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Background: N7-methylguanosine (m7G) methylation is an RNA modification

associated with cancer progression, but its specific role in head and neck

squamous cell carcinoma (HNSCC) remains unclear.

Methods: This study analyzed the differential expression of m7G-related genes

(m7GRGs) in HNSCC using the TCGA-HNSCC dataset, identifying key pathways

associated with the cell cycle, DNA replication, and focal adhesion. A LASSO-Cox

regression model was constructed based on four m7GRGs (EIF3D, EIF1, LARP1,

and METTL1) and validated with GEO datasets and clinical samples. Further

validation of gene upregulation in HNSCC tissues was conducted using RT-

qPCR and immunohistochemistry, while the role of LARP1 in HNSCC cells was

assessed via knockout experiments.

Results: The constructed model demonstrated strong predictive performance,

with the risk score significantly correlating with prognosis, immune infiltration,

and drug sensitivity. An external dataset and clinical specimens further confirmed

the model’s predictive accuracy for immunotherapy response. Additionally, two

regulatory axes—LINC00707/hsa-miR-30b-5p/LARP1 and SNHG16/hsa-miR-

30b-5p/LARP1—were identified. LARP1 knockout experiments revealed that

suppressing LARP1 markedly inhibited HNSCC cell proliferation, migration,

and invasion.
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Conclusion: The m7GRG-based prognostic model developed in this study holds

strong clinical potential for predicting prognosis and therapeutic responses in

HNSCC. The identification of LARP1 and its related regulatory pathways offers

new avenues for targeted therapy in HNSCC.
KEYWORDS

N7-methylguanosine, head and neck squamous cell carcinoma, prognostic signature,
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Introduction

Head and Neck Squamous Cell Carcinoma (HNSCC) ranks as the

sixth most common malignancy worldwide, with over 500,000 new

cases and more than 140,000 deaths annually (1, 2). HNSCC is

characterized by aggressive growth, distant metastasis, high

postoperative recurrence, and poor prognosis. The main treatment

modalities include surgery combined with radiotherapy,

chemotherapy, and biological therapy (3, 4). Despite recent advances

in therapeutic techniques, the overall prognosis for patients with

advanced HNSCC has not significantly improved (5, 6). Therefore,

there is an urgent need to identify new reliable clinical biomarkers to

enhance the treatment efficacy and survival rates of HNSCC patients.

RNA methylation, a crucial post-transcriptional modification,

regulates gene expression by influencing mRNA stability, translation

efficiency, and degradation rate (7). In malignancies, this regulatory

role can lead to the aberrant activation of oncogenes or inactivation of

tumor suppressor genes, thereby promoting tumorigenesis and

progression (8–10). RNA methylation modifications include 5-

methylcytosine (m5C), N1-methyladenosine (m1A), N6-

methyladenosine (m6A), and N7-methylguanosine (m7G) (11).

N7-methylguanosine (m7G) modification is catalyzed by

methyltransferase-like protein-1 (METTL1) and WD repeat

domain 4 (WDR4), and these key enzymes exhibit abnormal

activity in various malignancies. Studies have shown that m7G

modification is associated with drug resistance and malignant

behavior in multiple cancers, including glioma, liver cancer, and

lung cancer (12). For instance, in glioma, the activity of O6-

methylguanine-DNA methyltransferase (MGMT) is positively

correlated with resistance to temozolomide (TMZ), highlighting the

potential role of methylation modifications in tumor drug resistance

(13). However, the specific role and mechanisms of m7G

modification in HNSCC remain underexplored.

The tumor microenvironment (TME) is a critical factor in

tumorigenesis and progression. RNA methylation also influences

the infiltration and function of immune cells in the TME by

regulating the expression of immune-related genes, thereby

promoting immune evasion of tumor cells (14). Immune

checkpoint inhibitors (ICIs) have been widely applied in the

treatment of various malignancies, including non-small cell lung

cancer, melanoma, renal cell carcinoma, and HNSCC (15). As
02
research progresses, more tumor types are found to benefit from

ICI therapy. However, a comprehensive and in-depth study of the

role of m7G modification in HNSCC and its relationship with

immunotherapy response is still lacking.

In this study, we analyzed m7G methylation-related genes

(m7GRGs) in HNSCC using bioinformatics methods. We

validated the expression of m7GRGs in clinical tissues and three

HNSCC cell lines via RT-qPCR. The relationship between m7GRGs

and HNSCC prognosis was explored, leading to the development of

a prognostic model based on four m7GRGs and the construction of

a ceRNA regulatory network. La-related protein 1 (LARP1) was

identified as a key oncogene. Knockout experiments in two HNSCC

cell lines demonstrated that LARP1 knockout significantly inhibited

cell proliferation, migration, and invasion. Our findings offer new

insights into the treatment and prognostic assessment of HNSCC.
Materials and methods

Data source and preprocessing

RNA sequencing data and clinical information for 504 HNSCC

cases were obtained from TCGA (https://portal.gdc.cancer.gov//)

(16). Data were normalized to Transcripts Per Million (TPM) and

visualized using R software (v4.0.3) with the “ggplot2” package.

Based on published data (9, 17, 18), 45 genes related to m7G

were identified.
Clinical data and tissue sample collection

Clinical data and tissue samples were collected from Chaohu

Hospital of Anhui Medical University and Peking University

Shenzhen Hospital, involving 76 HNSCC patients admitted

between September 2016 and September 2018. Formalin-fixed,

paraffin-embedded HNSCC tissues and adjacent normal tissues

(0.5 cm) were obtained with complete clinical data and follow-up

information. The study was approved by the Ethics Committees of

both hospitals (No. KYXM202310004 and 2022-117) and adhered

to the Helsinki Declaration (2013 revision). Written informed

consent was obtained from all patients.
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Subtype establishment

Consensus clustering of the 45 m7GRGs from the TCGA

expression matrix was performed using the R package

ConsensusClusterPlus (v1.54.0) (19), with k set to a maximum of

6, drawing 80% of the total sample 100 times. Optimal classification

was evaluated by varying cluster numbers (k=2-6), using the

consensus matrix and cumulative distribution function (CDF).

Clustering heatmaps were analyzed with the R package pheatmap

(v1.0.12), retaing motifs with variance > 0.1. Based on the

expression profiles of m7GRGs, TCGA cases were divided into

two clusters: Cluster 1 (N = 207) and Cluster 2 (N = 297) subtypes.
Identification and enrichment analysis of
differentially expressed genes

The R package Limma (v3.40.2) (20) identified differentially

expressed genes (DEGs) between molecular subtypes. Significant

mRNA differential expression thresholds were set at “Adjusted P

<0.05 and |log2 (fold change)| > 1”. Gene Ontology (GO) and

KEGG pathway enrichment were performed using the R package

clusterProfiler (v3.18.0) (21). Gene Set Enrichment Analysis

(GSEA) (22) identified potential biological pathways, analyzed

with the R package GSVA (23), using method = ‘ssgsea’. The

STRING database (https://string-db.org/) (24) (version 11.5)

analyzed the protein-protein interaction (PPI) network of m7GRGs.
Genetic variation

The CNV module of the Gene Set Cancer Analysis (GSCA)

(http://bioinfo.life.hust.edu.cn/GSCA) analyzed amplification/

deletion and heterozygous/homozygous of m7GRGs in HNSCC

and correlated m7GRG expression with CNV. 509 HNSCC patients

somatic mutations were visualized using the maftools package (25),

covering six mutation types. The impact of m7GRGs on HNSCC

patient survival was assessed using 523 HNSCC samples from the

cBioPortal (http://www.cbioportal.org/) (26).
Relationship between m7GRGs and HNSCC
clinical pathological characteristics
and prognosis

Clinical pathological data for 504 HNSCC patients from TCGA

(Supplementary Table S1) were included, encompassing variables such

as sex, tumor stage, grade, and smoking status. Significant P-values

were further analyzed using chi-square tests and represented as -log10

(P-value). The correlation between m7GRG expression and clinical

staging data was verified using UALCAN (http://ualcan.path.uab.edu/

index.html) (27). Protein expression of m7GRGs was obtained from

CPTAC (https://cptac-dataportal.georgetown.edu) (28), and the

Human Protein Atlas (HPA) (https://www.proteinatlas.org) (29)

analyzed m7GRG protein levels in HNSCC tissues.
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Construction of m7GRG prognostic
signature and predictive nomogram

Feature selection was conducted using LASSO regression with

10-fold cross-validation in the R package glmnet. After performing

10-fold cross-validation, the optimal tuning parameter, lambda, was

identified. This minimal lambda value was chosen because it

demonstrated the best performance on the validation dataset.

Subsequently, the LASSO Cox regression model was fitted using

this optimal lambda value. Cross-validation is a widely accepted

method for assessing the generalization ability of predictive models

by repeatedly training and evaluating the model on different subsets

of the data. By selecting lambda through this rigorous cross-

validation process, the robustness and reliability of the model

selection were ensured. According to the results of multivariate

Cox regression analysis, the prognostic m7GRG risk score was

calculated as follows: Risk score = ∑i (Coefficient (mRNA_i) ×

Expression (mRNA_i)). Based on the mean risk score, TCGA-

HNSCC patients were divided into low-risk and high-risk groups.

Survival differences were assessed using Kaplan-Meier analysis, and

model accuracy was evaluated with time-dependent receiver

operating characteristic (timeROC) analysis. Furthermore, the

validation cohort was used to verify the accuracy of the m7GRG

signature based on the above formula. The TCGA-HNSCC dataset

was randomly split into two validation sets: Validation Set 1 (n =

251) and Validation Set 2 (n = 252). In addition, the GEO database

(https://www.ncbi.nlm.nih.gov/gds) (30) (including GSE65858,

GSE41613, and GSE85446) was utilized as an external validation

cohort to further corroborate the findings. The Optimal cutoffs were

determined using the “surv_cutpoint” function in “survminer” R

package. Kaplan-Meier and ROC curves validated the prognostic

gene markers. Univariate and multivariate Cox regression analyses

were visualized with forestplot. A nomogram predicting 1-, 3-, and

5-year OS, PFS, and DSS was constructed using the rms package.

The calibration curve was employed to assess the consistency of the

nomogram, and its validity was further confirmed through time-

dependent ROC analysis, time-dependent AUC values, and

decision curve analysis (DCA). These analyses were conducted to

evaluate whether the nomogram demonstrates a stronger

association with clinical net benefits compared to other models.
Immune cell infiltration and
immunotherapy response analysis

Immune cell infiltration levels and expression differences of

immune checkpoint-related genes (HAVCR2, SIGLEC15, PDCD1,

CD274, PDCD1LG2, TIGIT, CTLA4, and LAG3) were compared

using six algorithms in the R package immunedeconv (31), including

TIMER (32), xCell (33), MCP-counter (34), CIBERSORT (35), EPIC

(36), and quantTIseq (37), analyzed via the Wilcoxon test. The

potential immune checkpoint blockade response was predicted using

the TIDE (Tumor Immune Dysfunction andExclusion) algorithm (38).

The ESTIMATE algorithm (39) estimated Immune cell abundance

(immune score), stromal cell infiltration level (stromal score), and the
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combined (ESTIMATEScore). Results were visualized using “ggplot2”

and “pheatmap”. Immune cell abundance was analyzed using TIMER

(https://cistrome.shinyapps.io/timer/) (40). Single-sample Gene Set

Enrichment Analysis (ssGSEA) (via R packages GSVA) (23)

quantified the infiltration levels of 24 immune cell types. The

response of m7GRGs to immunotherapy was predicted using

GSE91061, GSE135222, and GSE78220 datasets.
TMB, MSI, mRNAsi and drug
sensitivity analysis

Spearman correlation analysis between Tumor Mutation

Burden (TMB), Microsatellite Instability (MSI), mRNA stemness

index (mRNAsi) (41), and prognostic model risk score was

visualized using ggstatsplot. Drug sensitivity and gene expression

profile data from the GDSC (https://www.cancerrxgene.org/) (42)

and CTRP (https://portals.broadinstitute.org/ctrp/) databases

predicted chemotherapy response, achieved by the R package

pRRophetic (43).
Single-cell analysis

The t-SNE plot and heatmap of HNSCC_GSE103322 were

presented using TISCH (http://tisch.comp-genomics.org/) (44).

Correlation between prognostic m7GRGs expression levels and

cancer-associated fibroblasts (CAFs) was plotted using TIMER2.0

(http://timer.cistrome.org/) (45).
Correlation analysis with CRGs

CRGs analyzed included ATP7B, CDKN2A, LIPT1, DLAT,

PDHA1, LIAS, PDHB, GLS, DLD and FDX1 (46). Spearman

correlation analysis was performed between m7GRGs and CRGs

expression in TCGA-HNSCC samples. The Wilcoxon test analyzed

expression level differences of CRGs between high and low m7GRG

expression groups, visualized using “ggplot2”.
Prediction of potential miRNA and lncRNA
target genes

Potential miRNA and lncRNA target genes were predicted

using RNAInter (http://www.rnasociety.org/rnainter/) (47),

ENCORI (http://starbase.sysu.edu.cn/) (48), and miRNet (http://

www.mirnet.ca/) (49) databases. An mRNA-miRNA, miRNA-

lncRNA regulatory network was constructed using Cytoscape

(version 3.7.1; http://www.cytoscape.org/) (50). The correlation

and prognostic value of predicted miRNA and lncRNA with

m7GRGs in HNSCC were validated using ENCORI and Kaplan–

Meier plotter databases.
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Cell lines and culture conditions

A normal squamous cell line (NOK) and three HNSCC cell

lines (HN6, HSC3, SCC9) were obtained from ATCC (Manassas,

VA, USA). HN6 and HSC3 cells were cultured in DMEM (Sigma,

D5546) with 10% fetal bovine serum (FBS) (Gibco, 10099-141C)

and 1% penicillin-streptomycin (PS) (Gibco, 15070063). SCC9 cells

were cultured in DMEM with 10% FBS, 1% PS, and 1 ng/mL

hydrocortisone (MCE, HY-N0583). NOK cells were maintained in

Defined Keratinocyte-SFM (Gibco, 10744019) with growth

supplement and 1% PS. All cultures were incubated at 37°C in a

humidified incubator with 5% CO2. Cells were seeded in six-well

plates for 24 hours and then transfected with shRNA-LARP1

(GeneRulor, Zhuhai) using Lipofectamine 3000 (Invitrogen, USA)

at 60-70% confluency. RNA was extracted 48 hours post-

transfection to assess transfection efficiency. Experiments were

performed in triplicate.
Proliferation and colony formation assays

For proliferation assays, 2000 cells were seeded into 96-well

plates. Cell viability was assessed daily for five days using the Cell

Counting Kit-8 (CCK-8) assay (Dojindo, Japan) according to the

manufacturer’s instructions; each experiment was performed in

triplicate. For colony formation assays, 1000 cells were seeded

into six-well plates and cultured for approximately two weeks.

Visible colonies were fixed with 4% paraformaldehyde, stained

with 1% crystal violet, and counted.
Wound healing assay

Cells were seeded in six-well plates and grown to 90%

confluence. A wound was created using a pipette tip, and

detached cells were removed with PBS. Images of the wound area

were captured 24 hours post-wounding, and the wound area was

measured using ImageJ.
Transwell assay

Cell migration and invasion were analyzed using 24-well

Transwell chambers with or without Matrigel coating (Corning,

NY, USA, 354480, 3422). Cells suspended in serum-free medium

were placed in the upper chamber, while medium containing 10%

FBS was added to the lower chamber. After 24 hours of incubation,

non-migrated cells in the upper chamber were removed. Migrated

cells on the Transwell membrane were fixed with methanol, stained

with crystal violet, and counted under a microscope (×100

magnification) in five randomly selected fields.
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RNA extraction and RT-qPCR

Total RNA was extracted using the Quick-RNA MiniPrep Kit

(Zymo Research, R1054). Target gene expression was detected using

the miScript SYBR Green PCR Kit (Qiagen, Germany) on a

LightCycler 96 real-time PCR system (Roche Diagnostics GmbH,

Mannheim, Germany). Relative mRNA expression levels were

quantified using the 2-△△CT method, with GAPDH as the

reference gene. PCR primers are listed in Supplementary Table S2.
Validation of m7GRG protein expression
by immunohistochemistry

DRG protein expression in HNSCC tissues was evaluated by

immunohistochemistry (IHC). Formalin-fixed, paraffin-embedded

tissue samples were sectioned at 4 µm, deparaffinized, rehydrated,

and antigen retrieval was performed in EDTA. Endogenous peroxidase

activity was blocked with 3% hydrogen peroxide. Non-specific binding

was reduced with 10% normal goat serum. Rabbit monoclonal

antibodies against m7GRG (ab155419, ab172623, ab86359, ab271063;

1:500, Abcam, UK) were used as primary antibodies, and samples were

incubated at room temperature for 1 hour. After washing with PBS,

biotin-labeled secondary antibodies and streptavidin-biotin complex-

horseradish peroxidase were added sequentially, with each incubation

lasting 10 minutes at room temperature. Samples were then stained

with DAB, dehydrated, and mounted with resin. The results were

quantified using ImageJ software.
Statistical analysis

All experiments were repeated at least three times independently.

The quantitative data are presented as mean + standard deviation

(SD). SPSS Statistics 24.0 (IBM Corp Armonk, NY, USA) was utilized

to analyze the data. Student’s t-test was used to compare the

differences between two groups, and one-way analysis of variance

(ANOVA) was used to compare the difference between three or more

groups. A two-tailed p-value < 0.05 was considered statistically

significant. In the Figures, asterisks indicate the p-value: *p< 0.05,

**p<0.01, and ***p< 0.001.
Results

Identification and analysis of m7GRGs
clustering in HNSCC

The study workflow is illustrated in Figure 1. Based on the

expression levels of 45 m7GRGs in HNSCC, we performed

consensus clustering on 504 HNSCC samples from the TCGA

database. The tumor samples were divided into k (k = 2-6)

distinct clusters. After analyzing the clustering results, we selected

k = 2, which accurately grouped the HNSCC patients into two

clusters: C1 (N = 207) and C2 (N = 297) (Figures 2A–D). Compared

to Cluster 1, all m7GRGs were upregulated in Cluster 2 (Figure 2E).
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Kaplan-Meier survival analysis revealed that the overall survival

(OS) and progression-free survival (PFS) of C2 patients were

significantly lower than those of C1 patients (Figure 2F). The

protein-protein interaction (PPI) network of the 45 m7GRGs was

constructed using the STRING tool (Figure 2G). Further statistical

analysis of the interaction strengths between the genes identified

key hub genes, including LARP1, EIF4E, NCBP2, NCBP1, EIF4E2,

and EIF4E3 (Figure 2H).
Differentially expressed genes and
functional enrichment analysis

Volcano and heat maps were constructed based on DEGs

between the C1 and C2 subtypes (Figures 3A, B). The DEGs

identified between C1 and C2 subtypes included 161 upregulated

genes and 4025 downregulated genes. KEGG enrichment analysis

highlighted pathways such as focal adhesion, p53 signaling, ECM-

receptor interaction, PI3K-Akt signaling, TGF-beta signaling, and

T-cell receptor signaling. GO analysis revealed enrichment in DNA

replication, covalent chromatin modification, chromosomal region,

cell-matrix adhesion, ATPase activity, and extracellular matrix

binding (Figure 3C). GSEA indicated significant enrichment in

cell cycle, focal adhesion, adherens junction, ECM-receptor

interaction (Figure 3D; Supplementary Table S3).
Genetic variation analysis

Using the GSCA database, an Oncoplot revealed the top 10 genes

with SNVs among m7GRGs, with EIF4G1 (14%) and APAF1 (10%)

having the highest mutation frequencies (Figure 4A). Missense

mutations were the most common mutation type (Figure 4B).

Single nucleotide polymorphisms (SNPs) were more frequent than

insertions and deletions (Figure 4C), with C>T being the most

common SNV type (Figure 4D). Analysis of the number of base

changes per patient showed a median and maximum of 1 and 11

mutations, respectively (Figure 4E). A boxplot of each variant

classification showed the frequency of occurrences (Figure 4F).

Recalculating the top 10 mutated genes, considering multiple hits,

yielded slightly different results (Figure 4G). There was a significant

negative correlation between mRNA expression of m7GRGs and

gene methylation levels (Figure 4H). Lower methylation levels were

significantly associated with poorer prognosis in HNSCC patients

(Figure 4I). Through the GSCA database, analysis of the CNV

landscape of 45 m7GRGs in HNSCC showed high rates of

heterozygous deletion/amplification (Supplementary Figure S1A).

NCBP2, LSM1, PHAX, NSUN2, and NCBP3 had higher CNV

rates compared to other genes (Supplementary Figure S1B). CNV

analysis indicated both heterozygous amplification and heterozygous

deletion of m7GRGs (Supplementary Figure S1C). Detailed mutation

sites of EIF3D, EIF1, LARP1, and METTL1 included missense

mutations, splice sites, nonsense mutations, and frameshift

deletions (Supplementary Figure S2A). Supplementary Figure S2B

provides a detailed distribution ratio of CNVs in m7GRGs in

HNSCC. Subsequent analysis of HNSCC samples from the
frontiersin.org
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cBioPortal database revealed significant differences between the

mutation group and the non-mutation group in mutation

count (p = 0.0212, q = 0.145), TMB (nonsynonymous) (p = 0.0259,

q = 0.145), genome alteration fraction (p = 0.0253, q = 0.145), and

Ragnum hypoxia score (p = 0.0283, q = 0.145), especially in the

PanCan Pathway Analysis (p = 5.54e-7, q = 2.547e-5) (Figure 4J).
Frontiers in Immunology 06
Survival analysis indicated that genetic alterations in m7GRGs were

significantly associated with shorter OS (p = 0.0224, HR = 0.725

[0.539 - 0.976]) and DSS (p = 0.0414, HR = 0.689 [0.468 - 1.0144])

but not with PFS (p = 0.291, HR = 0.850 [0.622 - 1.162]) (Figure 4K).

These results suggest that alterations in m7GRGs impact the

prognosis of HNSCC patients.
FIGURE 1

Flowchart of the present study.
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Prognostic value analysis

Compared to normal tissues, most genes were upregulated in

cancer tissues, while EIF4E3, NUDT12, and NUDT4 were

downregulated (Figure 5A). Forest plot analysis revealed that high

expression of EIF3D, EIF1, LARP1, NUDT7, and METTL1 was

associated with lower overall survival in HNSCC patients

(Figure 5B). Specifically, high expression of EIF3D (p = 0.00364,

HR = 1.495 [1.14 - 1.96]), EIF1 (p = 0.0294, HR = 1.349 [1.03 -

1.767]), LARP1 (p = 0.0105, HR = 1.422 [1.086 - 1.863]), and

METTL1 (p = 0.0483, HR = 1.312 [1.002 - 1.718]) indicated poor

prognosis (Figure 5C). The expression levels of prognostic m7GRGs

were significantly upregulated in high expression groups in

GSE12452 and GSE53819 datasets (Figure 5D). ROC curve
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analysis showed AUC values greater than 0.7, indicating high

diagnostic accuracy of prognostic m7GRGs in HNSCC (Figure 5E).
Pathological expression of m7G-related
proteins in HNSCC

Compared to normal tissues, the protein expressions of EIF3D,

EIF1, and METTL1 were significantly higher in HNSCC tissues

according to the CPTAC database (Supplementary Figure S3A).

Immunohistochemistry staining revealed moderate to high expression

of prognostic m7GRGs in HNSCC tissues, while expression was lower

in normal tissues. However, immunohistochemistry results for EIF1

were not available (Supplementary Figure S3B).
FIGURE 2

Identification of common clusters based on the expression of m7G-related genes (m7GRGs). (A) Cumulative distribution function (CDF) for k = 2–6;
(B) Relative change in area under the CDF curve (CDF Delta area) for k = 2–6; (C) Consensus clustering matrix for k = 2; (D) Heat map of m7GRG
expression in different subtypes, with red indicating high expression and blue indicating low expression; (E) Expression levels of 45 m7GRGs in
cluster 1 and cluster 2, including the quartile ranges of upper and lower representative values of the box, with the line in the box representing the
median value; (F) Kaplan-Meier survival analysis was conducted according to two clusters. (G) Protein-protein interaction network (PPI) of m7GRGs
(STRING) ; (H) Pearson's correlation analysis of 45 m7GRG expressions in HNSCC. *p<0.05, **p<0.01, ***p<0.001.
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Construction of prognostic model

LASSO Cox regression analysis was performed to construct a

prognostic model based on EIF3D, EIF1, LARP1, and METTL1

(Figures 6A, B). The risk score for OS in patients with HNSCC was

determined as follows: (0.3372) * EIF3D + (0.2681)* EIF1 +

(0.1292) * LARP1 + (0.0675) * METTL1. According to the risk

score, HNSCC patients were divided into two groups. The

distribution of risk scores, survival status, and expression levels of

the four m7GRGs are shown in Figures 6C, D. Increased risk scores

were associated with higher mortality risk and shorter survival time

(Figure 6C). Kaplan-Meier curves showed lower OS rates in

HNSCC patients with high risk scores [median time = 3 and 5.5

years, log-rank p = 0.000597, HR = 1.611 (1.227–2.115)]

(Figure 6D). The 1-year, 3-year, and 5-year ROC curves had

AUCs of 0.613, 0.613, and 0.612, respectively (Figure 6E).
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Internal and external validation of
prognostic model

The prognostic model’s predictive value was validated using TCGA

internal validation sets 1 and 2, showing the distribution of risk scores,

survival time, and m7GRGs expression for each HNSCC patient

(Supplementary Figures S4A, B). OS was significantly poorer in

high-risk patients in the validation sets (Supplementary Figures S4C,

S3D). AUCs for 1-year, 3-year, and 5-year OS were 0.621, 0.655, and

0.662 in TCGA validation set 1 (Supplementary Figure S4E) and 0.603,

0.613, and 0.660 in TCGA validation set 2 (Supplementary Figure S4F).

The GSE65858, GSE41613, GSE85446 dataset was used as an external

validation cohort, showing consistent results with the TCGA internal

validation cohorts. Distribution of risk scores, survival time, and

m7GRGs expression for each HNSCC patient are shown

(Supplementary Figures S4G–I). OS was significantly lower in high-
FIGURE 3

Screening of differentially expressed genes (DEGs) between m7GRG subtypes and functional enrichment analysis of DEGs. (A) Volcano plot of DEGs
between C1 and C2 subtypes, constructed using fold change and adjusted p-values. The left side represents significantly downregulated genes,
while the right side represents significantly upregulated genes. (B) Heat map of DEGs between C1 and C2 subtypes; (C) KEGG and GO enrichment
analysis results for DEGs; (D) Enrichment map from GSEA.
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risk patients compared to low-risk patients (p < 0.05) (Supplementary

Figures S4J–L). The AUCs for 1-year, 3-year, and 5-year OS were 0.627,

0.604, and 0.640 in the GSE65858 dataset, respectively (Supplementary

Figure S4M). The AUCs for 1-year, 3-year, and 5-year OS were 0.673,

0.652, and 0.655 in the GSE41613 dataset, respectively (Supplementary
Frontiers in Immunology 09
Figure S4N). The AUCs for 1-year, 3-year, and 5-year OS were 0.660,

0.694, and 0.733 in the GSE85446 dataset, respectively (Supplementary

Figure S4O). Collectively, these results validate the effectiveness of our

risk scoremodel, and them7GRGs prognostic signature can predict OS

in HNSCC.
FIGURE 4

Correlation analysis of genetic alterations in m7GRGs. (A) Distribution of mutation types in the top 10 m7GRGs in HNSCC; (B–D) Variant
classification, variant type, and SNV class; (E) Mutation burden per sample; (F) Summary of variant classification; (G) Top 10 mutated genes in
HNSCC. SNP, single nucleotide polymorphism. (H) Relationship between methylation levels and m7GRG expression; (I) Correlation between
methylation levels and survival rates in HNSCC patients; (J) Association between mutation count, TMB (nonsynonymous), fraction genome altered,
Ragnum hypoxia score, PanCan pathway analysis, and m7GRG alterations in HNSCC tissues; (K) Association between m7GRG alterations and shorter
OS, PFS, and DSS in HNSCC patients.
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Construction of predictive nomogram

Univariate and multivariate Cox analysis results indicate that

age, tumor stage, and prognostic m7GRGs are independent

prognostic factors for OS in HNSCC patients, based on

multivariate Cox proportional hazards analysis (Figures 7A, B).

Integrating risk scores with age and tumor stage-related prognostic

independent factors, we established a nomogram to predict 1-year,

3-year, and 5-year OS.
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Compared to other clinical features, the nomogram achieved the

highest AUC values for predicting 1-year, 3-year, and 5-year overall

survival (OS), with values of 0.788, 0.889, and 0.894, respectively

(Supplementary Figure S5A). Additionally, a time-dependent AUC

curve demonstrating the nomogram’s performance in predicting OS

within the TCGA cohort was plotted (Supplementary Figure S5B).

Decision curve analysis (DCA) was also conducted to assess the

clinical utility of the nomogram (Supplementary Figure S5C).

Compared to other clinical factors, the nomogram offered the best
FIGURE 5

Prognostic value and gene expression. (A) Expression levels of 45 m7GRGs in HNSCC and adjacent tissues; (B) Univariate Cox regression analysis of
m7GRGs; (C) Prognostic value of four m7GRGs (EIF3D, EIF1, LARP1, and METTL1) in high and low expression groups among HNSCC patients;
(D) mRNA expression of prognostic m7GRGs in GSE12452 and GSE53819 datasets; (E) ROC curves evaluating the diagnostic ability of prognostic
m7GRG expressions in GSE12452 and GSE53819 datasets. n.s. no significance (p > 0.05), *p<0.05, **p<0.01, ***p<0.001.
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net benefit, with strong stability and reliability. These results suggest

that the developed nomogram provides higher prognostic accuracy for

HNSCC patients and may offer significant clinical benefits. The

nomogram results showed that the prediction accuracy for 1-year,

3-year, and 5-year OS [C-index: 0.624 (0.601-0.646), p<0.001]

(Figures 7C, D), PFS [C-index: 0.639 (0.585-1), p<0.001]

(Supplementary Figures S6A–D), and DSS [C-index: 0.623 (0.571-1),

p<0.001] (Supplementary Figures S6E–H) were more accurate than

the ideal model.
Correlation between m7GRG expression
and HNSCC clinical
pathological characteristics

In the TCGA cohort, there were notable differences in tumor

grade and smoking status between the C1 and C2 subtypes.

(Supplementary Figure S7A). Further analysis of TCGA data

revealed that the expression of these four genes was significantly

correlated with tumor grade (Supplementary Figure S7B) and varied

notably across different pathological stages of HNSCC. Additionally,
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analysis using the UALCAN database confirmed that the expression

levels of these four genes were significantly associated with HNSCC

tumor stage and grade (Supplementary Figure S7C).
Immune cell infiltration analysis

The CIBERSORT algorithm revealed significant differences in the

infiltration of various immune cell types, including CD8+ T cells,

follicular helper T cells, activated NK cells, resting NK cells, resting

memory CD4+ T cells, memory B cells, regulatory T cells (Tregs),

naive B cells, gamma delta T cells, and neutrophils between the C1

and C2 HNSCC subtypes (Figure 8A). Additionally, the abundance of

CD8+ T cells and activated NK cells in C1 was significantly higher

than in C2, while the opposite trend was observed for resting memory

CD4+ T cells (Figure 8B). Similar differences were observed using the

quantTIseq, TIMER, EPIC, xCell, and MCPcounter algorithms

(Supplementary Figures S8A–E). Quantitative analysis of immune

cell infiltration using CIBERSORT and ssGSEA methods compared

immune cell enrichment scores between high-risk (red) and low-risk

(blue) groups. CIBERSORT showed that the low-risk group exhibited
FIGURE 6

Construction of a prognostic model using m7GRGs in HNSCC tissue. (A) LASSO coefficient curve of four m7GRGs; (B) Ten-fold cross-validation
error rates; (C) Distribution of risk score, survival status, and expression of prognostic m7GRGs in HNSCC patients; (D) Overall survival curve for high/
low-risk groups of HNSCC patients; (E) Time-dependent ROC curve for 1-, 3-, and 5-year OS for m7GRGs.
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significantly higher infiltration of several immune cell types,

including CD8+ T cells, activated CD4+ memory T cells, regulatory

T cells (Tregs), follicular helper T cells, resting dendritic cells, resting

mast cells, and neutrophils. Conversely, the high-risk group showed

significantly higher enrichment levels of M0 macrophages and

activated mast cells. These findings suggest that the high-risk group

may exhibit a weaker antitumor immune response, yet show a

stronger immune response in certain cell types, such as

macrophages and activated mast cells (Figure 8C).

Analysis with CIBERSORT and ssGSEA revealed a significant

correlation between immune cell infiltration and risk score

(riskScore). Overall, risk scores were negatively correlated with

the infiltration of several immune cell types, particularly plasma

cells, CD8+ T cells, activated CD4+ memory T cells, regulatory T

cells, follicular helper T cells, dendritic cells, mast cells, and

neutrophils. This suggests that higher risk scores are associated

with decreased infiltration of these immune cells, potentially linked

to tumor immune evasion or increased immunosuppressive states.

In contrast, risk scores showed a positive correlation with

infiltration of certain immune cells, such as resting CD4+

memory T cells and macrophages, indicating enhanced

infiltration of these cells in high-risk states. These findings

provide new insights into the complex relationship between the

tumor microenvironment and immune responses (Figure 8D).

Further analysis revealed a significant negative correlation

between risk scores and stromal scores (P = 0.010, Cor = -0.115),

immune scores(P <0.001, Cor = -0.282),and ESTIMATEScore
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(Figure 8E). TIMER analysis indicated that EIF1 negatively

correlated with neutrophils, METTL1 with CD8+ T cells, and

LARP1 positively correlated with multiple immune cell types,

whereas EIF3D showed no significant correlation. However, their

expression levels were closely associated with tumor purity

(Supplementary Figure S9A). High levels of B cells, M2

macrophages, NK cells, CD8+ T cells, and Tregs were associated

with improved prognosis, while elevated levels of M1 macrophages,

neutrophils, and non-regulatory CD4+ T cells correlated with

poorer overall survival (OS) rates (Supplementary Figure S9B).

These findings suggest that m7GRGs are significantly linked to

tumor immune infiltration, highlighting their potential as targets

for immunotherapy.
Immunotherapy response analysis

The expression of eight immune checkpoint-related genes was

assessed across two molecular subtypes and high- and low-risk groups.

Significant expression differences were observed in PDCD1 (P < 0.05),

PDCD1LG2 (P < 0.05), TIGIT (P < 0.05), and ITPRIPL1 (P < 0.001)

between the high- and low-risk groups in HNSCC (Figure 9A). Risk

scores were negatively correlated with CTLA4 (P = 0.0225, Cor =

-0.102), LAG3 (P = 0.0458, Cor = -0.0891), PDCD1 (P = 0.0032, Cor =

-0.1310), PDCD1LG2 (P = 0.0245, Cor = -0.1003), and TIGIT (P =

0.0021, Cor = -0.1369), but positively correlated with SIGLEC15 (P =

0.0101, Cor = 0.1146) and ITPRIPL1 (P < 0.00001, Cor = 0.1934)
FIGURE 7

Construction of a predictive nomogram. (A, B) Hazard ratios and P-values for constituents involved in univariate and multivariate Cox regression
analysis, considering clinical information and prognostic m7GRGs in HNSCC; (C) Nomogram predicting 1-, 3-, and 5-year OS of HNSCC patients;
(D) Calibration curve of the OS nomogram model in the discovery group, with the diagonal dotted line representing the ideal nomogram.
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(Figure 9B). In the C1 subtype, the expression levels of CD274,

HAVCR2, PDCD1, TIGIT, and SIGLEC15 were significantly higher

than in the C2 subtype (Figure 9C). The TIDE score analysis revealed

that the C1 subtype had significantly lower TIDE scores compared to

the C2 subtype (Figure 9D). Additionally, predictions from the TIDE

database indicated a higher proportion of immunotherapy responders

in the low-risk group compared to the high-risk group (P < 0.05)

(Figure 9E). The TIDE score was lower in the low-risk group

(Figure 9F), with higher TIDE dysfunction scores (Figure 9G) and

lower TIDE exclusion scores (Figure 9H). Validation using the

GSE91061, GSE135222, and GSE78220 datasets confirmed the

accuracy of m7GRGs expression in predicting immune response,

with AUC values of 0.645 (95% CI, 0.493-0.797), 0.862 (95% CI,

0.701-1.000), and 0.836 (95%CI, 0.675-0.997), respectively (Figures 9I–
Frontiers in Immunology 13
K). In the GSE135222 and GSE78220 immunotherapy cohorts, OS was

better in low-risk patients compared to high-risk patients (Figure 9L).

These results suggest that patients with low m7GRGs risk scores are

more likely to respond to immunotherapy and have better outcomes.
TMB, MSI, mRNAsi, and drug
sensitivity analysis

TMB and mRNAsi scores were significantly higher in the high-

risk group, with positive correlations between risk scores and TMB

(R = 0.141, p = 0.002), MSI (R = 0.128, p = 0.004), and mRNAsi

(R = 0.254, p < 0.001) (Figure 10A). Survival analysis showed that

patients with high TMB scores had poorer OS (p = 0.005, HR = 1.53
FIGURE 8

Relationship between m7GRG expression levels and immune infiltration in the tumor microenvironment. (A) Heatmap of immune cell scores
between C1 and C2 subtypes in TCGA, along with the percentage abundance of tumor-infiltrating immune cells in each sample (CIBERSORT
algorithm). (B) Differences in immune cell infiltration between Cluster 1 and Cluster 2 groups in HNSCC (CIBERSORT algorithm). (C) Differences in
immune cell infiltration scores between high-risk and low-risk groups in HNSCC (CIBERSORT, ssGSEA algorithm). (D) Correlation between risk
scores in HNSCC and tumor immune cell infiltration (CIBERSORT, ssGSEA algorithm). (E) Correlation between risk scores and three ESTIMATE
metrics, and differences in ESTIMATE risk scores in HNSCC. n.s. no significance (p > 0.05), *p<0.05, **p<0.01, ***p<0.001.
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FIGURE 9

Immunotherapy response analysis. (A) Expression distributions of eight immune checkpoint-related genes between high and low m7GRG risk score
groups in HNSCC; (B) Correlation between risk scores in HNSCC and immune checkpoint-related genes; (C) Expression distributions of eight
immune checkpoint-related genes between cluster 1 and cluster 2 groups in HNSCC; (D) Differential reactions of cluster 1 and cluster 2 groups to
immune checkpoint blocking in TIDE score; (E) Prediction of immunotherapy response rates in patients with high and low m7GRG risk scores;
(F) Differential reactions of high and low m7GRG risk score groups to immune checkpoint blocking in TIDE score; (G) Differences in TIDE
dysfunction score between high and low m7GRG risk score groups; (H) Differences in TIDE exclusion score between high and low m7GRG risk score
groups; (I-K) Prediction of immune response and ROC analysis of m7GRG risk scores for predicting ICI responsiveness in GSE91061, GSE135222, and
GSE78220 datasets; (L) Kaplan–Meier plots of overall survival for high and low risk patients in GSE135222 and GSE78220 datasets (NR, not
responding to immunotherapy; R, responding to immunotherapy). n.s. no significance (p > 0.05), *p<0.05, **p<0.01, ***p<0.001.
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[1.14 - 2.07]), but MSI scores (p = 0.211, HR = 1.21 [0.90 - 1.62])

and mRNAsi scores (p = 0.069, HR = 0.76 [0.57 - 1.02]) were not

associated with prognosis (Figure 10B). Further analysis divided

patients into four subgroups to assess the combined impact of risk

scores and TMB on survival. OS was better in low TMB + low-risk

score patients compared to high TMB + high-risk score patients (p

= 0.004). Similarly, patients in the high MSI + high-risk group had

poorer prognosis, while those in the low MSI + low-risk group had

better OS (p = 0.004). Patients in the low mRNAsi + low-risk group

had better OS compared to the high mRNAsi + high-risk group (p =

0.003) (Figure 10C). Several drugs from the GDSC and CTRP

databases showed significant correlations with the risk score model

(Figure 11A). High-risk HNSCC showed significantly higher

sensitivity to 5-fluorouracil, vorinostat, LAQ824, methotrexate,

ispinesib mesylate, gemcitabine, etoposide, TAK-715, and

bleomycin. Spearman correlation analysis indicated negative

correlations between risk scores and these drugs (Figure 11B).

These drugs may be potential treatment options for HNSCC.
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Single-cell RNA data analysis

In the TISCH database, we conducted single-cell RNA

sequencing and clustering analysis using the GSE dataset

(HNSCC_GSE103322) (Figure 12A). We evaluated the expression

of EIF3D, EIF1, LARP1, and METTL1 at the single-cell level

(Figure 12B) and observed strong expression in fibroblasts

(Figure 12C). Further analysis revealed strong correlations between

the expression of EIF3D, EIF1, LARP1, and METTL1 and CAF-

related biomarkers (Figure 12D). Immune infiltration analysis

showed significant correlations between CAF infiltration and the

expression of EIF3D, EIF1, LARP1, and METTL1 (Figure 12E).
Correlation analysis between m7GRGs
and CRGs

We analyzed the correlation between prognostic m7GRGs and

cuproptosis-related genes (CRGs) in the TCGA-HNSCC cohort.
FIGURE 10

TMB, MSI, ESTIMATE, and mRNAsi. (A) Correlation between the risk score model and TMB, MSI, and mRNAsi, including differences in expression
between high and low risk groups in HNSCC; (B) Kaplan-Meier curves for high and low TMB, MSI, and mRNAsi groups in HNSCC; (C) Kaplan-Meier
curves for four groups classified by risk score, TMB, MSI, and mRNAsi in HNSCC. n.s. no significance (p > 0.05), *p<0.05, ***p<0.001.
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The results showed that prognostic m7GRGs were positively

correlated with most CRGs. A heatmap was plotted to illustrate

the correlation between m7GRGs and EIF3D, EIF1, LARP1, and

METTL1 (Supplementary Figure S10A). Additionally, CRG

expression levels were significantly higher in high-expression

groups of EIF3D, EIF1, LARP1, and METTL1 (p < 0.05)

(Supplementary Figure S10B). Further analysis identified DLD,

PDHA1, PDHB, and GLS as key differentially expressed genes

associated with prognostic m7GRGs (Supplementary Figure

S10C). Kaplan-Meier curves indicated that high expression levels

of PDHA1 and GLS were significantly linked to poorer prognosis in

HNSCC (Supplementary Figure S10D). These findings suggest that

prognostic m7GRGs are crucial in cuproptosis in HNSCC,
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potentially influencing HNSCC progression by regulating PDHA1

and GLS.
Prediction and validation of upstream
key miRNAs

Intersecting results from the ENCORI and RNAInter databases

identified 1 EIF3D-miRNA, 66 EIF1-miRNAs, 127 LARP1-

miRNAs, and 9 METTL1-miRNAs (Supplementary Figure S11A).

A potential interaction network was constructed using Cytoscape

software (Supplementary Figure S11B). Screening these candidate

miRNAs for expression correlation in HNSCC via the Pan-cancer
FIGURE 11

Drug sensitivity analysis. (A) Predictive antitumor drugs based on the risk score model in HNSCC from GDSC and CTRP datasets; (B) Spearman
correlation analysis of IC50 scores and risk score model, and distribution of IC50 scores in high and low groups. **p<0.01, ***p<0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1520070
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2025.1520070
subproject of the ENCORI database revealed significant negative

correlations in 13 EIF1-miRNAs, 21 LARP1-miRNAs, and 1

METTL1-miRNA interactions (Supplementary Figure S12).

Further validation of the prognostic effects and expression levels

of these miRNAs in HNSCC, using the Kaplan-Meier plotter and

TCGA databases, showed that low expression levels of 10 miRNAs
Frontiers in Immunology 17
were significantly associated with poorer prognosis (Supplementary

Figure S13). Notably, hsa-miR-30b-5p expression levels were

significantly lower in HNSCC tissues compared to normal tissues

(Supplementary Figure S11C). Furthermore, analysis using the

Targetscan database revealed that the 3’-UTR of LARP1 contains

a binding site for hsa-miR-30b-5p (Supplementary Figure S11D).
FIGURE 12

Expression of four prognostic m7GRGs in different immune cell types in HNSCC. (A) Cluster diagram of cell types in scRNA-seq data, with a t-SNE
diagram showing expression of different immune cells (HNSCC_GSE103322) in HNSCC tissues; (B) Characteristic maps of four prognostic m7GRGs
obtained from scRNA-seq data; (C) Heat maps of four prognostic m7GRGs from scRNA-seq data; (D) Correlation between expression of four
prognostic m7GRGs and CAF-related markers; (E) Correlation between expression of four prognostic m7GRGs and CAF infiltration as analyzed by
TIMER2.0. *p<0.05, **p<0.01.
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Based on correlation, survival rate, and expression differential

analysis, hsa-miR-30b-5p emerges as a potential miRNA

in HNSCC.
Prediction and validation of key miRNAs
and potential lncRNAs

Intersecting results from the ENCORI and miRNet databases

predicted 46 lncRNAs binding to hsa-miR-30b-5p (Figure 13A). A
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miRNA-lncRNA regulatory network was established using

Cytoscape software (Figure 13B). Correlation analysis of lncRNAs

and hsa-miR-30b-5p expression using the ENCORI database

identified significant correlations between LINC00707 and

SNHG16 with hsa-miR-30b-5p and LARP1 (Supplementary Table

S4, Figure 13C). Subsequent assessment of the prognostic value of

these lncRNAs in HNSCC using the Kaplan-Meier plotter showed

that LINC00707 and SNHG16 were significantly upregulated in

HNSCC, and their upregulation was associated with poorer

prognosis (Figure 13D). A key mRNA-miRNA-lncRNA
FIGURE 13

Screening of the LncRNA-miRNA-m7GRG regulatory axis in HNSCC. (A) Prediction of potential lncRNAs for hsa-miR-30b-5p through miRNet and
ENCORI databases; (B) Construction of a potential miRNA-lncRNA network using Cytoscape software; (C) Correlation of two potential lncRNAs with
hsa-miR-30b-5p and LARP1 in HNSCC; (D) Expression level and prognostic value of two potential lncRNAs in HNSCC; (E) Triple regulatory network
of mRNA-miRNA-lncRNA affecting HNSCC prognosis. ***p<0.001.
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regulatory network related to HNSCC prognosis was ultimately

established, including four mRNAs (EIF3D, EIF1, LARP1, and

METTL1), one miRNA (hsa-miR-30b-5p), and two lncRNAs

(LINC00707 and SNHG16) (Figure 13E).
Validation of m7GRGs at mRNA and
protein levels

To validate the TCGA analysis results at the mRNA level, RT-

qPCR was performed to assess the expression of four prognostic
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m7GRGs in HNSCC tissues and adjacent non-tumor tissues.

Consistent with cellular expression patterns, EIF3D, EIF1,

LARP1, and METTL1 were significantly upregulated in HNSCC

tissues (Figure 14A). Immunohistochemistry results further

corroborated these findings (Figure 14B). Additionally,

quantitative immunohistochemical analysis revealed that the

expression of EIF3D, EIF1, LARP1, and METTL1 in the tumor

group was significantly higher than in adjacent tissues

(Supplementary Figure S14). Additionally, the predictive

performance of this prognostic model was validated using

clinical tissue samples from our hospital. Patients were classified
FIGURE 14

Cellular experiments and clinical sample validation. (A) Relative expression of prognostic m7GRGs in normal and HNSCC tissues; (B)
Immunohistochemistry results of prognostic m7GRGs in normal and HNSCC tissues; (C) Overall survival curve for high/low-risk groups of HNSCC
patients; (D) Time-dependent ROC curve for 1-, 3-, and 5-year OS for m7GRGs; (E) DCA curves for m7G-related prognostic signature in the clinical
sample group; (F) Differential expression of four prognostic m7GRGs in NOK, NH12, CAL27, and SCC25 cell lines. ***p<0.001.
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into high-risk and low-risk groups based on the risk scores derived

from the established formula. Survival analysis revealed that high-

risk patients had significantly shorter overall survival compared to

the low-risk group (p = 0.004, HR = 2.52 [1.35–4.72], Figure 14C),

consistent with the results from the TCGA and GEO databases.

The AUCs for the 1-year, 3-year, and 5-year ROC curves were

0.829, 0.844, and 0.848, respectively (Figure 14D). Decision curve

analysis (DCA) also demonstrated significant clinical utility in
Frontiers in Immunology 20
predicting survival rates (Figure 14E). Furthermore, RT-qPCR

analysis of HNSCC cell lines revealed a significant upregulation of

EIF3D, EIF1, LARP1, and METTL1 mRNA expression in HNSCC

cell lines (NH6, HSC3, and SCC9) compared to normal epithelial

cells (Figure 14F). The consistency between clinical tissues and cell

line experiments confirmed the predictive reliability and

validity of the constructed prognostic model for HNSCC

patient prognosis.
FIGURE 15

In vitro cell experiment of LARP1 in HNSCC. (A) RT-qPCR analysis showing the knockout efficiency of LARP1 in HSC3 and SCC9 cells; (B, C) CCK-8
assays performed in stable HSC3 and SCC9 cells with LARP1 knockdown; (D, E) Wound-healing assays in stable HSC3 and SCC9 cells with LARP1
knockdown; (F-H) Transwell migration and invasion assays in stable HSC3 and SCC9 cells with LARP1 knockdown; (I, J) Clone formation experiment
following LARP1 knockdown in HSC3 and SCC9 cells. ***p<0.001.
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In vitro cell experiment of LARP1 in HNSCC

To elucidate the role and functional significance of LARP1 in

HNSCC, we performed LARP1 gene knockout experiments in HSC3

and SCC9 cells (Figure 15A). The CCK-8 assays revealed a significant

reduction in the proliferation rates of both HSC3 and SCC9 cells

following LARP1 knockout (Figures 15B, C). Additionally, wound

healing and migration invasion assays demonstrated a marked

decrease in the migration (Figures 15D, E) and invasion abilities

(Figures 15F–H) of these cells. Colony formation assays further

confirmed that LARP1 knockout significantly inhibited the

proliferation of HSC3 and SCC9 cells (Figures 15I, J). Collectively,

these findings suggest that LARP1 is crucial for the proliferation and

metastatic potential of HNSCC cells.
Discussion

This study systematically analyzes the expression and prognostic

significance of m7GRGs in HNSCC. Using public database analysis,

functional enrichment analysis, RT-qPCR validation, and LASSO-

Cox regression analysis, we constructed a prognostic model based on

m7GRGs. We evaluated its potential value in predicting HNSCC

patient prognosis and immunotherapy response.

Firstly, we discovered widespread expression of m7GRGs in

HNSCC, with most genes significantly upregulated in cancer

tissues. The abnormal expression of these genes may be closely

related to cancer development. Functional enrichment analysis

revealed that m7GRGs are involved in several key biological

pathways. These pathways play crucial roles in cancer development

and progression, indicating that m7GRGs may promote HNSCC

development by regulating these pathways. Current studies have

confirmed that PPI is associated with the progression of HNSCC.

PPI may play a role in the proliferation and migration of tumor cells.

For example, EGFR (epidermal growth factor receptor) is a key

protein commonly implicated in HNSCC (51). EGFR interactions are

typically associated with downstream signaling pathways, such as

PI3K/AKT (52) and MAPK (53), which regulate critical cellular

processes like proliferation, survival, and migration. Overactivation

of EGFR can result in rapid tumor cell proliferation and migration,

thereby promoting the progression of HNSCC (54). The

characteristics of the tumor microenvironment significantly

influence key molecular targets for cancer therapy, and they are

highly clinically relevant to treatment resistance and the response in

HNSCC (55). Cyclins, such as Cyclin D1 and CDK4/6, and their

interactions with other cell cycle-related proteins, may drive the

accelerated proliferation of HNSCC cells (56). These interactions,

identified through the STRING network, provide valuable insights

into the dysregulation of cell cycle control and may contribute to

understanding the mechanisms underlying tumor growth and

metastasis. The PPI predictions from STRING can also reveal

previously underexplored potential therapeutic targets. These

targets may inhibit HNSCC progression by blocking key protein

interactions. For example, targeting specific enzymes or transcription

factors could suppress tumor cell proliferation andmetastasis. Within

the PPI network, EIF4E, NCBP2, and EIF4E3 exhibit high
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connectivity among all differentially expressed genes (DEGs). It has

been reported that NCBP2 and EIF4E3 regulate the expression of

CCL4/CCL5, influencing the immune microenvironment of HNSCC

(57). EIF4E is overexpressed in HNSCC and exhibits oncogenic

properties, playing a critical role in the progression of solid tumors

(58). Furthermore, EIF4E expression is significantly correlated with

both recurrence and relapse-free survival in HNSCC patients, with

the PI3K/AKT/mTOR signaling pathway being highly activated (59).

Arora et al. found that depletion of NCBP2 reduced the proliferation,

migration, and invasion of oral squamous cell carcinoma cells (60).

Therefore, these targets could block tumor cell proliferation and

migration by inhibiting key interactions.

In this study, we observed a relatively low mutation rate for the

genes under investigation, particularly for missense mutations.

However, even these mutations, despite their lower frequency,

could still have significant effects on tumor initiation and

progression through a variety of mechanisms. Missense mutations

are one of the most common types of genomic alterations found in

tumors, and they can lead to diverse functional outcomes, including

gain-of-function, loss-of-function, or neutral effects. For example,

activating mutations in the PIK3CA gene have been extensively

reported to aberrantly activate the PI3K/AKT signaling pathway,

which in turn drives tumor cell proliferation and survival (61).

Recent studies, such as those conducted by Rasti et al. (62), have

provided further insights into the frequency and functional

implications of PIK3CA activating mutations, particularly in

breast cancer. These findings underscore the pivotal role of

PIK3CA mutations in various tumor signaling pathways. On the

other hand, missense mutations can also disrupt normal protein

function, leading to a loss of biological activity. A well-known

example of this is the TP53 gene, where missense mutations

frequently result in the loss of function of the p53 protein. This

loss impairs critical cellular processes, such as DNA repair and

apoptosis, thereby facilitating tumorigenesis and cancer progression

(63). In some cases, however, missense mutations might not

significantly impact protein function, especially when the

mutation occurs in non-essential domains of the protein. Such

mutations may be relatively neutral and accumulate over time

during tumorigenesis without directly contributing to the cancer-

driving mechanisms (64). The focus of this study is on four m7GRG

genes (EIF3D, EIF1, LARP1, and METTL1), which primarily

harbor missense mutations. However, the precise functional

effects of these mutations are still not fully understood. In the

case of EIF3D, previous research has shown that mutations in this

gene play a crucial role in the progression of colorectal cancer.

Specifically, silencing the expression of EIF3D leads to a significant

reduction in cell proliferation and colony formation, along with an

excessive accumulation of cells in the cell cycle arrest and apoptosis

phases (65). Moreover, EIF1 is involved in the initiation of

translation, a fundamental cellular process. Although the precise

effects of mutations in EIF1 are not completely clarified, it is

hypothesized that mutations in this gene could influence

translation efficiency, potentially disrupting the dynamic balance

of protein synthesis (66). Similarly, mutations in LARP1, especially

at the LARP1-T449 phosphorylation site, have been shown to play

an important role in liver cancer. These mutations enhance
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translation, cell growth, migration, and invasion, while also

regulating the expression of oncogenic proteins, thereby

contributing to tumor progression. In the case of METTL1,

missense mutations have been linked to diseases such as primary

dwarfism and brain malformations, suggesting that these mutations

could affect tRNA m7G methylation and, as a result, translation

efficiency (67). Additionally, mutations in EIF4G1, another

translation initiation factor, may alter the translation process and

disrupt the dynamic balance of protein synthesis, further

complicating cellular function (68). Finally, mutations in APAF1,

a gene crucial for the apoptosis pathway, could lead to defects in the

apoptotic cascade, disrupting the regulation of cell death, and

promoting tumorigenesis and tumor progression (69). Although

the exact functional effects of these mutations in the context of

various cancers remain to be fully elucidated, future research should

aim to investigate the specific roles of these mutations. This could be

accomplished by using tools such as gene editing, cell-based models,

and animal models to uncover how these mutations contribute to

the initiation and progression of different types of cancer.

In recent years, several gene expression-based prognostic

signatures have been developed and successfully applied in

clinical trials and practice. These prognostic models play a pivotal

role in quantifying patient risk, enabling the identification of high-

risk patients and providing insights into their health status and

potential treatment outcomes. Research has shown that prognostic

signatures related to cuproptosis genes can effectively predict

survival probabilities in hepatocellular carcinoma (HCC) patients

(70). Similarly, disulfidptosis-related risk scores have been shown to

accurately predict prognosis and response to immunotherapy in

HNSCC (71). In the current study, we constructed a prognostic

signature using LASSO-Cox regression. This model consisted of

four genes: EIF3D, EIF1, LARP1, and METTL1. Kaplan-Meier

survival analysis demonstrated that high-risk patients had a

significantly worse prognosis compared to low-risk patients. The

model’s robustness was further validated through ROC curves for 1-

, 3-, and 5-year survival predictions. However, while some datasets

showed AUC values above 0.8, other datasets exhibited AUC values

below 0.8, revealing a variation in the classification performance

across different datasets. To enhance the clinical utility and

predictive accuracy of the model, we introduced a Nomogram.

This Nomogram was constructed by integrating the risk score with

additional clinical and pathological features, such as age and stage,

based on the findings from multivariate Cox regression analysis.

The results demonstrated that, compared to the risk score model,

the Nomogram provided improved predictive accuracy, along with

greater stability and reliability across various datasets.

The tumor microenvironment plays a crucial role in tumor

progression and antitumor responses. In this study, we performed

an in-depth analysis of immune cell infiltration in HNSCC using

CIBERSORT and ssGSEA algorithms, revealing significant

differences in immune cell infiltration patterns between distinct

molecular subtypes (C1 and C2) as well as high- and low-risk

groups. Our findings indicate that the C1 subtype and low-risk

group exhibit stronger immune cell infiltration, particularly the

active infiltration of CD8+ T cells and dendritic cells, which play

key roles in tumor immune responses. CD8+ T cells directly kill
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tumor cells, while dendritic cells initiate adaptive immune

responses by activating T cells (72, 73). These results corroborate

previous studies, such as a recent study showing significantly

elevated CD8+ T cell abundance in the low-risk group of HNSCC

(74). This immune infiltration pattern is consistent with the

characteristics of “hot tumors,” which typically exhibit robust

immune cell activity and a higher immune response, enabling

them to control tumor growth under immune surveillance. In

contrast, patients in the high-risk group and the C2 subtype

belong to the “cold tumor” category. Specifically, the tumor

microenvironment in the high-risk group is more prone to

developing an immunosuppressive state, hindering effective

immune cell infiltration and allowing tumor cells to escape

immune surveillance. In the high-risk group, the higher

infiltration of M2 macrophages, which suppress CD8+ T cell

function through the secretion of immunosuppressive factors,

promotes tumor growth (75, 76). While some observations differ

from pioneering results, such as the higher abundance of NK cells in

the high-risk group, this may be attributed to hypoxic tumor

microenvironments, which impair NK cell cytotoxic function

(77). Thus, the high-risk status of m7GRGs may enhance

immune evasion mechanisms, limiting immune cell functionality

and diminishing the efficacy of immunotherapy.

In our study, we found a positive correlation between risk scores

and NK cell infiltration, with higher NK cell levels associated with

better prognosis, which aligns with previous research (78).

However, the high levels of M2 macrophages and Tregs were

associated with better prognosis. Existing studies suggest that M2

macrophages and Tregs are typically considered to promote

immune suppression and are usually linked to poor prognosis

(79, 80). This phenomenon may be attributed to the high

heterogeneity of immune cell infiltration within the tumor

microenvironment. The interactions between different immune

cell types and their roles in different patients may vary. Under

certain conditions, they may participate in milder immune

regulatory responses, preventing excessive inflammation from

damaging normal tissues and thus creating a favorable

environment for antitumor immunity. For instance, Zhang J et al.

(81) reported that neutrophils, activated mast cells, activated NK

cells, resting memory CD4+ T cells, naive CD4+ T cells, M2

macrophages, and eosinophils are favorable factors for overall

survival (OS) in HNSCC patients. Similarly, Zhu W.L. et al. (82)

found that the expression of 24 immune cell subtypes (such as CD8

+ T cells, dendritic cells, macrophages, NK cells, and activated NK T

cells) was significantly higher in cluster 2 than in cluster 1,

suggesting that cluster 2 may have a better immune therapy

response and prognosis. Moreover, while high infiltration of M2

macrophages has been linked to immune tolerance and tumor

immune escape, it could also be associated with better prognosis,

particularly in tumor types with a more stable immune

microenvironment (83). Therefore, these differences require

further clinical validation to confirm our findings.

EIF3D, EIF1, LARP1, and METTL1 are highly expressed in

various malignancies, participating in tumorigenesis through

multiple mechanisms (84). For instance, EIF3D stabilizes GRK2

protein by blocking ubiquitin-mediated degradation, activating
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PI3K/Akt signaling, and promoting tumor cell proliferation and

migration (85). EIF1 plays a crucial role in protein synthesis

initiation, with gene mutations potentially linked to specific

tumor risks (86). LARP1, an RNA-binding protein, is involved in

various RNA metabolic processes within cells, such as RNA

stability, processing, and translation (87). METTL1, an RNA

methyltransferase, primarily catalyzes tRNA m7G modification,

which is important for RNA stability, processing, and translation

(67). Numerous studies have shown that METTL1 is significantly

overexpressed in various malignancies and is associated with poor

prognosis (88). Overall, the high expression of prognostic m7GRGs

in malignancies, their association with poor prognosis, and their

regulatory roles in tumorigenesis make them important targets for

cancer diagnosis and treatment.

Post-transcriptional RNA modifications play crucial roles in

shaping the tumor immune microenvironment (89). Studies have

shown that m7GRGs are closely associated with the infiltration of

immune cells such as CD8+ T cells, CD4+ T cells, NK cells, and

macrophages. These immune cells participate in anti-tumor

immune responses through various mechanisms, forming

complex interactions with tumor cells and playing significant

roles in tumor development and treatment. This association

underscores the potential of m7GRGs in modulating the immune

landscape of HNSCC, influencing treatment response and patient

outcomes. In HNSCC patients, high stromal expression of the

tumor-associated macrophage marker CD163+ predicts poor

prognosis (90). Additionally, patients with high m7G-related risk

exhibit decreased CD8+ T cell infiltration and increased Tregs and

macrophage infiltration (91). Single-cell RNA sequencing data

analysis indicates a significant association between poor prognosis

m7GRGs and CAF infiltration. CAF, a major component of the

tumor microenvironment, enhances immunotherapy efficacy by

making tumor cells more recognizable and eliminable by the

immune system. The discovery of new CAF subtypes may predict

clinical responses to aPD-1 antibody in head and neck cancer

patients (92). Therefore, combining CAF-targeted therapy with

other treatments (such as chemotherapy, radiotherapy, and

immunotherapy) can improve therapeutic outcomes.

ICIs have demonstrated significant clinical efficacy in various

cancers, including advanced head and neck squamous cell

carcinoma (HNSCC). ICIs activate T-cell-mediated antitumor

responses by blocking tumor immune evasion mechanisms, such

as PD-1/PD-L1 and CTLA-4 inhibitors. Although ICIs show

promising prospects in HNSCC treatment, their efficacy is not

universal, and therapeutic responses are influenced by several

factors, including drug accessibility, economic costs, and patient

adaptability to immunotherapy. Furthermore, the response rates to

immunotherapy are not uniform, limiting the widespread

application of ICIs. Therefore, the identification of novel

biomarkers to improve treatment outcomes is crucial (93). This

study proposes that m7GRGs are closely associated with the

response to immunotherapy in HNSCC. Analysis of gene

expression across different risk groups revealed significant

differences in the expression of genes such as PDCD1,

PDCD1LG2, TIGIT, and ITPRIPL1, indicating that low-risk

patients may have a better response to immune checkpoint
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blockade (ICB) therapy. Using three independent immunotherapy

datasets from the GEO database (targeting PD-1/PD-L1/CTLA-4),

the study further validated that low-risk patients may serve as

positive prognostic indicators for immunotherapy in HNSCC.

These results suggest that m7GRGs could serve as potential

biomarkers for predicting immunotherapy responses in HNSCC

patients, offering new insights for personalized immunotherapy

strategies. Although ICIs, such as pembrolizumab (Keytruda) and

nivolumab (Opdivo), have shown validated efficacy in treating

HNSCC, their application faces challenges in terms of economic

cost and accessibility (94). However, we acknowledge that the

correlation between immune checkpoint-related genes and risk

scores was relatively weak in our study. Despite this, we believe

that these preliminary observations provide valuable insights and

suggest that the expression of certain immune checkpoint genes

may exhibit some degree of variation between high-risk and low-

risk groups. To further substantiate this hypothesis, we integrated

subtype analysis, TIDE scores, and validation using independent

datasets. These analyses confirmed that the proposed model still

plays a significant role in immune microenvironment stratification

and in predicting treatment response. This supports the notion that,

while the immune checkpoint genes may not strongly correlate with

the risk score in our study, they may still have relevant implications

for the tumor’s immune landscape and therapeutic outcomes.

Despite these promising findings, we are aware that the results

might be influenced by factors such as small sample size or other

confounding variables, which could limit the generalizability of our

observations. To address this, future studies with larger sample sizes

or additional experimental validations are essential to better

understand the specific roles of immune checkpoint genes within

the tumor immune microenvironment. Moving forward, we plan to

conduct more extensive experiments with a larger cohort of patients

to delve deeper into the relationships between immune checkpoints,

tumor progression, and treatment response, and further validate

our hypotheses. These future studies will help clarify the potential of

integrating immune checkpoints into prognostic models and

enhance our understanding of immune therapies in the context of

tumor biology.

TMB and MSI are important biomarkers for assessing tumor

immunotherapy responses and prognosis (95). High mRNAsi

values are generally associated with higher malignancy, greater

invasiveness, and worse prognosis, including shorter OS and PFS.

Previous studies have indicated that Cancer Stem Cells (CSCs) are

linked to tumor progression, drug resistance, and relapse (96). This

study found that high expression of m7GRGs significantly increased

the TMB, MSI, and mRNAsi scores in HNSCC. Therefore, a deeper

analysis of the relationship between TMB, MSI, and mRNAsi with

tumors can help in understanding the malignant mechanisms,

assessing patient prognosis, identifying therapeutic targets, and

predicting immunotherapy responses, thus supporting precision

oncology. The study also revealed that the high-risk HNSCC group

exhibited increased sensitivity to various chemotherapy and

targeted drugs, although this relationship was weak (e.g., the

correlation coefficients |r| for drugs like vorinostat, methotrexate,

and gemcitabine ranged from 0.2 to 0.4). This suggests that drug

sensitivity may be related to risk scores. Despite the modest
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correlation, the significance of the P-values indicates that this

relationship is likely influenced by individual differences, drug

mechanisms, and the immune microenvironment, necessitating

further experimental validation. Furthermore, we found that

m7GRGs were significantly correlated with genes related to

cuproptosis. Studies have shown that changes in Pyruvate

Dehydrogenase E1a subunit (PDHA1) trigger metabolic

reprogramming and play a key role in the occurrence and

development of HNSCC (97). Additionally, the upregulation of

Glutaminase (GLS) is closely related to the clinical and pathological

features of head and neck tumors (98). These findings suggest that

the regulatory effects of m7GRGs on HNSCC may be associated

with the copper-induced cell death mechanism, thereby influencing

the progression and prognosis of HNSCC.

MicroRNAs have been shown to participate in various

biological behaviors of different tumors through multiple

signaling pathways. miR-30b-5p is a known microRNA that

regulates gene expression by binding to the 3’ untranslated region

(UTR) of target genes. It plays a crucial role in multiple biological

processes, including cell proliferation, differentiation, migration,

tumorigenesis, and immune regulation. miR-30b-5p inhibits the

expression of the m7GRG gene by directly binding to the 3’ UTR of

the LARP1 gene. It has been reported that miR-30b-5p is

significantly downregulated in liver cancer tissues and cell lines,

where it mediates DNMT3A inhibition of proliferation and targets

USP37 to slow the cell cycle (99). Zhang et al. (100) reported that

decreased miR-30b-5p expression may play a key role in cancer

progression, particularly in tobacco-induced head and neck

squamous cell carcinoma (HNSCC), and could serve as a novel

biomarker and therapeutic target for this HNSCC subtype. miR-

30b-5p acts as a tumor suppressor by targeting the G-protein

subunit a-13 in renal cell carcinoma, influencing cell

proliferation, metastasis, and epithelial-mesenchymal transition

(101). It may also modulate the immune response within the

tumor microenvironment by affecting the m7GRG gene.

Additionally, studies indicate that miR-30b-5p targets USP22 to

inhibit hypoxia-induced PD-L1 expression in lung adenocarcinoma

cells (102). In this study, we discovered that the m7GRG gene is

associated with tumor stemness, influencing self-renewal, drug

resistance, and metastasis of tumor cells. Furthermore, miR-30b-

5p may be involved in the regulation of cancer stem cell (CSC)

characteristics. Cheng et al. (103) elucidated the role of miR-30b-5p

in promoting lung cancer through the regulation of tumor

stem cells.

Additionally, studies have reported that long non-coding RNAs

(lncRNAs) play pivotal roles in cancer. In our study, LINC00707

and SNHG16 may act as molecular sponges, binding to hsa-miR-

30b-5p, thereby relieving the inhibitory effect of hsa-miR-30b-5p on

its target genes and upregulating the expression of m7GRGs. For

example, LINC00707 promotes cervical cancer progression by

regulating the miR-382-5p/VEGFA pathway (104) and interacts

with Smad proteins to regulate TGFb signaling and cancer cell

invasion (105). LncRNA SNHG16 promotes colorectal cancer cell

proliferation, migration, and epithelial-mesenchymal transition via

miR-124-3p/MCP-1 (106). In hepatocellular carcinoma, HNF1A-

AS1 acts as an oncogene and autophagy promoter by sponging has-
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miR-30b-5p, with the HNF1A-AS1-miR-30b axis being a key

regulator of hepatocarcinogenesis (107). These findings suggest

that these regulatory axes modulate the development of various

cancers. We constructed a competing endogenous RNA (ceRNA)

regulatory network and identified the lncRNA SNHG16/hsa-miR-

30b-5p/LARP1 and lncRNA LINC00707/hsa-miR-30b-5p/LARP1

regulatory axes as being related to HNSCC patient prognosis.

In our preliminary bioinformatics analysis, LARP1 was found to

be significantly associated with tumor progression, with higher

expression levels observed in HNSCC. As an RNA-binding

protein, LARP1 is involved in regulating various cellular processes

and has been shown in multiple studies to play a crucial role in

tumor cell migration, proliferation, and invasion, particularly

during tumor metastasis. Therefore, its pivotal role in our

computational model makes LARP1 a prime candidate for

validation. Furthermore, survival analysis demonstrated a

significant correlation, with high expression of LARP1 associated

with poorer overall survival (HR = 1.422, p = 0.0105), further

supporting the close relationship between LARP1 and tumor

prognosis. Immune infiltration analysis and transcriptomic data

also revealed significant associations between LARP1 and immune

cell infiltration in the tumor microenvironment, as well as tumor

progression, enhancing its reliability as a potential oncogene.

Additionally, our cellular experimental results showed relatively

high expression levels of LARP1 across various cell lines, and in

clinical tissue samples, LARP1 expression was significantly higher

than in normal tissues or the other three candidate genes. Among

the predicted regulatory axes, pathways such as LINC00707/hsa-

miR-30b-5p/LARP1 and SNHG16/hsa-miR-30b-5p/LARP1

showed stronger associations compared to other candidate genes,

highlighting their multifaceted regulatory potential in tumors.

Based on these findings, we selected LARP1 as the primary gene

for validation. Gene knockout experiments further verified LARP1’s

function in HNSCC cells, revealing that LARP1 knockout

significantly inhibited HNSCC cell proliferation, migration, and

invasion. Further research into the specific mechanisms of these

networks could unveil new therapeutic targets and advance

personalized treatment.

LARP1, an RNA-binding protein, is involved in regulating

various cellular processes. It is known to modulate the stability

and translation of mRNA, particularly those genes associated with

the cell cycle. By binding to mRNA, LARP1 promotes the synthesis

of certain cell cycle-related proteins, thereby influencing cell

proliferation and division. Burrows et al. (108) demonstrated that

LARP1 is part of complexes with PABP and eIF4E, playing an

essential role in orderly mitosis, cell survival, and migration.

Silencing LARP1 expression via siRNA reduces the overall protein

synthesis rate, leading to mitotic arrest and delayed cell migration.

These findings suggest that LARP1 contributes to the synthesis of

proteins necessary for cell remodeling and migration. In our in vitro

experiments, we found that LARP1 knockout significantly inhibited

the migration and invasion of HNSCC cells. LARP1 may regulate

the expression of genes related to cell adhesion, matrix degradation,

and migration by interacting with specific transcription factors or

signaling pathways. These processes are crucial for tumor

metastasis. Hsa_circRNA_002144 promotes colorectal cancer
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1520070
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2025.1520070
growth and metastasis through the miR-615-5p/LARP1/mTOR

pathway (109). Desi et al. (51) identified a positive feedback loop

between LARP1 and MYC, which promotes tumorigenesis. LARP1

also regulates mitochondrial oxidative phosphorylation in response

to the PI3K/mTOR pathway, contributing to ovarian cancer cell

survival (110). The downregulation of KCNQ1OT1 inhibits

proliferation, invasion, and drug resistance in osteosarcoma cells

through miR-129-5p-mediated LARP1 regulation (111).

Additionally, single-cell sequencing in the study revealed that

high expression of LARP1 is closely associated with cancer-

associated fibroblasts (CAFs), which are known to play a key role

in tumor immune evasion and metastasis. We further explored

LARP1’s role in the tumor immune microenvironment, including

its potential impact on immune cell recruitment and immune

suppression. Research indicates that LARP1 is associated with the

infiltration of various immune cells and may facilitate the

conversion of “cold” tumors to “hot” tumors in liver cancer (109).

In future studies, we plan to investigate the synergistic effect of

LARP1 with other known prognostic molecules (such as EIF3D,

EIF1, METTL1) in HNSCC, particularly their potential interactions

in tumor cell growth, metastasis, and immune evasion.
Conclusion

In summary, this study demonstrates that high expression of

m7GRGs (EIF3D, EIF1, LARP1, and METTL1) in HNSCC patients

is significantly associated with clinicopathological features,

prognosis, epigenetics, CRG expression, and TME. Moreover, our

findings establish a theoretical framework for future HNSCC

immunotherapy. Additionally, LARP1 is experimentally validated

as a key promoter of HNSCC progression by enhancing tumor cell

proliferation, migration, and invasion. Potential lncRNA SNHG16/

hsa-miR-30b-5p/LARP1 and lncRNA LINC00707/hsa-miR-30b-

5p/LARP1 regulatory networks may offer new therapeutic targets,

aiding in the development of personalized HNSCC treatments.
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