF-
kB/NLRP3↓

Alleviate myocardial
inflammation and
reduce
cardiomyocyte apoptosis

Male C57BL/6J mice
LPS intraperitoneal
injection-induced
cardiac
dysfunction model

NRCMs
LPS-induced cell
inflammation model

(167)

Shikonin SIRT1↑, NLRP3↓ Alleviate myocardial
inflammation and
reduce
cardiomyocyte apoptosis

Male C57BL/6J mice
LPS intraperitoneal
injection-induced
cardiac
dysfunction model

H9c2 cells
LPS-induced cell
inflammation model

(168)

Phenolic acids resveratrol SIRT1↑,
p53↓, NLRP3↓

Alleviate myocardial
inflammation and
fibrosis, and reduce
cardiomyocyte apoptosis

Male C57BL/6J mice
a. LCA ligation-induced
MI model
b. LADCA ligation and

a. NRCMs and CFs
H/R-induced cell
damage model
b. Macrophages

(170)

(Continued)
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TABLE 2 Continued

Active ingredients Mechanisms Effects
Models References

In Vivo In Vitro

release-induced MI/
R model

LPS-induced cell
inflammation model

Akt1/NLRP3↓ Alleviate
myocardial
inflammation

Male C57BL/6J mice
ISO subcutaneous
injection-induced acute
sympathetic
stress model

NMCMs
ISO-simulated acute
sympathetic
stress model

(171)

Salvianolic acid B SIRT1/AMPK/PGC-
1a↑, NLRP3↓

Alleviate myocardial
inflammation, improve
cardiac energy
metabolism, and reduce
cardiomyocyte apoptosis

Male SD rats
LADCA ligation-
induced MI model

H9c2 cells
Hypoxia-induced cell
damage model

(172)

Mitophagy↑,
NLRP3↓

Alleviate myocardial
inflammation, improve
mitochondrial function,
and reduce
cardiomyocyte apoptosis

Male SD rats
ISO subcutaneous
injection-induced acute
myocardial
ischemia model

H9c2 cells
LPS and ATP-induced
cell inflammation model

(173)

Cichoric acid HK1/NLRP3↓ Alleviate myocardial
inflammation and
fibrosis, improve cardiac
energy metabolism, and
reduce
cardiomyocyte apoptosis

Male Kunming mice
ISO subcutaneous
injection-induced
myocardial
fibrosis model

- (174)

Curcumin Akt/mTOR↑,
NLRP3↓,
Autophagy↓

Alleviate myocardial
inflammation, improve
mitochondrial structure,
and reduce
cardiomyocyte apoptosis

Male Kunming mice
DOX intraperitoneal
injection-induced
myocardial
toxicity model

H9c2 cells
DOX-induced cell
toxicity model

(175)

Carvacrol NLRP3/caspase-1/
GSDMD↓,
OS↓, Autophagy↑

Alleviate
myocardial
inflammation

Male Balb/C mice
LPS intraperitoneal
injection-induced
cardiac
dysfunction model

H9c2 cells
LPS-induced cell
inflammation model

(176)

Quinones Tanshinone IIA TLR4/NF-kB
p65/NLRP3↓

Alleviate myocardial
inflammation and
fibrosis, improve
mitochondrial structure,
and reduce
cardiomyocyte apoptosis

Male SD rats
LADCA ligation-
induced AMI model

H9c2 cells
H/R-induced cell
damage model

(177)

Salvianolate TGF-b1/Smad2/3↓,
TXNIP/NLRP3↓

Alleviate myocardial
inflammation and
fibrosis, and improve
electrical
signal conduction

Male SPF SD rats
LADCA ligation-
induced MI model

- (178)

Emodin TLR4/MyD88/NF-
kB/NLRP3↓

Alleviate myocardial
inflammation

Male SD rats
LADCA ligation and
release-induced MI/
R model

NRCMs
H/R-induced cell
damage model

(179)

Emodin NLRP3↓ Alleviate myocardial
inflammation

Male C57BL/6 mice
LPS intraperitoneal
injection-induced
cardiac
dysfunction model

H9c2 cells and CMs
LPS-induced cell
inflammation model

(180)

Sodium tanshinone
IIA sulfonate

Autophagy↑,
NLRP3↓

Alleviate myocardial
inflammation and
reduce cardiomyocyte
apoptosis

Male C57BL/6 WT mice
LPS intraperitoneal
injection-induced

- (181)

(Continued)
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model of cardiomyopathy, STING activation triggers the activation of

the NLRP3 inflammasome by enhancing the phosphorylation and

intranuclear translocation of IRF3 (136). This process elevates the

ratios of Bax/Bcl-2 and C-Caspase3/T-Caspase3, leading to an

increase in cardiomyocyte apoptosis (136).
4 TCM active ingredients in
preventing and treating HF by
inhibiting the NLRP3 inflammasome

Active ingredients are fundamental to the efficacy of TCM.

Existing studies have revealed that active ingredients in TCM exert

positive regulatory effects on key pathological processes of HF by

inhibiting the NLRP3 inflammasome. In particular, these active

ingredients are effective in ameliorating myocardial inflammation,

adverse myocardial fibrosis, pathological myocardial hypertrophy,

angiogenesis, cardiac electrical signal conduction, cardiac energy

metabolism, and reducing abnormal cardiomyocyte apoptosis
Frontiers in Immunology 18
(Table 2). Further analysis revealed that these active ingredients,

with the potential to prevent and treat HF, are primarily found in

flavonoids and their glycosides, terpenes and their glycosides,

phenolic acids, quinones, and phenylpropanoids (Table 2).
4.1 Flavonoids and their glycosides

Astragaloside IV (AS-IV) demonstrates significant therapeutic

potential for HFpEF (17). Specifically, AS-IV intervention markedly

decreased NLRP3, IL-1b, and caspase-1 levels in the myocardium of

HFpEF mice, with this reduction of biomarkers significantly linked to

the amelioration of myocardial inflammation and enhancement of

cardiac function (17). Additionally, AS-IV exerted a beneficial effect on

maintaining cardiac metabolic homeostasis in HFpEF by optimizing

cardiac glycolipid metabolism, enhancing mitochondrial function, and

regulating energy metabolic pathways (17). AS-IV also effectively

alleviated cardiac remodeling caused by MI (137). By inhibiting the

ROS/caspase-1/GSDMD signaling pathway, As-IV reduces
TABLE 2 Continued

Active ingredients Mechanisms Effects
Models References

In Vivo In Vitro

cardiac
dysfunction model

Phenylpropanoids Beta-asarone NLRP3↓ Alleviate
myocardial
inflammation

Male SD rats
LADCA ligation and
release-induced MI/
R model

- (182)

Cinnamaldehyde NLRP3↓ Alleviate myocardial
inflammation and
reduce
cardiomyocyte apoptosis

Male SD rats
LADCA ligation and
release-induced MI/
R model

- (183)

Aesculin Akt↑, GSK3b↑, NF-
kB/NLRP3↓

Alleviate myocardial
inflammation, improve
electrical signal
conduction and
mitochondrial function,
and reduce
cardiomyocyte apoptosis

Male SD rats
LADCA ligation and
release-induced MI/
R model

NRCMs
OGD/R-induced cell
damage model

(184)

Cinnamic acid NLRP3/caspase-
1/GSDMD↓

Alleviate myocardial
inflammation, improve
mitochondrial structure,
and reduce
cardiomyocyte apoptosis

Male SPF SD rats
LADCA ligation and
release-induced MI/
R model

- (185)

Others Gastrodin NLRP3↓ Alleviate myocardial
inflammation, stimulate
angiogenesis, and reduce
cardiomyocyte apoptosis

Male C57BL/6J mice
LADCA ligation and
release-induced MI/
R model

HCMECs
H/R-induced cell
damage model

(186)

Panaxynol HMGB1/TLR4/NF-
kB/NLRP3↓

Alleviate myocardial
inflammation and
reduce
cardiomyocyte apoptosis

Male mice
LADCA ligation and
release-induced MI/
R model

NRVMs
H/R-induced cell
damage model

(187)

ethyl acetate extract
of
Cinnamomi
Ramulus

NLRP3↓ Alleviate
myocardial
inflammation

Male SD rats
LADCA ligation and
release-induced MI/
R model

- (188)
↑ indicates activation; ↓ indicates inhibition.
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cardiomyocyte pyroptosis and lowers the expression levels of collagen I,

collagen III, a-SMA, and fibronectin (137). This process effectively

reduces post-MI cardiac fibrosis and hypertrophy, consequently

enhancing the heart function (137). As-IV exerts protective effects

against pressure overload-induced cardiac dysfunction (138). Through

the upregulation of LC3II levels and inhibition of p62 expression, As-

IV activated autophagy, subsequently inhibiting the ROS/NLRP3

inflammasome pathway and reducing the expression levels of IL-1b
and IL-18 (138). This action effectively alleviates pressure overload-

induced myocardial hypertrophy (138). In addition, As-IV mitigates

DOX-induced myocardial toxicity (139). It exerts cardioprotective

effects by reversing the DOX-induced downregulation of SIRT1

protein expression, upregulation of NLRP3 expression, and reduction

in cardiomyocyte pyroptosis (139). Phloretin mitigates the electrical

remodeling process in the heart post-MI (122). By inhibiting the

NLRP3/caspase-1/IL-1b pathway, it diminished p38 phosphorylation,

facilitating the restoration of Cx43 expression and mitigating cardiac

electrical remodeling post-MI, consequently lowering cardiac

susceptibility to VAs and the occurrence of HF (122). Furthermore,

Phloretin also decreased the expression of fibrotic markers including

collagen 1, collagen 3, TGF-b, and a-SMA post-MI by suppressing

inflammatory responses orchestrated by NLRP3 inflammasome

activation, consequently alleviating detrimental cardiac remodeling

(122). The cardioprotective effects of scutellarin are mediated by its

regulation of the Akt/mTORC1/NLRP3 signaling pathway (140).

More precisely, scutellarin inhibits mTORC phosphorylation by

upregulating Akt expression (140). This action subsequently

diminishes the activation of the NLRP3 inflammasome, thus

mitigating inflammatory injury and dysfunction in the heart induced

by MI/R (140). Hydroxylsafflower yellow A (HSYA) was recognized

for its ability to mitigate myocardial ischemia and hypoxic injury (141–

143). In MI/R injury, HSYA suppressed the NLRP3 inflammasome by

modulating the AMPK/mTOR signaling pathway, thereby reducing

myocardial infarct size and decreasing cardiomyocyte apoptosis,

ultimately improving heart function (143). In an H/R-induced H9c2

cell study, the AMPK inhibitor compound C nullified the suppressive

impact of HSYA on NLRP3 inflammasome activation, as

demonstrated by elevated levels of NLRP3, caspase-1, and IL-1b
expression (142). This observation further corroborates that the

inhibition of the AMPK/NLRP3 inflammasome signaling pathway is

an important mechanism in the anti-MI/R injury effect of HSYA (142).

In a study on oxygen-glucose deprivation/reoxygenation (OGD/R)-

induced HUVECs, NLRP3 inflammasome-mediated pyroptosis was

heightened (141). Treatment with HSYA mitigated pyroptosis by

inhibiting the NLRP3/caspase-1/GSDMD pathway, thereby

mitigating inflammatory damage to HUVECs resulting from OGD/R

(141). Formononetin can alleviate MI/R injury (144). It restricts the

activation of the NLRP3 inflammasome by diminishing the release of

ROS, suppressing the expression of TXNIP, and attenuating the

interaction between TXNIP and NLRP3, thereby decreasing the

secretion of proinflammatory factors and cardiomyocyte apoptosis

(144). Luteolin similarly demonstrated the potential to alleviate MI/R

injury, and this protective attribute was associated with its suppression

of the TLR4/NF-kB/NLRP3 inflammasome pathway (145). Luteolin

downregulates the expression of TLR4, MyD88, and NF-kB in a dose-

dependent manner to inhibit NLRP3 inflammasome activation,
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consequently diminishing myocardial infarct size and enhancing left

ventricular function (145). Intriguingly, another study identified the

SIRT1/NLRP3/NF-kB signaling pathway as the primary regulatory

mechanism by which luteolin alleviates MI/R damage (146). These

findings suggest that luteolin may exert cardioprotective effects by

inhibiting the NLRP3 inflammasome through multiple molecular

signaling pathways. Biochanin A alleviates the cardiac inflammatory

response and reduces the infarcted myocardial area resulting fromMI/

R (147). Its cardioprotective effect was intricately linked to its inhibition

of the TLR4/NF-kB/NLRP3 signaling pathway (147). By inhibiting

NLRP3 inflammasome activation, irisin effectively restrained the

expression of GSDMD-N and IL-1b, thereby mitigating the

detrimental effects of pressure overload on the heart such as

myocardial inflammation, fibrosis, and hypertrophy (148). By

inhibiting the STING/NLRP3 signaling pathway, amentoflavone

mitigates cardiomyocyte pyroptosis and cardiac inflammation,

consequently ameliorating DOX-induced heart damage and

functional impairment (149). Calycosin also shows promise for the

treatment of myocardial toxicity (150). Mechanistically, it inhibited

NLRP3 inflammasome activation by upregulating SIRT1 expression,

thereby reducing cardiac inflammatory infiltration, myocardial fibrosis,

and cardiomyocyte apoptosis, ultimately mitigating DOX-induced

cardiac injury (150).
4.2 Terpenoids and their glycosides

AMI triggered intense inflammatory responses and oxidative

stress (OS) (151). Gentiopicroside mitigates cardiac inflammatory

responses, OS, and cardiomyocyte apoptosis induced by AMI by

regulating the Nrf2/NLRP3 signaling pathway, thereby safeguarding

cardiac function (151). In the pathological progression of chronic HF,

Celastrol improves cardiac electrophysiological stability, upregulates

Cx43 and ion channel expression, and reduces myocardial fibrosis

and inflammatory responses by inhibiting the NLRP3/caspase-1/IL-

1b signaling pathway, ultimately reducing susceptibility to ventricular

fibrillation (16). Following MI, a notable increase was observed in

macrophage and neutrophil infiltration of myocardial tissues

alongside a significant upregulation in the expression of pro-

fibrotic proteins such as collagen I, collagen III, and a-SMA (152).

Celastrol mitigates these pathological alterations by inhibiting the

NLRP3 inflammasome (152). Muscone exhibits a promising

therapeutic potential against MI (123). It diminishes ventricular

inflammation and fibrosis, while decreasing vulnerability to VAs

via the upregulation of Cx43 expression in the infarct border zone

(123). These effects were associated with its inhibitory impact on the

NLRP3/IL-1b/p38 MAPK pathway (123). Furthermore, Muscone

mitigated the macrophage-driven cardiac inflammatory response by

suppressing NF-kB expression and NLRP3 inflammasome activation

in myocardial macrophages, leading to enhanced cardiac function

and increased survival rates in mice post-MI (153). Oridonin can

alleviate cardiac remodeling post-MI (154). By inhibiting the NLRP3

inflammasome, it reduced the expression of fibrosis markers,

including collagen-I, collagen-III, collagen-IV, and a-SMA, thereby

alleviating myocardial fibrosis and cardiac dysfunction following MI

(154). Moreover, pretreatment with oridonin suppressed the
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overactivation of OS and NLRP3 inflammasome, consequently

mitigating cardiac pathological alterations induced by ischemia

reperfusion, including the alleviation of myocardial inflammatory

damage and reduction of infarct size (155). Sweroside inhibits the

ROS-mediated NF-kB/NLRP3 inflammasome pathway in

cardiomyocytes by directly binding to CaMKIId, alleviating

myocardial inflammation and adverse cardiac remodeling, thereby

improving HF induced by pressure overload (156). Sweroside also

exerts protective effects on ischemia reperfusion myocardium (157).

Its intervention alleviates myocardial inflammatory damage and

reduces the size of the infarcted area, helping to alleviate cardiac

dysfunction caused by MI/R (157). This effect is primarily due to the

inhibition of NLRP3 inflammasome-mediated pyroptosis (157).

Geniposide has therapeutic potential for alleviating MI/R injury

(158). It inhibits the ROS/TXNIP/NLRP3 inflammasome pathway

by activating the AMPK signaling pathway (158). This process

efficiently suppresses cardiac inflammation, enhances myocardial

energy metabolism, and ultimately reduces the damage inflicted on

the myocardium by ischemia reperfusion (158). The glucagon-like

peptide-1 receptor (GLP-1R)/NLRP3 pathway plays a pivotal role in

mediating the cardioprotective effects of loganins (159). MI/R induces

a notable decline in GLP-1R expression within the myocardial tissue,

which promotes the formation of the NLRP3 inflammasome and

pyroptosis, exacerbating myocardial damage and cardiomyocyte

apoptosis (159). Conversely, treatment with loganin alleviates these

pathological changes (159). Artemisinin pretreatment mitigates MI/

R-induced myocardial inflammation, cardiomyocyte apoptosis, and

myocardial fibrosis primarily by inhibiting the NLRP3

inflammasome (160). Betulin attenuated the cardiac inflammatory

response, decreased myocardial infarct size, and enhanced cardiac

electrical signaling by modulating the SIRT1/NLRP3/NF-kB
signaling pathway. This action ultimately helps mitigate the cardiac

pathological damage induced by MI/R (161). Tretinoin has proven

advantageous in alleviating negative cardiac repercussions induced by

pressure overload (162). Mechanistically, tretinoin impeded the TGF-

b1/Smad3 pathway by dampening the activation of the NLRP3

inflammasome, which in turn attenuated TAC-induced myocardial

fibrosis and hypertrophy and improved cardiac function (162).

Another study demonstrated that the mechanism by which

tretinoin mitigates myocardial fibrosis involves the inhibition of the

NLRP3 inflammasome. By diminishing MyD88-mediated JNK and

ERK1/2 activity, tretinoin suppressed the NLRP3 inflammasome,

subsequently inhibiting the TGF-b1/Smad signaling pathway (163).

This cascade of events aids in reducing ECM deposition caused by

pressure overload, thus exerting an anti-myocardial fibrotic effect

(163). Ginsenoside Rg3 inhibited pathological myocardial

hypertrophy induced by pressure overload (164). It achieved its

anti-inflammatory and antioxidant effects by regulating the SIRT1/

NF-kB/NLRP3 inflammasome signaling pathway, thereby reducing

myocardial fibrosis and hypertrophy (164). Ginsenoside Rb1

attenuated HF induced by MI/R injury by targeting the DUSP-1/

TMBIM-6/VDAC1 pathway, regulating intestinal microbiota

homeostasis and the equilibrium of the mitochondrial quality

control network, as well as suppressing the NLRP3-mediated
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inflammatory response and pyroptosis (165). Cardiac injury is a

common adverse effect of aconitine. Following aconitine

intervention, there is an increase in the expression of NLRP3-

dependent pyroptosis-related proteins in myocardial tissue,

accompanied by disruptions in electrophysiology, significant

myocardial apoptosis, and cardiac dysfunction (166). Ginsenoside

Rb1 effectively ameliorated aconitine-induced cardiac pathological

alterations (167). Ginsenoside Rg1 effectively mitigated LPS-induced

cardiotoxicity by reducing cardiac inflammation and cardiomyocyte

apoptosis (167). This was achieved by lowering the Bax/Bcl2 ratio and

the quantity of TUNEL-positive cells in myocardial tissues via the

inhibition of the TLR4/NF-kB/NLRP3 pathway (167). Shikonin also

attenuates LPS-induced cardiac dysfunction by inhibiting the NLRP3

inflammasome through upregulation of the SIRT1 pathway (168).

This process reduces the release of inflammatory factors

and macrophage infiltration into cardiac tissues, thereby

alleviating LPS-induced myocardial injury and improving cardiac

function (168).
4.3 Phenolic acids

Resveratrol shows promise in HF treatment (169). After a 3-

month treatment with resveratrol, patients with systolic HF

experienced significant reductions in IL-1, IL-6, NT-proBNP,

galectin-3, total cholesterol, and low-density lipoprotein cholesterol

levels, along with substantial enhancements in cardiac function and

quality of life (169). Resveratrol can mitigate MI/R injury (170). It

mitigates cardiac inflammation, fibrosis, and apoptosis by

modulating the SIRT1/p53 signaling pathway and inhibiting the

NLRP3 inflammasome, thereby ameliorating MI/R-induced cardiac

dysfunction (170). Furthermore, resveratrol reduced acute

sympathetic stress-induced cardiac inflammation by inhibiting the

Akt1/NLRP3 inflammasome pathway (171). Salvianolic acid B

inhibited the activation of the NLRP3 inflammasome by regulating

the SIRT1/AMPK/PGC-1a signaling pathway (172). This action

leads to decreased cardiac inflammation, mitigation of

mitochondrial dysfunction, and a reduction in cardiomyocyte

apoptosis, ultimately exerting a cardioprotective effect in ischemic

and hypoxic conditions (172). Salvianolic acid B can also ameliorate

myocardial inflammation and enhance mitochondrial function by

promoting mitochondrial autophagy and inhibiting the NLRP3

inflammasome, thus alleviating ISO-induced acute myocardial

ischemic injury (173). Chicoric acid effectively mitigates the

detrimental effects of cardiac overload (174). Specifically, it reduced

ISO-induced cardiac inflammation, fibrosis, apoptosis, and

mitochondrial structural damage by inhibiting the hexokinase 1

(HK1)/NLRP3 inflammasome signaling pathway (174). When

exposed to DOX, cardiomyocytes exhibit impaired contractile

function (175). Curcumin activates the AKT/mTOR pathway,

leading to a reduction in DOX-induced pyroptosis and autophagy,

thereby contributing to the alleviation of cardiomyocyt\e apoptosis

and cardiac dysfunction (175). Carvacrol is beneficial in attenuating

LPS-induced cardiac dysfunction, and its protective effect against
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myocardial injury is linked to the inhibition of pyroptosis mediated

by the NLRP3/caspase1/GSDMD pathway (176).
4.4 Quinones

After AMI, the expression of TLR4, NF-kB p65, NLRP3, IL-1b,
and IL-18 increased in cardiac tissue (177). These changes lead to

adverse cardiac effects such as myocardial inflammation, fibrosis,

cardiomyocyte apoptosis, and cardiac dysfunction (177).

Tanshinone IIA mitigated these adverse changes by inhibiting the

TLR4/NF-kB p65/NLRP3 inflammasome signaling pathway, thus

enhancing cardiac structure and restoring left ventricular function

(177). After MI, treatment with salvianolate ameliorated interstitial

fibrosis in the atria, decreased the susceptibility of the heart to atrial

fibrillation, and reduced the duration of atrial fibrillation (178).

Salvianolate’s cardioprotective effect was attributed to its capacity

to reduce collagen deposition and attenuate inflammatory

responses by inhibiting the TGF-b1/Smad2/3 and TXNIP/NLRP3

inflammasome signaling pathways (178). Emodin decreased the

expression of GSDMD-NT and IL-1b by inhibiting the TLR4/

MyD88/NF-kB/NLRP3 inflammasome signaling pathway, thereby

mitigating myocardial inflammatory injury induced by MI/R (179).

Furthermore, Emodin potentially ameliorated LPS-induced cardiac

injury and dysfunction (180). This is primarily achieved by

inhibiting the NLRP3 inflammasome, decreasing the levels of

inflammatory cytokines, and inducing cardiomyocyte pyroptosis

(180). Sodium tanshinone IIA sulfonate has demonstrated potential

for the treatment of sepsis-induced myocardial dysfunction (181).

In mice with LPS-induced cardiomyopathy, sodium tanshinone IIA

sulfonate mitigates myocardial inflammation and enhances cardiac

function by promoting autophagy and inhibiting NLRP3

inflammasome activation, leading to increased survival rates (181).
4.5 Phenylpropanoids

Beta-asarone reduces cardiac inflammation and diminishes the size

of MI by inhibiting the NLRP3 inflammasome, thus enhancing cardiac

recovery after ischemia reperfusion (182). The cardioprotective effect of

cinnamaldehyde also depends on its inhibitory effects on the NLRP3

inflammasome (183). Pretreatment with Cinnamaldehyde attenuated

cardiomyocyte pyroptosis and the number of TUNEL-positive cells by

suppressing the expression of NLRP3, ASC, pro-caspase-1, caspase-1,

and GSDMD, as well as the release of IL-18 and IL-1b, thereby
alleviating MI/R injury (183). Aesculin also confers protective effects

against ischemia reperfusion in the myocardium (184). It hindered the

activation of the NF-kB/NLRP3 inflammasome signaling pathway by

enhancing Akt and GSK3b expression, leading to reduced cardiac

inflammation, enhanced mitochondrial function, reduced

cardiomyocyte apoptosis, and decreased vulnerability to ventricular

arrhythmias, ultimately enhancing cardiac function (184). Cinnamic

acid alleviates MI/R injury by reducing the infarct size, preventing

myocardial cell apoptosis, and improving cardiac diastolic function

(185). The cardioprotective effects of cinnamic acid have been
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attributed to the suppression of NLRP3 inflammasome activation-

induced pyroptosis (185).
4.6 Other active ingredients

In addition to the aforementioned compounds, gastrodin (186),

panaxynol (187), and the ethyl acetate extract of cinnamomi

ramulus (188) had been identified as having the potential to

ameliorate symptoms and enhance the prognosis of HF by

inhibiting the NLRP3 inflammasome. By inhibiting NLRP3/

caspase-1 signaling, Gastrodin reduced the production of IL-1b
(186). This mechanism alleviates the inflammatory responses in the

heart and microvasculature, reduces myocardial apoptosis, and

promotes capillary formation, thereby offering protection against

myocardial and cardiac microvascular damage induced by MI/R

(186). Panaxynol exhibits anti-inflammatory and anti-apoptotic

properties (187). It demonstrated beneficial effects in mitigating

MI/R injury by suppressing the HMGB1/TLR4/NF-kB/NLRP3
inflammasome signaling pathway, leading to a significant

reduction in MI size and enhancement of cardiac function (187).

Cinnamomi Ramulus also has the potential to ameliorate adverse

cardiac outcomes resulting from MI/R (188). It attenuates cardiac

inflammation and enhances cardiac function by reducing NLRP3

inflammasome activation and pyroptosis, thereby exerting

cardioprotective effects (188).
5 Conclusions and prospects

The activation of the NLRP3 inflammasome is a complex process

involving three distinct pathways: canonical, non-canonical, and

alternative NLRP3 inflammasome activation. These activated

pathways adversely affect cardiac function by promoting the

progression of various pathological processes, including the

exacerbation of myocardial inflammatory injury, adverse myocardial

fibrosis, pathological myocardial hypertrophy, and abnormal

cardiomyocyte apoptosis; inhibition of angiogenesis; and disruption

of cardiac electrical signaling and energy metabolism. These factors

synergistically accelerate the onset and progression of HF. In the

prevention and treatment of HF, the active ingredients of TCM

demonstrate significant potential. They inhibit the NLRP3

inflammasome through multiple pathways, effectively attenuating the

aforementioned pathological changes and thereby improving both the

structure and function of the heart. Furthermore, we found that these

active ingredients are primarily concentrated in flavonoids and their

glycosides, terpenes and their glycosides, phenolic acids, quinones, and

phenylpropanoids. Based on these findings, we posit that there is both

theoretical value and clinical significance in reviewing studies on TCM

active ingredients for preventing and treating HF, with a focus on the

inhibition of the NLRP3 inflammasome. This endeavor aims to lay the

foundation for future research and the development of novel

therapeutic agents.

Despite some progress in investigating the inhibition of the NLRP3

inflammasome by the active ingredients of TCM for the prevention
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and treatment of HF, various limitations and challenges persist. First,

some studies lack in-depth exploration of the upstream signaling

molecules that regulate the NLRP3 inflammasome. It remains

unclear which specific signaling pathways the active components of

TCM utilize to inhibit the NLRP3 inflammasome. Second, active

ingredients of TCM may engage multiple signaling pathways to

suppress the NLRP3 inflammasome, such as Astragaloside IV,

Luteolin, and Resveratrol. However, there remains a shortage of

comprehensive investigations into the interplay between molecular

signals. Third, most current research is confined to animal and cell

experiments and lacks robust clinical studies that offer evidential

support, particularly high-quality randomized controlled trials.

Fourth, the etiology of HF is multifaceted and includes myocardial

ischemia, cardiac overload, and myocardial toxicity. Further research is

necessary to verify whether there are variations in the mechanism of

action and the effects of the same active ingredients in TCM on HF

with different etiologies. Fifth, although the active ingredients of TCM

exhibit minimal side effects and low drug resistance, HF is

characterized by a protracted course of illness that may require

extended dosing periods. Therefore, the safety profiles of the active

ingredients in Chinese medicines require evaluation through

meticulously designed clinical studies.

Considering the aforementioned limitations and challenges, future

studies should conduct multidimensional validations using HF models

derived from various etiological sources both in vitro and in vivo.

Simultaneously, emphasis should be placed on exploring upstream

signaling molecules that suppress the NLRP3 inflammasome and

investigating the interactions among diverse molecular mechanisms.

Furthermore, after verifying the efficacy and safety of the active

ingredients in TCM in basic research, clinical trials should be

conducted to assess the therapeutic potential of these components in

preventing and treating HF, thereby enabling the translation of

research findings into clinical applications.
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Glossary
Akt serine/threonine protein kinase B
Frontiers in Immunol
AMI acute myocardial infarction
AMPK adenosine 5’-monophosphate (AMP)-activated protein kinase
AMVMs adult mouse ventricular myocytes
Ang II angiotensin II
ASC apoptosis speck-like protein containing a caspase

recruitment domain
As-IV Astragaloside IV
a-SMA a-smooth muscle actin
ATP adenosine triphosphate
BMDMs bone marrow-derived macrophages
CARD caspase activation and recruitment domain
CFs cardiac fibroblasts
CMECs cardiac microvascular endothelial cells
H/R hypoxia/reoxygenation
Cx43 Connexin 43
DCM dilated cardiomyopathy
DOX Doxorubicin
ECM Extracellular matrix
ECs endothelial cells
GSDMD gasderminD
GSDMD-NT GSDMD N-terminal
HCMs human cardiomyocytes
HF heart failure
HFpEF heart failure with preserved ejection fraction
HK1 hexokinase 1
HUVECs human umbilical vein endothelial cells
IFN‐g interferon-gamma
IL interleukin
ISO isoproterenol
KI knock-in
KO knockout
K+ potassium ion
LADCA left anterior descending coronary artery
LCA left coronary artery
LPS lipopolysaccharide
LRR leucine rich repeat
MAPK mitogen-activated protein kinase
MCFs mouse cardiac fibroblasts
MCP-1 monocyte chemoattractant protein-1
MI myocardial infarction
MI/R myocardial ischemia/reperfusion
mtROS mitochondrial reactive oxygen species
mtDNA mitochondrial DNA
MyD88 myeloid differentiation primary response protein 88
NF-kB nuclear factor-kB
ogy 27
NLRP3 NOD-like receptor protein 3
NMCMs neonatal mouse cardiomyocytes
NMVMs neonatal mouse ventricular cardiomyocytes
NRCFs neonatal rat cardiac fibroblasts
NRCMs neonatal rat cardiomyocytes;NRVMs, neonatal rat

ventricular myocytes
OGD/R oxygen-glucose deprivation/reoxygenation
OS oxidative stress
pro-caspase-1 caspase-1 precursor
PYD pyrin domain
P2X7R P2X7 receptor
RV right ventricular
SD sprague dawley
SHRs spontaneously hypertensive rats
SIRT silent information regulator of transcription
TAC transverse aortic constriction
TGF-b transforming growth factor-b
TLR toll-like receptor
TNF-a tumor necrosis factor-a;VAs, ventricular arrhythmias
WKY Wistar-Kyoto
WT wild type.
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