
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Kerstin Klein,
University Hospital Bern, Switzerland

REVIEWED BY

Stefania Madonna,
Institute of Immaculate Dermatology (IRCCS),
Italy

*CORRESPONDENCE

Matteo Vecellio

matteo.vecellio@well.ox.ac.uk

RECEIVED 28 October 2024

ACCEPTED 03 March 2025
PUBLISHED 18 March 2025

CITATION

Vecellio M and Selmi C (2025) EQTL analyses
are a formidable tool to define the
immunogenetic mechanisms underpinning
Spondyloarthropathies.
Front. Immunol. 16:1518658.
doi: 10.3389/fimmu.2025.1518658

COPYRIGHT

© 2025 Vecellio and Selmi. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Opinion

PUBLISHED 18 March 2025

DOI 10.3389/fimmu.2025.1518658
EQTL analyses are a formidable
tool to define the immunogenetic
mechanisms underpinning
Spondyloarthropathies
Matteo Vecellio1,2* and Carlo Selmi3,4

1Centro Ricerche Fondazione Italiana Ricerca in Reumatologia (FIRA), Fondazione Pisana per la
Scienza ONLUS, San Giuliano Terme, Italy, 2Wellcome Centre for Human Genetics, University of
Oxford, Oxford, United Kingdom, 3Department of Rheumatology and Clinical Immunology, IRCCS
Humanitas Research Hospital, Milan, Italy, 4Department of Biomedical Sciences, Humanitas University,
Milan, Italy
KEYWORDS

spondylitis, transcriptomics, genomics, spondyloarthropathies, genetics
In the practice of clinical rheumatology, identifying individuals at higher risk to

develop a chronic inflammatory disease based on their genetic profiles remains a major

wish. In the case of axial spondyloarthritis (axSpA) (1), the strong association with HLA-

B27 may well fulfil this expectation but the vast prevalence of this allele in the general

population makes in unsuitable for the early diagnosis. With better genetic tools

available, clinicians may tailor more effective therapeutic interventions, based on the

molecular pathways involved.
Understanding eQTLs

EQTLs are genomic loci that modulate the expression of genes. Notably, these genetic

factors are prevalently non-coding variants that can act across cell types and states (2). The

most common method of analyzing such impact is to directly assay the levels of RNA

produced from the gene of interest in connection with a specific genetic variant, done on a

single transcript level via quantitative real-time PCR (qRT-PCR), or on a transcriptome-

wide manner with RNA sequencing (RNA-seq) based methodologies (3). Therefore, eQTLs

are genetic variants with validated functional effects on the differential expression of genes,

and are linked to disease in ways similar to GWAS variants. There are crucial steps that

must be followed to process eQTL data, including quality control, mean aggregation,

covariate correlation procedures, and multiple testing corrections (4).

It is critical for this sort of approach to map eQTLs in the context of disease to link

the direct contribution of specific regulatory variants to the disease pathogenesis (5).

EQTLs can be classified into two main types: cis-eQTLs, which affect genes located nearby

on the same chromosome, and trans-eQTLs, influencing genes situated far away on the
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genome or on different chromosomes. It’s not trivial to identify

eQTLs indicative of genetic variations really contributing to

disease mechanisms.

For eQTL mapping to provide disease insights, changes in RNA

expression levels must be assayed in the specific cell types and

conditions relevant to the disease of interest (6). The context

specificity of eQTL effects it’s a pivotal concept because the

transcriptome and its regulatory mechanisms are dynamic and

very frequently context-dependent (7). Further, seminal studies

have demonstrated that eQTLs may only be detected in certain

cell types or upon stimulation, introducing the concept of response

eQTLs (8), which connect disease-relevant treatments to genetic

variation. Response eQTLs have the power to show how common

genetic variation might contribute to gene expression changes only

in activated conditions, such as a specific stimulus as shown in

osteoarthritis (with a cartilage matrix breakdown product,

fibronectin fragment), allowing the investigation of early stages of

the disease (9, 10) It has been also demonstrated that GWAS

associations have only limited overlap with eQTLs (11). The

regulatory activity of the variants may be likely active only in

disease relevant conditions, such as following immune activation,

as it occurs in axSpA.
eQTLs and Spondyloarthropathies

Several works have proven that eQTLs can significantly impact the

expression of genes associated with inflammatory processes (12, 13).

In axSpA, previously identified as ankylosing spondylitis, specific

eQTLs have been linked to genes involved in the immune response

and bone remodeling (14, 15). Back in 2016, Ellinghaus and colleague

published a cross-disease study where they simultaneously

investigated the genetic landscape and the pleiotropy of five

clinically related conditions including axSpA, psoriasis, Crohn’s

disease, primary sclerosing cholangitis, and ulcerative colitis. The

authors were able to identify new coding variants and eQTLs for Fc

Gamma Receptor IIa (FCGR2A), Endoplasmic reticulum

aminopeptidase 2 (ERAP2), tyrosine-protein kinase 2 (TYK2) and

fucosyltransferase 2 (FUT2) shared by the different diseases (16). Very

importantly, variations in the IL23R gene, which encodes a receptor

for interleukin 23 (IL23R) have been identified as potential eQTLs that

may influence susceptibility to axSpA, although no convincing effects

arising from the primary associated SNPS rs11209032 have been

observed on the transcription of either IL23R (and cognate

IL12RB2) (17). On this matter, eQTL libraries generation as

described by Fairfax et al. for monocytes might be very helpful, but

they are highly cell specific and may therefore not be relevant to the

disease context (8). More recently, Roberts and colleagues found that

an intergenic SNP in the IL23R-IL12RB2 region had a regulatory effect

but despite no apparent regulation on the mRNA gene expression, the

proportion of IFN-g+ CD4+ T-cells was increased in the homozygote

subjects carrying the disease genotype ‘A/A’ (18). It is very likely that

other regulatory mechanisms are acting on this locus but the

identification of eQTLs relevant to axSpA may help the researchers
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in shedding the light on the pathophysiology of the disease, also

highlighting potential therapeutic targets.

From this perspective, Brown and colleagues reported different

eQTLs, in the comprehensive genomic analysis performed on

immune cells obtained from the peripheral blood of patients with

axSpA (19). A total of nine loci, including Runt-related

transcription factor 3 (RUNX3), Interleukin 7 receptor (IL7R,

encoding the IL-7Ra subunit), ETS proto-oncogene 1 and 2

(ETS1, ETS2) and B3GNT2 [previously associated with increased

AS risk (14)], showed chromatin interaction, differential open

chromatin profile, peaks for specific regulatory histone marks

(such as H3K4me3 and H3K27ac) enhancer RNA (eRNA) peaks,

and five of them overlapped eQTLs in the same cell types. Further,

the authors demonstrated allele-specific differences in the ATAC-

seq signal (Assay for Transposase-Accessible Chromatin using

sequencing to identify open chromatin regions) (20) for an axSpA

GWAS-associated SNP, rs4672505, previously associated with

differential abundance of B3GNT2, a poly-N-acetyllactosamine

synthase enzyme important in modulating T cell activation in

cancer (21). A reduction of B3GNT2 expression in individuals

with the axSpA risk allele is caused by a reduced chromatin

openness at this locus. The authors suggest that this strong effect

might impact other higher-order chromatin structures, such as the

looping event identified they identified between a distal enhancer

and B3GNT2 (19).

Back in 2018, the group of Professor Gaffney identified shared

QTLs for chromatin accessibility and gene expression in human

macrophages exposed to specific stimuli such as IFNg, Salmonella

and IFNg + Salmonella. Understanding how genetic variants affect

the binding of specific transcription factors, altering chromatin

accessibility and enhancers behaviors during immune activation is

central in untangling the molecular architecture of disease-

associated variants (22) and so, to develop strategies to mediate

the inflammatory processes (such as in axSpA).
Single-cell-resolution eQTL as a new
way in SpA modelling

Single cell (sc) technology has been revolutionary in the field of

molecular biology and genomics, measuring the abundance of

mRNA molecules per cell, detecting transcriptomic profiles at

unprecedented scale and resolution (23, 24). Thanks to the

development of sc-eQTL models that can identify cell-state-

specific genetic effects on gene expression, it is now possible to

define how genetic variants influence gene expression at the single-

cell level and how genetic regulation varies in a dynamic way along

specific trajectories. This approach is already very powerful in

integrating existing knowledge about disease alleles with their

predicted regulatory targets in defined cellular context. Sc

profiling will be critical for studies of QTLs affecting the

magnitude of dynamic expression responses together with their

rate and timing (7). A recent study demonstrated the power of sc-

eQTL mapping in linking genetic variants to complex diseases (i.e.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1518658
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Vecellio and Selmi 10.3389/fimmu.2025.1518658
neurological disorders): the authors performed sc-eQTL mapping

on 196 individuals in eight central nervous system cell types and

identified thousands of genes having cell-type-specific effects (25).

Transcriptomic analysis at single cell resolution is just the first

layer of the complex regulatory machinery that controls functions

and signaling in the cell. Other readouts, including chromatin

accessibility, surface proteins, T cell receptor (TCR)/B cell receptor

(BCR) repertoires, are measured to complement transcriptomic

analysis at sc resolution. Simone and colleagues have recently

identified multiple Tregs clusters in the peripheral blood and

synovial fluid of patients with axSpA. Of note, one regulatory CD8

+ subset expressed cytotoxic markers, and a Th17-like RORC+ Treg

subset was specifically characterized by the expression of the

immunomodulatory molecule lymphocyte activating 3 (LAG-3)

(26). The value of using patient blood and/or tissue derived cells

such as synovial tissue/fluid to perform scRNA-seq-based eQTL

studies is undeniable (6). We must think differently: instead of

treating individuals as observations, trajectories models treat each

cell as its own observation of the expression of a gene. Few years ago,

Perez and colleagues published a seminal work where they profiled

more than 1 million of circulating immune cells with multiplexed sc-

RNA-seq. Integrating these data with genotyping data the authors

map cell type– and cell context–specific cis-eQTLs that might

mediate systemic lupus erythematosus (SLE) disease associations

and have a plausible functional effect. Joint analysis of cis-eQTLs

and genome-wide association study results enabled the identification

of cell types relevant to immune-mediated diseases, fine-mapping of

disease-associated loci, and discovery of novel SLE associations (27).

Furthermore, Yazar and colleagues showed through a population-

based study how segregating alleles may contribute to variation in the

function of 14 immune cell types. With the integration of these data

with autoimmune disease (including RA, SLE and AxSpA) cohorts

the authors identified causal effects for more than 160 loci (28). Of

note, although sc-transcriptomics offers a vast opportunity to expand

eQTL discovery and map in depth transcriptional regulation, several

methodological limitations still remain. Sc-technology is not exempt

from batch effects, and data might still be influenced by technical

factors. Nevertheless, different computational batch correction

methods are available, with the aim to remove technical variation

from the data, thus preventing the variation from confounding

downstream analysis (29). Of note, there are rare or particular cell

types (i.e. neutrophils with high levels of RNases) which are still

challenging to measure, accentuating a need in improving annotation

efficiency, cell state definitions and correlation analysis. Further,

standard pipelines lack the power to accurately quantify specific

genes (i.e. HLA genes, which are very polymorphic across

individuals): this suggests there are instances for the development

of more specialized gene quantification pipelines (30).
Implications for research
and treatment

Studying eQTLs might open new opportunities for personalized

medicine in axSpA. Understanding the molecular pathways
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influenced by eQTLs can facilitate the development of novel

therapeutics aimed at modulating gene expression or targeting

specific inflammatory pathways. As previously indicated, Brown

and colleagues combined their genomics analysis (19) with PI

(priority index, a genetics-led approach that interprets GWASs

with functional genomic data to prioritize therapeutic targets in

immune-mediated and inflammatory disorders) (31). The authors

successfully confirmed pathways known to be important in AS

pathogenesis, such as Th17/IL-23 and TNF, and identified novel

pathways and potential drug targets, such as PTGER4,

phosphatidylinositol 3-kinase (PI3K)/AKT, NOTCH, ErbB and

GPCR. The link between a particular eQTL variant and the

increased expression of a disease-associated gene, suggests that

modulating its expression might have therapeutic benefits.

Existing inhibitors of the pathways identified in the AS

comprehensive study, such as the PI3K inhibitors currently used

for the treatment of lymphoma, could be repurposed, and

optimized in axSpA. Further, the identification of multiple eQTLs

can contribute to develop combination therapies by identifying

those genes that work synergistically in disease pathways. On this

line, Goldmann et al. performed eQTL analysis in synovial tissue

and blood samples obtained from treatment-naïve patients with

rheumatoid arthritis (RA). In particular the authors identified 898

eQTL in synovium, and 1251 eQTL in peripheral blood, Among

these, a specific eQTL at HLA-DPB2 gene was discovered, with the

genetic variant rs3128921 driving synovial HLA-DPB2 expression.

Both rs3128921 and HLA-DPB2 expression correlated with disease

severity and lympho-myeloid pathotype, indicating a potential for

immediate aggressive treatment stratification (10).

The multimodal approaches we have briefly discussed here,

consisting in assessing gene expression, open chromatin

identification and chromatin interactions, can inform the

interpretation of axSpA GWAS indicating the likely functional

variants and the gene regulatory networks to prioritize for the

identification of new potential drug targets.
Concluding remarks

EQTLs represent a promising frontier in the genetic research of

axSpA. By elucidating the connections between genetic variation,

gene expression, and disease mechanisms, eQTL studies hold the

potential to enhance our understanding of SpA and improve patient

outcomes through more personalized treatment approaches. Future

research should focus on integrating eQTL data with other omics

approaches, such as proteomics and metabolomics, to create a more

comprehensive understanding of gene regulation. Recently, Zhao

and colleagues performed a comprehensive proteome-wide

mendelian randomization study to assess the causal relationships

between plasma proteins and increased SpA susceptibility, to

identify potential therapeutic targets and to repurpose licensed

drugs (32). The utility of metabolomic profiling integrated with

transcriptomic and genomics is indisputed, as it might help to

understand molecular mechanisms for metabolite levels in diseases

(33). The so-called metabQTLs, the genetic associations discovered
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through GWAS with metabolite levels, add another layer of

complexity to the full picture but are of extreme value to gain

metabolic insights and facilitate the discovery of disease-associated

molecular mechanisms (34). Metabolomics and proteomics

analyses are widely applied for new biomarkers discovery: both

approaches must be considered for the comprehensive

identification of the metabolic changes occurring in SpA.

As previously anticipated, advancements in sc-RNA-seq

technology also hold the potential to dissect eQTL effects at the

cellular level, revealing insights into cell-type-specific gene

expression patterns and allowing patients with the same clinical

disease to be stratified into subgroups for better therapeutic

strategies (35).

However, the identification of eQTLs is just the first step, as

understanding their functional consequences is the real critical

point. Validating the biological impact of identified eQTLs

through functional assays, such as CRISPR/Cas9 gene editing or

RNA interference is crucial to better clarify how specific genetic

variants influence gene expression (36) and contribute to disease,

providing a more robust basis for therapeutic development (37).

The evaluation of the functional role of each specific SNP or

haplotype (a set of genetic determinants inherited together) (38)

is fundamental to provide biological evidence to support the

susceptibility of a genomic locus. So, perturbing the expression of

genes (gene overexpression and gene silencing) with a CRISPR

based approach (CRISPR KO, CRISPR activation and CRISPR

interference) has the power to assess the regulatory effect of a

specific genetic variant (39). Further, chromosome conformation

capture techniques (Hi-C, Micro-C and Micro Capture C) are also

able to resolve (40) GWAS signals to functionally correlate disease-

associated SNPs with target genes and thus explain differential gene

expression (41). Assessing SNP regulatory functions include also

the investigation of the effects on protein-DNA complex formation,

as the regulatory effects of transcription factors are mediated

through complexes binding to DNA regulatory regions, associated

to euchromatin (open active chromatin) (39, 42).

Artificial intelligence (AI) and machine learning techniques can

be also applied to significantly enhance eQTL research, as these

technologies can analyze large datasets more efficiently, uncovering

complex patterns and interactions that might be missed by

traditional analytical methods (43). AI can also facilitate the

development of predictive models that integrate genetics,
Frontiers in Immunology 04
epigenomics, and phenotypic data to anticipate disease risk and

treatment outcomes, together with the identification of novel drug

targets and the optimization of existing therapies.
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