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Scoparone (SCO), also known as 6,7-Dimethoxycoumarin, is a naturally occurring

bioactive ingredient originally derived from Chinese herb Artemisiae Scopariae

Herba (Yin-Chen-Hao). Previous studies have shown that it is effective in treating

some of the liver diseases. Beyond its hepatoprotective effects, an expanding body

of research has underscored the immunoregulatory properties of SCO, indicating

its potential therapeutic benefits for autoimmune and other inflammatory diseases.

Over the past decade, significant advances have been made in understanding the

mechanistic insights into its effects on immune-mediated diseases as well as liver

diseases. SCO has an impact on various immune cells, including mast cells,

monocytes, macrophages, neutrophils and T cells, and affects a broad range of

intracellular signaling pathways, including TLR4/Myd88/NFkB, TGFbR/Smad3 and

JNK/Sab/SHP-1 etc. Therefore, this review not only summarizes the

immunomodulatory and therapeutic effects of SCO on immune-based

inflammatory diseases (IMIDs), such as inflammatory bowel disease,

osteoarthritis, allergic rhinitis, acute lung injury, type 1 diabetes and

neuroinflammatory diseases etc., but also provides a comprehensive summary

of its therapeutic effects on hepatic diseases, including non-alcoholic

steatohepatitis, fulminant hepatic failure and hepatic fibrosis. In this review, we

also include the broad impacts of SCO on intracellular signaling pathways, such as

TLR4/Myd88/NFkB, TGFbR/Smad3, Nrf2/P38, JAK2/STAT3 and JNK/Sab/SHP-1

etc. Further researches on SCO may help understand its in-depth mechanisms of

action and pave the way for the development of novel drugs to prevent and treat

various immune-mediated inflammatory disorders as well as hepatic diseases,

thereby significantly advancing its innovations and pharmaceutical applications.
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Introduction

Scoparone (6,7-Dimethoxycoumarin, SCO), a naturally

occurring bioactive ingredient originally derived from Chinese

herb Artemisiae Scopariae Herba (Yin-Chen-Hao), possesses the

diverse pharmacological properties, including anti-inflammatory,

antioxidant and anti-cholestatic effects. Yin-Chen-Hao has been

commonly used in the treatment of liver and bile disorders, such as

acute jaundice, hepatitis and cholestasis disorders (1). Notably, SCO

serves as a principal active component in the traditional

formulation of Yin-Chen-Hao (YCH) and Yinzhihuang

decoctions (YZHDs), which have been clinically administered to

treat liver and cholestasis ailments (2, 3). Recent studies have made

significant progresses in understanding the mechanisms by which

SCO, or in combination with other pharmaceutical ingredients,

exerts its anti-inflammatory effects.

Immune-mediated inflammatory diseases (IMIDs) include a

broad condition of organ/tissue inflammation characterized by

dysregulated immune responses, resulting in inflammation and

the subsequent damage to target organs (4, 5). Previous studies

have reported the effects of SCO on IMIDs, which are mostly

autoimmune and allergic diseases, such as inflammatory bowel

disease, osteoarthritis, allergic rhinitis, type 1 diabetes and

neuroinflammatory diseases etc. Researchers have also

demonstrated its therapeutic effects on hepatic diseases, including

non-alcoholic steatohepatitis, fulminant hepatic failure and hepatic

fibrosis (6). In this review, we have summarized recent studies

exploring the immunomodulatory and anti-inflammatory effects of

SCO on immune-related inflammatory and liver diseases, as well as

the cellular and molecular mechanisms underlying its

immunoregulatory and anti-inflammatory effects (Table 1). We

also provided potential research prospects for the treatment of

various IMIDs using SCO, thus helping lay the foundation for its

clinical trials to treat various inflammatory diseases, especially

autoimmune diseases.
The direct effects of SCO on
immune cells

Immune cells play important roles in the development and

progression of immune-mediated inflammatory diseases (IMIDs).

SCO alleviates the deterioration of IMIDs by regulating immune

responses as well as the expression of numerous cytokines/

chemokines in various immune cells (Figure 1).
Mast cells

Mast cells play a key role in anaphylaxis by releasing a variety of

pro-inflammatory mediators and cytokines. It was found that

activated mast cells produced tumor necrosis factor (TNF-a) and
interleukin (IL)-6, which played a central role in triggering and

maintaining allergic inflammation (7). Previous studies also

demonstrated that SCO inhibited the expression of TNF-a and
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IL-6 proteins and the activation of p38 MAPK and NF-kB signaling

pathways through prohibiting the uptake of calcium by mast cells,

thereby alleviating IgE-mediated mast cell hypersensitivity (8).

Thus, SCO may be used to treat allergic diseases.
Mononuclear cells

Mononuclear cells normally maintain the inflammatory balance

and immune tolerance in a physiological condition (9). Previous

results showed that SCO inhibited the proliferation of mononuclear

cells in a dose-dependent manner in mixed lymphocyte responses

(10, 11). SCO antagonized the effects of the diabetogenic drug

alloxan on mononuclear cells and increased the levels of PGE2,

PGF2a, leukotriene B4 and 2,3-dinor-thromboxane B2 in

phytohemagglutinin (PHA)-stimulated monocyte culture (10).

Moreover, SCO inhibited the response of mononuclear cells to

PHA, mixed lymphocytes, mitogen and alloantigen, while it played

a role in relaxing blood vessels and suppressing immunity (11).

Another study also reported that SCO suppressed NF-kB activation

in U937 human monocytes activated by phorbol 12-myristate 13-

acetate (PMA) and reduced PMA-induced toxicity and release of

IL-8 and MCP-1 proteins (12).
Macrophages

Macrophages process antigens and carry them to the lymph

nodes, while also secreting pro-inflammatory factors (13). Yeh et al.

found that SCO not only inhibited M1 macrophage markers, such

as iNOS, IL-6 and CCL2, but also significantly reduced the protein

level of TNF-a in LPS-treated macrophages (14). In addition, they

reported that SCO significantly increased the gene expression of M2

macrophage markers and the protein level of Arg1, thus promoting

the differentiation of macrophages towards anti-inflammatory M2

phenotype. Similarly, Liu et al. demonstrated that SCO suppressed

macrophage autophagy and M1 polarization (15). Previous studies

also showed that SCO inhibited the activation of NLRP3

inflammasome in LPS-induced murine macrophages and mouse

models of bacterial enteritis and septic shock, and suppressed the

production of TNFa, IL-6, NO and PGE2 in IFN-gamma/LPS

stimulated RAW 264.7 cells (16, 17). Liu et al. proved that SCO

mitigated macrophage responses induced by NASH and LPS via

blocking the TLR-4/NF-kB signaling pathway (18). Invasive liver

macrophages led to chronic liver injury and fibrosis through HSC

transdifferentiation and proliferation, while SCO inhibited HSC

activation, downregulated macrophage infiltration, suppressed the

secretion of NO, PGE2, iNOS and COX-2 in RAW 264.7 cells, and

reduced the production of TNF-a, IL-1b and IL-6 in RAW264.7

cells stimulated by LPS (17). Similarly, Niu et al. found that SCO

inhibited NF-kB activation and TLR4 expression as well as the

production of TNF-a, IL-6 and IL-1b in LPS-induced alveolar

macrophages in vitro (19). Thus, SCO suppressed the expression

of pro-inflammatory cytokines in macrophages and promoted their

polarization towards M2 phenotype, suggesting that SCO may be

effective in treating macrophage-mediated inflammatory diseases.
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Neutrophils

Neutrophils play a pivotal role in the innate immune

responsiveness and mainly exert pro-inflammatory effects, causing

severe tissue inflammation (20). Experiments by Niu et al.

demonstrated that SCO significantly diminished neutrophil

numbers and downregulated the expression of CXCL1, CXCL2

and CCL2, thereby mitigating inflammation (19). Studies by Chan

et al. showed that SCO (6,7-dimethoxycoumarin) exhibited
Frontiers in Immunology 03
significant inhibition of superoxide anion generation and the

release of elastase by human neutrophils in vitro (21). These

findings indicate that SCO can exert anti-inflammatory effects.
T cells

T cells are a core component of adaptive immunity, mainly

including type 1 helper T cells (Th1), type 2 helper T cells (Th2) and
TABLE 1 Effects of scoparone on immune-mediated inflammatory diseases and hepatic diseases.

Disease Cell type or tissue Effects
Signaling
Pathway

Ref

Immune-mediated
inflammatory

diseases

Inflammatory
bowel disease

The colonic segments ↓Oxidative stress, glutathione consumption,
AP; ↑GSH

(46)

Osteoarthritis Chondrocyte ↓NO,MMP-3,MMP-13, ADAMTS-4,
ADAMTS-5 and PGE2, iNOS,COX-2

↓PI3K/Akt/NF-
kB pathway

(3)

Acute lung injury Neutrophils, macrophages ↓CXCL1, CXCL2,CCL2, TNF-a, IL-6, IL-1b ↓TLR4/NF-
kB pathway

(19)

Allergic rhinitis Th1, Th2 ↓IgE, IL-4, IL-5, TLR4, p65, TLR4; ↑IFN-g ↓TLR4/NF-
kB pathway

(55)

↓IgE, IL-4, IL-5; ↑IFN-g (25)

Diabetes b-cell ↓nuclear translocation of NF-kB; ↓b-cell
damage, insulin secretion; ↓iNOS, IL-1b, IFN-

g and NO

↓NF-kB pathway (57)

Alzheimer Microglia ↓TLR4, MyD88, TRAF-6, TAK-1 and NLRP3;
↑microglia transition towards M2 subtype

↓TLR4/MyD88/
TRAF-6/TAK-1/NF-

kB pathway

(63)

Epilepsy Hippocampus ↓GFAP, Iba1, CXCL1, IL-1b, TNF-a, MCP-1,
IL-6, HIF-1a and HMGB1; ↓TLR4, MyD88, p-
IkBa, p-NF-kB; ↓PI3K, p-AKT and p-GSK-
3b; ↓Casapse-3 cleaved; ↓astrocyte activity,

inflammation and apoptosis

↓TLR4/NF-kB and
PI3K/AKT pathway

(64)

Hepatic diseases Non-alcoholic
steatohepatitis

Hepatocytes ↓P-JNK/JNK and P-SHP-1/SHP-1;↑P-Src/Src;
↓mRNA expression of IL-1b and TNF-a;

↓Cleaved PARP;↓oxidative stress levels, ROS
and lipid peroxide 4HNE

↓JNK/Sab pathway (30)

Liver macrophages ↓cleaved caspase-3;↓mRNA levels of MCP-1,
TNF-a, IL-6, IL-1b and iNOS; ↑IL-10, Arg1
and IL-1RA; ↓a-SMA, ICAM1,COL1A1 TGF-

b1 and CTGF

↓TLR-4/NF-
kB pathway

(18)

Hepatocytes ↓mRNA levels of TNF-a, IL-6, IL-1b;
↓oxidative stress levels

↑AMPK pathway (31)

Hepatocytes ↓mRNA levels of TNF-a, IL-6, IL-1b,
Rela; ↑Klf10

↑PPARa pathway (32)

Hepatocytes ↓liver levels of TNF-a, IL-6, IL-1b, NLRP3
inflammasome, ASC; ↑liver levels of

SOD, CAT

↓NLRP3/IL-
1b pathway

(33)

Fulminant hepatic failure Liver tissues ↓p-p38, p-ERK1/2, p-JNK, p65; ↓TNF-a, IL-6,
TRIF, IFN-b; ↓IRF3 phosphorylation

↓TLR-4/NF-
kB pathway

(37)

↑zinc finger protein 407, prothrombin,
transthyretin; ↓alpha-1-
antitrypsin, haptoglobin

(38)

Hepatic fibrosis Hepatic stellate cells ↓TGF-b1, NOXs, ROS and p-Smad3; ↓a-SMA,
collagen I and collagen III

↓TGF-b/
Smad pathway

(41)
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Th17 cells classified under CD4+ T cells (22). The immunological

basis of allergic rhinitis (AR) was closely related to the imbalance

between Th1 and Th2 cells (23). Th2 cytokines IL-4 and IL-5 were

involved in AR allergic inflammation (24). SCO inhibited the

synthesis of IgE, upregulated the level of Th1 cytokines in serum,

reduced the level of Th2 cytokines, and restored the balance

between Th1 and Th2 cells, thus improving the symptoms of

allergic rhinitis in rats (25).
Effects of SCO on inflammatory liver
diseases and other IMIDs

SCO has been shown to treat various hepatic diseases in animal

models (6), including immune-associated inflammatory liver

diseases. It also has been used to treat many of the other IMIDs

in pre-clinical studies. In fact, SCO has demonstrated the efficacy in

treating various IMIDs, including the intestinal disorders,

respiratory ailments and osteoarthritis etc. IMIDs encompass a

spectrum of conditions characterized by dysregulated immune

responses, leading to inflammation and subsequent damage to

target organs (4, 5). Some of the prevalent IMIDs are classified as

autoimmune diseases, in which the immune system mistakenly

targets and attacks the self organ/tissue. These conditions are often

accompanied with a range of comorbidities, including

cardiovascular diseases, liver diseases, metabolic disorders, skeletal

abnormalities and cognitive impairments (26, 27).
Frontiers in Immunology 04
Non-alcoholic steatohepatitis

Non-alcoholic steatohepatitis(NASH), a progressive form of

non-alcoholic fatty liver disease and a prevalent chronic liver

condition, is characterized by inflammation without or with

fibrosis in addition to the hepatic steatosis (28). Previous studies

have shown that NASH is caused by lipotoxic liver injury, in which

excess lipid accumulation promotes insulin resistance, oxidative

stress, mitochondrial dysfunction and endoplasmic reticulum

stress, leading to apoptosis, inflammation and liver tissue fibrosis

(29). Study by Jiang et al. showed that the activation of JNK/Sab

signaling pathway induced by palmitic acid was blocked by SCO

treatment, with a decrease in the blood lipid and aminotransferase,

therefore improving liver histopathological conditions via

restoration of mitochondrial function and reversal of hepatic

steatosis in mice (30). Liu et al. found that SCO also improved

liver steatosis, apoptosis, inflammation and fibrosis in a mouse

model of MCD diet-induced NASH. Additionally, they highlighted

capacity of SCO to modulate immune responses in LPS-induced

RAW264.7 macrophages through the inhibition of TLR-4/NF-kB
signaling pathway (18). Wei et al. revealed that SCO could reduce

murine liver injury, oxidative stress and inflammation by

suppressing lipid accumulation and improving alcohol

metabolism (31). SCO also was shown to decrease the expression

of TNF-a, IL-6, IL-1b and Rela, increase the expression of

krueppel-like factor 10 (Klf10), and attenuate lipid metabolism

dysfunction and inflammation by activating the peroxisome
FIGURE 1

The effects of scoparone on adaptive and innate immune cells. Scoparone can regulate the cytokine expression in T helper cells, macrophages,
neutrophils, mast cells and monocytes. Arrows “↓” mean “enhancing” while “⊥” means “inhibiting”. Th1, T helper cell 1; Th2, T helper cell 2; CXCL1,
C-X-C motif chemokine ligand 1; CXCL2, C-X-C motif chemokine ligand 2; COX-2, cyclooxygenase 2; ELANE, elastase, neutrophil-expressed; PGE2,
prostaglandin E2.
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proliferator-activated receptor a (PPARa) signaling pathway (32).

Zhao et al. showed that SCO alone reduced the expression of

apoptosis-associated speck-like protein containing a CARD

(ASC), IL-1b, TNF-a and IL-6, inhibited the activation of NLRP3

inflammasome in the liver, and increased the levels of the

antioxidants CAT and SOD, thus ameliorating liver inflammation

(33). Finally, scoparone treatment improved glycerophospholipid

metabolism and liver histopathology in a murine NASH model

(34). Collectively, those findings underscored the potential

protective effects of SCO on NASH and its hepatic pathology.
Fulminant hepatic failure

Fulminant hepatic failure (FHF) is a severe clinical syndrome with

extensive liver cell damage. Toxic hepatitis and acute viral hepatitis

represent the most prevalent etiologies of FHF (35). Proinflammatory

cytokines and chemokines promote oxidative stress in the damage

caused by toxic substances, leading to the massive infiltration of

proinflammatory cells and eventually the formation of severe

hepatitis (36). Kang et al. demonstrated that the pathogenesis of

FHF was related to the upregulation of MyD88 and TRF-dependent

signaling pathways in the TLR system. Their results showed that

pretreatment with SCO inhibited the expression of TLR4/Myd88 and

suppressed the phosphorylation of p38, ERK1/2 and cJun N-terminal

kinase (JNK) as well as the activation of NF-kB in mice with D-

galactosamine(D-GalN)/LPS-induced FHF (37). Zhang et al. used

STRING analyses to map the protein interaction networks and

found that the liver protective effects of SCO on acute liver injury in

rats were associated with the expression of six proteins, including Ig

kappa chain C, zinc finger protein 407, prothrombin, haptoglobin,

alpha-1-antitrypsin and transthyretin, thus providing new insights

into the mechanisms responsible for its liver protection (38).
Hepatic fibrosis

Hepatic fibrosis is a chronic liver disease characterized by

excessive production and deposition of extracellular matrix (ECM)

in the liver. The disease mainly develops from chronic liver

inflammation caused by viral hepatitis, alcoholism, metabolic drugs

and steatohepatitis, etc (39). The activation of hepatic stellate cells

(HSC) is a main mechanism underlying the chronic hepatic fibrosis

(40). Experiments by Liu et al. demonstrated that SCO significantly

reduced the expression of NADPH oxidase (NOX), production of

ROS, and Smad3 phosphorylation in TGF-b1-stimulated HSC T6

cells in vitro (41), suggesting that SCO likely alleviates liver fibrosis,

which is usually caused by chronic inflammation.
Inflammatory bowel disease

Inflammatory bowel disease (IBD), including Crohn’s disease

and ulcerative colitis, represents a chronic, recurrent and immune-

mediated condition that inflicts damage on the gastrointestinal

tracts and significantly impairs patients’ quality of life (42, 43).
Frontiers in Immunology 05
Oxidative stress induced by free radicals and reactive oxygen species

is strongly implicated in the pathogenesis of IBD, which is

characterized by diminished endogenous antioxidants and

heightened oxidative stress biomarkers (44, 45). Witaicenis et al.

previously reported that administration of SCO significantly

reduced the incidence of diarrhea, injury score and colon weight

in a mouse model of trinitrobenzene sulfonic acid (TNBS)-induced

colitis (46). Besides, they also observed that SCO decreased the

activity of alkaline phosphatase (AP), a sensitive marker of

intestinal inflammation (46), and carbon tetrachloride-induced

oxidative stress but enhanced the expression of gamma-glutamyl-

cysteinyl-glycine (GSH), which acted as an endogenous reactive

oxygen scavenger (47). These findings imply that the protective

effects of SCO on intestinal inflammation are associated with its

antioxidant property.
Osteoarthritis

Osteoarthritis (OA) is a progressive joint ailment characterized

by joint swelling, pain and functional impairment due to the damage

to cartilage, bone and the synovial cavity (48). Previous investigations

have revealed that synovial inflammation in OA involves

the infiltration of macrophages and T cells, with increased levels of

Th1, Th9 and Th17 cells in OA joint fluid (49). A pro-inflammatory

cytokine interleukin-1b (IL-1b) was implicated in OA pathogenesis,

and capable of inducing chondrocyte senescence (50). Treatment

with SCO weakened the effects of IL-1b on chondrocyte viability by

decreasing the expression of NO, PGE2, MMP-3, MMP-13,

ADAMTS-4, ADAMTS-5, iNOS and COX-2 in a dose-dependent

manner (3). Meanwhile, SCO also interfered with the development of

OA by regulating the PI3K/Akt/NF-kB signaling pathway (3). These

findings indicate that SCO is potentially a therapeutic agent for OA

management and treatment.
Acute lung injury

Acute lung injury (ALI) is an acute inflammatory disease that

commonly occurs in clinical settings with a high mortality

rate, posing a significant threat to patients’ life. It was reported

that LPS induced the production of pro-inflammatory cytokines

TNF-a, IL-6, IL-1b and IFNg etc. (51), thereby accelerating the

pathophysiological process of endotoxin-induced ALI. Previous

studies showed that LPS, as a key risk factor for ALI, stimulated

alveolar macrophages to activate Toll-like receptor 4 (TLR4)

signaling (52), while LPS could also upregulate the expression of

chemokines CXCL1, CXCL2 and CCL2 on the margins of

macrophages and neutrophils in the lung (53).

Study performed by Niu et al. demonstrated that SCO exerted a

protective effect on LPS-induced ALI. They used a mouse model of

acute lung injury induced by LPS through nasal gavage and found that

treatment with SCO inhibited the accumulation of pulmonary

neutrophils and macrophages and suppressed myeloperoxidase

activity and expression of CXCL1, CXCL2, CCL2, TNF-a, IL-6 and

IL-1b in vivo, resulting in the mitigation of pulmonary edema and
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damage. Additionally, SCO was found to inhibit TLR4-mediated NF-

kB signaling pathway and the expression of TLR4, TNF-a, IL-6 and IL-
1b in LPS-stimulated alveolar macrophages, underscoring its efficacy in

alleviating LPS-induced ALI (19). Thus, SCOmay be implicated for the

treatment of lung diseases that cause an ALI condition.
Allergic rhinitis

Allergic rhinitis (AR) is a type 1 allergic disease mediated by IgE

(54). Experiments performed by Yuan et al. showed that SCO

ameliorated AR in rats by regulating the balance of Th1 and Th2

immune responses via inhibiting TLR4/NF-kB signaling pathway.

They reported that SCO treatment led to a reduction in rhinitis

symptom scores and decrease in serum levels of IgE, IL-4 and IL-5,

with an increase in IFN-g level (55). Similar results were observed by

Cheng et al. showing that the pro-inflammatory cells of mice with AR

were significantly reduced after SCO treatment, with the mucosal

structure returning to normal. Compared with AR group, the serum

level of IFN-g was increased, while that of IL-4, IL-5 or IgE was

significantly decreased in SCO treatment group (25). Therefore, these

results suggest that SCO can inhibit or eliminate symptoms of AR by

improving the imbalance of Th1/Th2 immune responses.
Type 1 diabetes

Type 1 diabetes, commonly referred to as autoimmune diabetes,

arises from the autoimmunity-mediated destruction of insulin-

producing b cells within the pancreas and is influenced by genetic

predisposition and potential environmental triggers (56). Cytokines

produced by immune cells infiltrating pancreatic islets serve as pivotal

mediators in the destruction of b cells, leading to insulin-dependent

diabetes mellitus. Kim et al. demonstrated, for the first time, that SCO

treatment not only protected rat insulinoma cells stimulated by IL-1b
and IFN-g, but also maintained the secretion of insulin by islets

stimulated by glucose, while SCO also inhibited NF-kB nuclear

translocation, thereby suppressing the expression of cytokine-

induced iNOS (57). These findings have underscored the therapeutic

potential of SCO for halting the progression of type 1 diabetes.
Neuroinflammatory diseases

Neuroinflammation is an inflammatory reaction in the brain or

spinal cord, which is mediated by cytokines, chemokines, reactive

oxygen species, etc. (58). Activation of microglia leads to elevated levels

of the neurotoxic and pro-inflammatory mediators, resulting in severe

damage to brain cells and occurrence of various neuroinflammatory

diseases, including Alzheimer’s disease (AD) and epilepsy (59). Thus,

modulation of microglial activation emerges as a pivotal strategy for

averting diverse neuroinflammatory diseases.

SCO is gaining prominence in neurotherapeutics owing to its

low toxicity and ability to inhibit microglial activation. Santibanez

et al. employed HPLC-DAD-UV bioassays to elucidate the

temporal concentration profile of each coumarin in a LPS-
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induced neuroinflammation model. They revealed that SCO

maintained elevated tissue concentrations compared to other

compounds, exhibiting notable bioavailability in both brain tissue

and plasma. This finding demonstrated the capacity of SCO to

traverse the blood-brain barrier, indicating its potential advantage

in treating various neuroinflammatory diseases (60).

Recent studies have also unveiled some mechanisms underlying

the pharmacological effects of SCO. Cho and colleagues found that

SCO inhibited neuroinflammation by reducing ERK and the TRIF-

dependent signaling molecule IRF3, rather than affecting the

activation of NF-kB and MAPK in LPS-stimulated BV-2 microglia

(61). Neuroinflammation mediated by microglia activation is a key

factor in the onset of Alzheimer’s disease (62). As reported by

Ibrahim et al., SCO promoted the polarization of microglia

toward an M2 subtype by shutting down the TLR4/MyD88/TRAF-

6/TAK-1/NF-kB axis and inhibiting the NLRP3 pathway, and

effectively mitigated ovariectomy/D-galactose(OVX/D-Gal)-induced

neuroinflammation and neuronal degeneration, leading to a

reduction in neuroinflammation and neurodegeneration in OVX/

D-Gal models of Alzheimer’s disease (63). Besides, SCO significantly

reduced the expression of GFAP and Iba1 in the cortex of epileptic

mice and inhibited the expression of CXCL-1, IL-1b, TNF-a, MCP-1,

IL-6, HIF-1 and HMGB1, thereby protecting mice from pilocarpine-

induced seizures by inhibiting Casapse-3 fragmentation, activation

of astrocytes and microglia, inflammation and cell apoptosis

through the TLR4/NF-kB pathway (64). These findings

underscored the potential of SCO as an anti-neuroinflammatory

agent and offered promising avenues for drug development in

various neuroinflammatory diseases.
The mechanisms underlying the
effects of SCO: its impacts on
intracellular signaling pathways

SCO regulates immune homeostasis and ameliorates

inflammatory diseases through acting on the complex signaling

networks. SCO modulates cellular responsiveness by altering many

of the intracellular signaling pathways, such as TLR/NF-kB, PI3K-
Akt, Nrf2, JNK/Sab, TGF−b/Smad, Nitric oxide (NO)-cGMP and

JAK2-STAT3 signaling axes (Figure 2).
TLR/NF-kB

Nuclear factor-kappa B (NF-kB) signaling plays a vital role in both
immunity and inflammation. It regulates the expression of various

proinflammatory genes and serves as a critical mediator for

inflammatory responses (65). The activation of NF-kB induces

many of the pro-inflammatory mediators and molecules, leading to

inflammatory responses caused by the activation of various immune

cells (66). Thus, NF-kB is tightly regulated to maintain the

immunological balance. Niu et al. used a murine model of acute

lung injury induced by LPS via nasal gavage and found that SCO

inhibited TLR4-mediated NF-kB activation and the production of
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proinflammatory cytokines, such as TNF-a, IL-1b and IL-6, thereby

suppressing inflammation (19). Another study demonstrated that

SCO blocked LPS-stimulated increases in the levels of TLR4/MyD88

proteins and downstream phosphorylated NF-kB activity in

RAW264.7 cells (18). Kang et al. revealed that SCO attenuated IgE-

mediated allergic and inflammatory responses in mast cells by

inhibiting the overexpression of TLR4 and blocking NF-kB
activation (37). Their findings showed that SCO reversed a LPS-

induced reduction in IkB-a and an increase in the expression of

MyD88, NF-kB/p65 and c-Jun proteins.
PI3K-AKT

The PI3K/AKT/mTOR pathway is thought to be a negative

regulator of TLR4/NF-kB signaling pathway in macrophages, and it

plays a specific role in the regulation of inflammatory responses

(67). In a study performed by Liu et al., treatment with SCO

downregulated LPS-induced increases in phosphorylated AKT

and mTOR, reduced the accumulation of p62 and LC3 and

rescued autophagy via blocking the PI3K/AKT/mTOR pathway in

macrophages (15). Treatment with SCO also weakened the

phosphorylation of PI3K and AKT in IL-1b-stimulated

chondrocytes, suggesting that SCO has a protective effect on IL-

1b-induced inflammatory responses in chondrocytes (3).
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Nrf2

Transcription factor Nrf2 plays an important role in the

antioxidant and detoxification responses, while its overactivation

is harmful (68). Nrf2 is regulated by a high concentration of ROS

and affects the transcription of p62 (69). Liu et al. found that SCO

reduced Nrf2 protein level induced by the Methionine-Choline

deficient (MCD) diet in mice, inhibited the production of a high

concentration of ROS and decreased the levels of Nrf2 and

phospho-p38 proteins as well as p62 target genes in LPS-

stimulated RAW264.7 cells, indicating that SCO alleviates cell

damage and inflammation by inhibiting ROS/P38/Nrf2 axis (15).
JNK/Sab

c-Jun N-terminal kinase (JNK) is a member of the mitogen-

activated protein kinase (MAPK) family, and its continuous

activation can impair the function of mitochondrial respiratory

chains, leading to mitochondrial dysfunction (70). Studies have

shown that JNK, when combined with Sab, which is a scaffold

protein located in the outer membrane of mitochondria, triggers the

destruction of mitochondrial electron transport chain and promotes

the release of reactive oxygen species (ROS), ultimately resulting in

cell death (71, 72). JNK binds to Sab and separates SHP-1 from Sab,
FIGURE 2

Signaling pathways regulated by scoparone. By interfering with TLR/NF-kB, PI3K-Akt, Nrf2, JNK/Sab, TGF-b/Smad, Nitric oxide (NO)-cGMP and
JAK2-STAT3 signaling pathways, scoparone downregulates pro-inflammatory genes and upregulates anti-inflammatory and antioxidant genes. The
downward red arrows indicate inhibition, while the upward blue arrows denote stimulation/increase. a-SMA, actin alpha 2; cGMP, cyclic guanosine
monophosphate; HO-1, oxygenase 1; iNOS, inducible nitric oxide synthase; MCP-1, monocyte chemoattractant protein-1; NQO1, NADPH:quinone
oxidoreductase 1; Nrf2, NFE2 like bZIP transcription factor 2; ROS, reactive oxygen species; SHP-1, SH2 domain-containing protein tyrosine
phosphatase 1; Smad3, SMAD family member 3; Sab, SH3-domain binding protein 5; STAT3, signal transducer and activator of transcription 3;
TLR4, Toll like receptor 4.
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and then the activated SHP-1 is transferred to the mitochondrial

intima, thereby causing Src inactivation and mitochondrial

dysfunction (73). In a study by Yu et al., it was found that SCO

improved PA-induced reduction of mitochondrial membrane

potential and ATP production in hepatocytes and downregulated

ROS by inhibiting the activation of JNK and SHP-1 and preventing

the inactivation of Src (30). Therefore, SCO can restore

mitochondrial function by blocking the JNK/Sab activation.
TGF−b/Smad

TGF-b1, a key regulator of fibrosis in many organs (74), induces

expression of NOXs and production of ROS, and is involved in

regulating hepatic stellate cells (HSC) activation, which is a key step

in initiating liver fibrosis (75). Liu et al. found that administration of

SCO suppressed cell proliferation, Smad3 phosphorylation and

extracellular matrix (ECM) expression in TGF-b1-induced HSC-T6

cells, accompanied by decreases in the expression of a-SMA, collagen I,

collagen III, NOXs and ROS production (41). In addition, Xu et al. also

demonstrated that SCO inhibited proliferation, fibrotic phenotype and

oxidative stress level of the pancreatic stellate cells by downregulating

the expression of a-SMA and type I collagen, and alleviated pancreatic

fibrosis through TGF-b/Smad pathway (74). Taken together, SCO can

inactivate TGF-b1/Smad3 signaling pathway, therefore improving the

pathology and symptoms of fibrosis-related diseases.
Nitric oxide -cGMP

NO activates cytoplasmic guanylate cyclase, which then

increases the level of cGMP in smooth muscle cells, leading to

relaxation of smooth muscle cells (76). Choi et al. demonstrated that

treatment with SCO increased the level of cGMP in rabbits,

resulting in the significant relaxation of their penile corpus

cavernosum smooth muscle (PCCSM). This effect of SCO was

weakened by blocking NO synthetase or guanylate cyclase using

N-w-nitro-l-arginine methyl ester hydrochloride (L-NAME) or 1H-

[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), suggesting that

SCO promotes penile erection by activating the NO-cGMP

signaling pathway (77).
JAK2-STAT3

Janus Kinase 2 (JAK2) can induce the phosphorylation of signal

transducer and activator of transcription 3 (STAT3) and is an important

regulator of inflammatory responses as well as cell proliferation/

differentiation (78). It was found that alterations in JAK2/STAT3

pathway affected the expression of many pro-inflammatory cytokines

(79). SCO was reported to suppress the accumulation of STAT3

transported from the cytosol to the nucleus, resulting in the inhibition

of vascular smooth muscle cell (VSMC) proliferation through G1 phase

arrest and suppression of Rb phosphorylation (80). SCO also exerted

antitumor effects on prostate cancer cells by inhibiting the transcription
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of STAT3 target genes, such as cyclin D1, c-Myc, survivin, Bcl-2 and

Socs3, and decreasing the phosphorylation and nuclear accumulation of

STAT3, but not JAK2 (81).
Limitations and future
research directions

Currently, SCO is predominantly utilized as a component or

ingredient of Artemisiae Scopariae Herba in compound formulations

rather than as a standalone treatment. While animal and cellular

experiments have provided valuable insights into the effects of SCO on

immune cells and immune-based diseases, especially some

autoimmune diseases, there is a lack of data concerning its toxicity,

pharmacokinetics and side effects. Moreover, there is also a gap

between preclinical findings and clinical data since SCO has not

been studied in humans. In these aspects, both animal and clinical

studies are warranted to ascertain its optimal dosages, efficacy and

potential side effects in the treatment of IMIDs, in particular, common

autoimmune diseases such as IBD, rheumatoid arthritis, osteoarthritis,

lupus and type 1 diabetes. Although SCO holds much promise as an

effective therapeutic agent for some IMIDs in preclinical studies, well-

designed clinical trials are imperative to provide conclusive evidence

and inform clinical practice for treating various autoimmune diseases

as well as inflammatory hepatic diseases. Since SCO is not a powerful

conventional immunosuppressant, however, it alone may not be

sufficient to effectively inhibit inflammation in a clinical setting,

which may pose a significant challenge to recruit patients for a

large-scale clinical trial. Perhaps, a feasible clinical trial should start

to explore the potentially synergistical effects of SCO on IMIDs with

other immunomodulatory or anti-inflammatory agents. It’s also

imperative to screen its derivatives for a better bioavailability,

stability, efficacy or reduced toxicity. We should also carefully

observe the potential side effects of SCO in preclinical studies even

before clinical trials. Additionally, further studies are required to

understand its drug metabolism and pharmacokinetics before the

clinical application of SCO to optimize its dosages. Finally, as an

additional limitation, previous studies have not identified the exact

binding sites of various signaling molecules and pathways. It remains

unclear how SCO interacts with each molecule in a specific

intracellular signaling axis. Thus, warranted are in-depth studies on

exact mechanisms of action underlying its effects, especially its binding

sites of various intracellular signaling pathways, such as TLR4/Myd88/

NFkB, TGFbR/Smad3 and JNK/Sab/SHP-1 axes.
Conclusions

Conventional immunosuppressive drugs often carry high costs

and may increase the risk of infections and development of cancers.

Therefore, it’s imperative to seek alternatives of moderate

immunosuppressants with less side effects, such as SCO. Here we

have compiled this review showcasing the efficacy of SCO in

treating IMIDs, such as allergic rhinitis, osteoarthritis, type 1

diabetes, IBD and neuroinflammatory diseases, and inflammatory
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hepatic diseases. SCO modulates both adaptive and innate immune

cells, including mast cells, monocytes, macrophages, neutrophils

and T cells, primarily through regulating their secretion of

proinflammatory or anti-inflammatory cytokines. It also has a

broad impact on intracellular signal transduction pathways,

mainly including TLR4/Myd88/NFkB, TGFbR/Smad3, Nrf2/P38,

JAK2/STAT3 and JNK/Sab/SHP-1 etc. Future study should focus

on clinical trials to evaluate the toxicity and efficacy of SCO in the

treatment of various IMIDs.
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