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Purpose: The coagulation process and infiltration of macrophages affect the

progression and prognosis of lung adenocarcinoma (LUAD) patients. This study

was designed to explore novel classification methods that better guide the precise

treatment of LUAD patients on the basis of coagulation and macrophages.

Methods: Weighted gene coexpression network analysis (WGCNA) was applied

to identify M2 macrophage-related genes, and TAMmarker genes were acquired

through the analysis of scRNA-seq data. The MSigDB and KEGG databases were

used to obtain coagulation-associated genes. The intersecting genes were

defined as coagulation and macrophage-related (COMAR) genes.

Unsupervised clustering analysis was used to evaluate distinct COMAR patterns

for LUAD patients on the basis of the COMAR genes. The R package “limma” was

used to identify differentially expressed genes (DEGs) between COMAR patterns.

A prognostic risk scoremodel, which was validated through external data cohorts

and clinical samples, was constructed on the basis of the COMAR DEGs.

Results: In total, 33 COMAR genes were obtained, and three COMAR LUAD

subtypes were identified on the basis of the 33 COMAR genes. There were 341

DEGs identified between the three COMAR subtypes, and 60 prognostic genes

were selected for constructing the COMAR risk score model. Finally, 15 prognosis-

associated genes (CORO1A, EPHA4, FOXM1, HLF, IFIH1, KYNU, LY6D, MUC16,

PPARG, S100A8, SPINK1, SPINK5, SPP1, VSIG4, and XIST) were included in the

model, which was efficient and robust in predicting LUAD patient prognosis and

clinical outcomes in patients receiving anti-PD-1/PD-L1 immunotherapy.

Conclusions: LUAD can be classified into three subtypes according to COMAR

genes, which may provide guidance for precise treatment.
KEYWORDS

coagulation, macrophage, prognosis, LUAD, classification methods, risk score
model, immunotherapy
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Introduction

Lung cancer is a type of cancer with high morbidity, resulting in

the most cancer-re lated deaths worldwide (1) . Lung

adenocarcinoma (LUAD) is the most common type of lung

malignancy and often presents morphologic and genetic diversity,

making its diagnosis and treatment difficult (2, 3). Currently, the 5-

year survival rate of LUAD patients remains 23%, despite

improvements in early diagnosis and current treatment methods

(4). In recent years, it has been increasingly recognized that each

cancer may have a different response to common treatments, such

as chemotherapy and radiation, because of the molecular attributes

of an individual patient’s tumor (5). Therefore, further exploration

of molecular classification methods for LUAD may contribute to

the discovery of more effective therapeutic biomarkers and precise

treatments for LUAD.

The tumor microenvironment (TME) plays a crucial role in

tumor development and therapeutic response (6, 7). Tumor-

associated macrophages (TAMs) are important components of

the TME. TAMs mainly originate from two sources: bone

marrow (BM)-derived monocytic precursors and tissue-resident

macrophages (TRMs) originating from embryonic precursors (8).

As the most abundant immune population of the TME, TAMs have

heterogeneous properties ranging from antitumorigenic to

protumorigenic (9). TAMs can be classified into two types: M1

classically activated macrophages or M2 alternatively activated

macrophages (10). The polarization of M1 macrophages is

induced by factors such as IFNg, TNFa, lipopolysaccharide (LPS),
GM-CSF, or other pathogen-associated molecular patterns, whereas

M2 macrophage polarization is usually stimulated by MCSF, IL4,

IL10, IL13, TGFb, glucocorticoids, or immune complexes (10). M1

macrophages promote an antitumoral response by recruiting Th1

cells through the secretion of the chemokines CXCL9 and CXCL10

and the secretion of proinflammatory cytokines such as TNF-a, IL-
1b, IL-6, IL-12 and IL-23 (11, 12). Moreover, M1 macrophages

produce nitric oxide (NO) and reactive oxygen intermediates

(ROIs), which are toxic to tumor cells (13). M2 macrophages

promote tumor progression through the upregulation of

immunosuppressive factors such as TGF-b, IL-4, IL-10 and PD-

L1 (14, 15) or facilitate tumor angiogenesis via the expression of

Tie2, VEGF, PDGF and IGF (15, 16). In addition, M2 macrophages

enhance cancer cell drug resistance by regulating the PI3K/Akt,

JAK/STAT and mitogen-activated protein kinase (MAPK)

pathways through the production and release of mediators (17–19).

M2 macrophages promote lung cancer growth and metastasis

through various mechanisms. For example, the IL6-STAT3-C/EBPb-
IL6 positive feedback loop in TAMs promotes the secretion of IL-6,

thus facilitating LUAD progression and metastasis by activating the

EMT pathway (20). M2 macrophages promote malignancy in lung

cancer through EMT by upregulating CRYAB expression and

activating the ERK1/2/Fra-1/slug signaling pathway (21).

LINC01001 from the exosomes of M2 macrophages can interact

with METTL3 and regulate glycolysis in LUAD cells to promote

LUAD development (22). TAMs have a strong impact on the clinical

outcomes of LUAD patients receiving chemotherapy and PD-1/PD-

L1, and studies are exploring TAMs as novel therapeutic targets for
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LUAD (23–26). Studies have shown that TAMs are closely related to

coagulation. First, TAMs can facilitate the coagulation process in

cancer patients by producing factor X (FX) and inducing cell-

autonomous FXa-PAR2 signaling in cells within the TME (27, 28).

In addition, some coagulation-related factors affect tumor progression

by regulating the functions of TAMs. For example, plasminogen

activator inhibitor-1 (PAI-1) and thrombin can promote the M2

polarization of TAMs in lung cancer and ovarian cancer, respectively

(29, 30). Tissue factor (TF) expressed by LUAD cells can recruit TAMs

to the TME, promoting the formation of the premetastatic niche (31).

Evidence shows that the lungs contribute to platelet biogenesis and are

a primary site of terminal platelet production (32); thus, the lungs may

play significant roles in coagulation. Lung cancer is an important cause

of blood coagulation disorders, as it can result in venous

thromboembolism, the second leading cause of cancer patient death

(6, 33). Patients with LUAD, which is an independent risk factor for

thromboembolism, have a greater risk of venous thromboembolism

among lung cancer types (34, 35).

In our previous study, we constructed and validated a coagulation

and macrophage-related (COMAR) risk score model for LUAD via

bioinformatics methods. This model has effective and robust

predictive value for patient prognosis and immunotherapeutic

response and provides potential new targets for LUAD treatment

(36). In accordance with previous studies, we aimed to further explore

molecular classification methods for LUAD on the basis of COMAR

genes. These findings may help in the discovery of novel biomarkers

for the personalized prediction and treatment of LUAD.
2 Materials and methods

2.1 Data collection and preprocessing

In this study, we applied identical data collection and

preprocessing methods as those used in our previous study (36).

We used bulk RNA-seq data and clinical information from the

TCGA-LUAD cohort (https://portal.gdc.cancer.gov/projects/

TCGA-LUAD) and cohorts from the GEO database (https://

www.ncbi.nlm.nih.gov/geo/, GSE30219, GSE37745, GSE41271,

GSE42127, GSE50081, GSE68465, and GSE72094). The GSE68465

dataset was used as the training cohort, and the other datasets were

used as the validation cohort. The scRNA-seq dataset, which

contains single-cell transcriptome data from 15 LUAD patients,

was downloaded from the GEO database under accession number

GSE131907. Coagulation-related genes were obtained from the

coagulation-related pathways in the MSigDB and KEGG

databases, with 535 genes identified after the removal of duplicate

genes. The numbers of genes in the corresponding pathways and

the names of the 535 genes are listed in Supplementary Table 1. The

preprocessing steps of the scRNA-seq data were also identical to

those in our previous study (36). After quality control, batch effect

removal, data visualization and cellular group annotation, the

differentially expressed genes (DEGs) between each cell type were

identified via the “FindAllMarkers” function in the R package

“Seurat”, and a volcano plot of the DEGs between different cell

types was generated via the R package “scRNAtoolVis”.
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2.2 WGCNA to construct gene
coexpression networks

Weighted gene coexpression network analysis (WGCNA) was

used to explore the relationships between the gene coexpression

networks and the core genes in the network by identifying

coexpressed gene modules. First, the correlation coefficient

between every two genes was computed, and the weighted values

of the correlation coefficients were used to ensure that the

connections between genes in the network obey a scale-free

network. A hierarchical clustering tree was subsequently

constructed on the basis of the correlation coefficients between

these genes. Different branches of the clustering tree represent

different gene modules, and different colors represent different

modules. Next, the significance of each module was calculated

and applied to evaluate the correlation between the M2

macrophage infiltration score and the different modules, and the

genes obtained in each module were considered signature

module genes.
2.3 Estimation of immune cell infiltration in
the TME

The CIBERSORT algorithm of the R package “IOBR” was

employed to estimate the abundance of 22 types of immune cells

in the samples of the GSE68465 cohort. This algorithm can be

applied to statistically evaluate the infiltration proportions of cell

subgroups in complex tissues according to gene expression profiles,

and it is a useful tool for estimating the abundance of specific cell

types in mixed tissues.
2.4 Unsupervised clustering analysis of
coagulation-related genes

The M2 macrophage-related signature genes identified via

WGCNA, the TAM-associated DEGs and the coagulation-related

genes in the MSigDB and KEGG databases were characterized as

key coagulation-related genes. To further reveal the biological

functions of the key coagulation-related genes in LUAD, we used

the R package “ConsensusClusterPlus” to classify the LUAD

patients into different coagulation-related subgroups. The Kaplan

−Meier method was used to detect survival status and compare

differences in patient survival between these subgroups.
2.5 Identification of the DEGs between
different coagulation patterns

The R package “limma” was used to identify genes that were

differentially expressed between different coagulation patterns. The

genes that were differentially expressed between the three

coagulation patterns were screened according to the difference

multiplicity |log2FC| > 0.585 and the significance threshold FDR
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(false discovery rate)< 0.05. The DEGs in the three groups were

considered coagulation-related genes and were included in the

subsequent analyses.
2.6 Functional enrichment analysis and
construction of the protein
interaction network

GO analysis is the main bioinformatic tool for the annotation of

genes and their functions and includes three main categories: CC,

MF and BP. KEGG is a collection of multiple databases that include

information about genomes, biological pathways, diseases and

chemicals. GO functional enrichment analysis and KEGG

pathway analysis were performed on the DEGs associated with

the three coagulation patterns via the “clusterProfiler” package to

predict their potential molecular functions. P< 0.05 was considered

statistically significant.
2.7 Construction of the prognostic model

A 15-gene coagulation-associated prognostic model was

constructed on the basis of the DEGs between different

coagulation patterns. First, univariate Cox analysis was used to

identify the 60 DEGs that were associated with prognosis. Then,

LASSO penalized Cox regression analysis was applied to minimize

the risk of overfitting, and a 15-gene model was constructed. The

LASSO algorithm selected and shrunk the variables via the R

package “glmnet”. The patients’ risk scores were calculated on the

basis of the expression levels of each prognosis-related gene and

their corresponding regression coefficients:

Risk score =o
n

i=1
expi �  bi

In the above formula, “n” represents the number of genes;

“expi” represents the expression level of gene “i”; and “bi”
represents the coefficient of gene “i”. Patients were divided into

high-risk and low-risk groups according to the median risk score,

and survival analysis was performed via the R package “survminer”

to analyze OS in the high- and low-risk groups. The “survminer”

and “timeROC” packages were used to perform time-dependent

ROC curve analysis to assess the predictive efficacy of the prognostic

models. Finally, risk scores were calculated in the validation cohorts

via the same formula.
2.8 Pseudotime analysis and cellular
communication analysis of the scRNA-
seq data

On the basis of the cell annotation results, we selected

malignant tumor cells for further analysis. First, the R package

“harmony” was used to remove the batch effect among all samples,

and the computing method described previously was used to
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calculate the risk score of each tumor cell. All tumor cells were

divided into high- and low-risk groups according to the median risk

score. Differential expression analysis of malignant tumor cells was

performed for the high- and low-risk groups. We then chose the

DEGs in both groups (FDR< 0.05 & |log2FC| > 0.25) for subsequent

pseudotime analysis. Next, the “DDRTree” method was used to

downscale the cells, and the “reduceDimension” function was used

to determine the type of cell differentiation status. Finally, the “plot

cell trajectory” function was used to visualize the differentiation

trajectory of the cells. The cellular communication between tumor

cells in the high- and low-risk score groups and immune cells was

analyzed via the R package “cellChat”, and different ligand−receptor

pairs were also identified.
2.9 Analyses of biological functions

For the bulk RNA-seq data, GO and KEGG enrichment

analyses were performed via the GSVA algorithm to calculate the

score for each pathway in each sample. The differentially activated

pathways in the high- and low-risk score groups were identified via

the “limma” package, with the differential threshold set at FDR<

0.05. The classical GO and KEGG analyses were performed via the

“clusterProfiler” package for the scRNA-seq data. Differentially

activated pathways between the high- and low-risk score groups

were analyzed via GSEA enrichment analysis of both bulk RNA-seq

and scRNA-seq data.
2.10 Collecting the
immunotherapeutic cohorts

The GSE126044 dataset, which contains seven LUAD patients

who received anti-PD-1 immunotherapy, was downloaded from the

GEO database. The GSE135222 dataset containing 27 NSCLC

patients receiving anti-PD1/PD-L1 immunotherapy was also

downloaded from the GEO database. We calculated the risk

scores for each sample in these datasets via the same algorithm as

the previous model and performed survival analysis. We also

compared the difference in the risk score between patients with

cancer progression and those without cancer progression after

receiving immunotherapy.
2.11 Predicting sensitivity to
chemotherapeutic drugs

To assess the differences in sensitivity to chemotherapeutic

drugs between the high- and low-risk score groups, the

OncoPredict algorithm was used to predict the IC50 of the drugs

applied to the samples in the GSE68465 cohort on the basis of the

Genomics of Drug Sensitivity in Cancer (GDSC) and the Cancer

Therapeutics Response Portal (CTRP) databases. The R package

“oncoPredict” was applied to construct the ridge regression model

on the basis of the drug data from the GDSC and CTRP databases.

Spearman correlation analysis was performed to analyze the
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correlation between the risk score and drug IC50. In addition, we

plotted box plots of the IC50 values of some drugs with differential

IC50 values between the high- and low-risk score groups.
2.12 Validation of the key COMAR genes at
the protein level

The publicly available protein expression data were obtained from

the Human Protein Atlas database (https://www.proteinatlas.org/) and

the publication of Jun-Yu Xu et al. (37). The immunohistochemical

images of key COMAR genes were downloaded from the Human

Protein Atlas database, and the protein expression levels of each

gene in normal lung tissues and LUAD tissues were observed. The

proteomic data generated from mass spectrometry and

corresponding clinical information were obtained from the

supplemental data of Jun-Yu Xu’s publication (37), and survival

analysis was performed on the data.

The key COMAR genes were a l so va l ida ted v ia

immunohistochemical experiments in LUAD clinical samples. The

samples were collected from the First Affiliated Hospital of Shandong

First Medical University & Shandong Provincial QianfoshanHospital

from June 2012 to February 2020. Written informed consent was

provided by all participants. Tumor tissues were obtained from

excised biopsies, fixed in formalin and embedded in paraffin

(FFPE) for histological evaluation. After paraffin wax removal and

rehydration, the sections were placed in citrate antigen retrieval

solution and boiled for 15 minutes for antigen retrieval. Then, an

endogenous peroxidase blocker was added to block endogenous

peroxidase activity in the sections. After incubation at room

temperature for 30 minutes, 50 mL of goat serum working solution

was added to each sample, which was subsequently incubated at 37°C

for 20 minutes to block nonspecific staining. The sections were

subsequently incubated with primary antibodies (rabbit anti-V-set

and immunoglobulin domain containing 4 (VSIG4), 1:400, bs-0479R;

Bioss Ltd., CHN) for 1 hour at 37°C. After 3 × 5-minute washes with

PBS solution, the sections were incubated with biotinylated secondary

antibody at room temperature for 30 min, followed by subsequent

washes (3 × 5 min in PBS solution). The sections were subsequently

dried with absorbent paper and incubated with 50 mL of horseradish-
labeled streptavidin for 20 minutes at 37°C. The sections were then

rinsed with PBS for 3 × 5 min. After immunostaining, the sections

were visualized via the Leica Bond™ System according to the

manufacturer’s protocol. The slides were independently examined

by two experienced pathologists according to the WHO criteria.
2.13 Statistical analysis

All the analyses were performed in R software (version 4.1.2).

For significance analysis between various values (such as expression

levels, infiltration ratios and various eigenvalues), the Wilcoxon

rank-sum test was applied to compare the differences between two

groups of samples, and the Kruskal−Wallis test was used to

compare the differences between multiple groups of samples. For

plot presentation, ns indicates p > 0.05; * indicates p< 0.05;
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**indicates p< 0.01; *** indicates p< 0.001; and **** indicates p<

0.0001. Survival curves for the prognostic analysis were generated

via the Kaplan−Meier method, and the significance of the

differences was determined via the log-rank test.
3 Results

3.1 Screening the macrophage-related
genes involved in this study
through WGCNA

This analytical step was aimed at preciously identifying the genes

that were significantly related to M2 macrophage infiltration. The

CIBERSORT algorithm was used to evaluate the number of M1 and

M2 macrophages in the samples from the GSE68465 cohort. The

LUAD patients were subsequently divided into M1 and M2

macrophage high and low groups. K−M analysis revealed that there

was no significant difference in the survival of LUAD patients between

the high-M1 macrophage group and low-M1 macrophage group

(Supplementary Figure 1A), but patients in the low-M2 macrophage

group had longer overall survival (Supplementary Figure 1B). These

findings suggest that M2 macrophages play an important role in the

prognosis of LUAD patients. On the basis of these results, WGCNA

was performed to identify M2 macrophage-related genes in LUAD.

First, the sample clustering results revealed no outliers in these LUAD

samples (Supplementary Figure 1C). When the power value was

seven, the degree of independence was greater than 0.85 for the first

time, so seven was selected as the optimal soft threshold power

(Supplementary Figures 1D, E). There were nine gene modules

identified via WGCNA (Supplementary Figures 1F, G). Correlation

analysis revealed that genes in the brown module (cor = 0.33, p =

0.0001) and blue module (cor = -0.41, p = 0.0000) were most

significantly correlated with M2 macrophages. Therefore, the 408

genes in the brown module and the 430 genes in the blue module

(Supplementary Table 2) were selected for subsequent analyses.
3.2 Acquiring TAM marker genes via
scRNA-seq data

The single-cell data was obtained from the study of Nayoung Kim

et al, and was downloaded from the GEO database with accession

number GSE131907 (38). First, the quality control of the scRNA data

was performed for the subsequent analyses (Supplementary

Figures 2A–F). Then, according to the TSNE and cell type

annotation, the cells were divided into two groups: 34279 immune

cells and 16236 nonimmune cells. The immune cell group consisted of

B lymphocytes, mast cells, myeloid cells, T/NK cells and TAMs,

whereas the nonimmune cell group included endothelial cells,

epithelial cells and fibroblasts (Supplementary Figures 3A, B). The

specific genes of each cell type were identified and presented in a

volcano plot (Supplementary Figure 3C). The 1851 TAM-specific genes

were considered TAM-associated genes (Supplementary Table 3).
Frontiers in Immunology 05
3.3 Obtaining the COMAR genes in LUAD

To obtain the genes that were related to the joint functions of

coagulation and macrophage. Thirty-three COMAR genes were

identified at the intersection of 535 coagulation-related genes, 838

M2 macrophage-associated genes and 1851 TAM-related genes.

These genes were selected for subsequent analyses (Supplementary

Figure 4; Supplementary Table 4).
3.4 Identification of different COMAR
patterns in LUAD

To further explore the biological and clinical functions of the 33

key coagulation-related genes, we first used the STRING database to

construct a protein–protein interaction network (PPIN) to investigate

the protein interactions between these genes (Figure 1A). The results

revealed that many of these genes had strong connections with other

genes, such as ITGAM and TLR4. These genes may play important

roles in the process of coagulation. We then used the R package

“ConsensusClusterPlus” to perform consensus clustering analysis in

the GSE68465 cohort. The results revealed that the optimal number

of patient subgroups was three (Figure 1B, C). The PCA results also

revealed three distinct COMAR patterns in these LUAD patients

(Figure 1D). K−M survival analysis was used to investigate the

prognosis of patients in the three COMAR clusters. The three

clusters had significantly different prognoses (log-rank test,

p = 4.59e-07). Patients in Cluster 3 had the best prognosis, whereas

those in Cluster 2 had the worst prognosis (Figure 1E). The

expression levels of the 33 genes also varied among the three

clusters (Figure 1F).
3.5 Analyzing the DEGs between different
COMAR patterns

To explore the underlying mechanisms that caused the

differences in biological and clinical functions between the

three COMAR patterns, the R package “limma” was used to

perform differential expression analysis between the distinct

coagulation patterns. A total of 341 genes that were

differentially expressed between these clusters were identified

with the thresholds set at |log2FC| > 1 and FDR< 0.05. The

enrichment analysis for these DEGs was conducted via the R

package “clusterProfiler”. The results of the GO analysis revealed

that these DEGs were enriched mainly in vesicles and the external

side of the plasma membrane and were involved in biological

processes such as leukocyte migration, cell adhesion, chemokine

receptor binding, MHC protein complex binding, and T-cell

activation (Supplementary Figures 5A–C; Supplementary

Table 5). The results of the KEGG enrichment analysis revealed

that these DEGs were enriched mainly in signaling pathways such

as cell adhesion molecules and phagosomes (Supplementary

Figure 5D; Supplementary Table 5).
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3.6 Construction and validation of the
prognostic model based on the DEGs
between different COMAR patterns

To further investigate the clinical value of the DEGs between

different COMAR patterns, a prognostic risk score model was
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constructed based on these genes. First, univariate Cox regression

analysis was performed. There were 60 genes associated with overall

survival (OS) (Supplementary Figure 6A; Supplementary Table 6).

KM curves of the top 6 genes with the lowest p values are presented

in Supplementary Figure 6B. Since an excessive number of genes is

not conducive to clinical detection, we then used least absolute
FIGURE 1

Identification of three different coagulation-associated patterns. (A) The PPIN network of the 33 coagulation-related genes constructed via the String
database. (B) Consensus matrices of the GSE68465 cohort for k = 3. (C) Relative change in the area under the CDF curve for k = 2–5. (D) Principal
component analysis (PCA) of the transcription of the 33 coagulation-related genes in patients with different coagulation patterns. (E) OS curves of patients
with three different coagulation patterns. Red, cluster 1; blue, cluster 2; green, cluster 3. The abscissa axis shows the survival time, whereas the ordinate axis
shows the survival probability. The grouping status of the patients is indicated at the bottom of the chart. P< 0.05 in the log-rank test was considered
statistically significant. (F) Heatmap showing the expression levels of the 33 genes associated with different coagulation patterns. The three patient groups,
smoking status, sex, age and survival status, were used as patient annotations. Red represents high expression of genes, and blue represents low expression.
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shrinkage and selection operator (Lasso) regression analysis to

narrow the range of genes involved in the study, and the

trajectory of each independent variable was also obtained

(Figure 2A). As the lambda gradually increased, the number of

independent variable coefficients gradually decreased to zero

(Figure 2A). Tenfold cross-validation was used to build the

model, and the confidence intervals under each lambda value are

shown in Figure 2B. Finally, 15 genes were involved when the model

was optimal. Therefore, we selected 15 genes for subsequent

analyses and constructed a risk score model according to the

coefficients and expression levels of the 15 genes (Figure 2C). The

calculation formula of the risk score model was as follows:

Risk score  =  ( − 0:006643801 * HLF expression level)                   

+  ( − 0:009747989 * SPINK5 expression level) 

+  (0:028388945 * FOXM1 expression level)            

+  ( − 0:002143226 * XIST expression level)             

+  ( − 0:008215538 * SPINK1 expression level) 

+  (0:012635795 * VSIG4 expression level) 

+  (0:013814834 * SPP1 expression level 

+  (0:014965906 * S100A8 expression level) 

+  (0:026936343 * IFIH1 expression level) 

+  (0:12061942 * CORO1A expression level) 

+  (0:060907371 * KYNU expression level) 

+  (0:005199432 * PPARG expression level)             

+  ( − 0:025203004 * EPHA4 expression level) 

+  (0:024547639 * LY6D expression level) 

+  (0:003433631 * MUC16 expression level) :

By using the 15-gene risk score model, the samples in the

GSE68465 training cohort were divided into high-risk and low-risk

groups according to the median risk score (Figure 2D), and a greater

proportion of patients in the high-risk group died (Figure 2E).

Overall survival analysis revealed that the OS of patients in the high-

risk group was significantly lower than that of patients in the low-

risk score group (log-rank test, p < 0.001) (Figure 2F). The ROC

curve revealed that the AUCs of the patients at 1, 3, and 5 years were

relatively high at 0.753, 0.716, and 0.670, respectively (Figure 2G).

To test the robustness and generalizability of the risk score

model constructed on the basis of the 15 COMAR genes in the

training cohort, the prognostic efficacy of the risk score model was

validated in several external independent datasets via the same

algorithm. The results showed that all of the validation cohorts

presented results that were consistent with those of the training

cohort. The low-risk score group had better overall survival, and the

AUCs of the patients all showed high sensitivity and specificity

(Figures 3A−F). Besides, the risk score model had significantly

superior predictive efficacy compared with other clinical factors
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such as age, sex, tumor stage, and adjuvant chemotherapy at 1-, 3-,

and 5-year follow-ups (Supplementary Figures 7A–I). To test

whether the risk score model is an independent prognostic factor

for LUAD patients, we performed univariate and multivariate Cox

regression analyses via the “coxph()” function in the R package

“survival”. In all the training and validation cohorts, the risk score

was an independent prognostic factor among other clinical features,

such as age, sex and tumor stage (Figures 4A−N). These results

demonstrated that the 15-gene prognostic model based on the

DEGs between different COMAR patterns possessed strong

prognostic efficacy with high robustness and generalizability.
3.7 Pseudotime analysis of single-cell RNA-
seq data

To further investigate the joint roles of coagulation and

macrophage-related genes in single-cell level, a single-cell

sequencing dataset (GSE131907) of LUAD patients was used for

subsequent analyses. The R package “harmony” was used to

eliminate the batch effect of malignant tumor cells between

different samples (Supplementary Figure 8A). The malignant

tumor cells were then divided in a more detailed way such that

the tumor cells could be further divided into four different subtypes

(Supplementary Figure 8B). The percentage stacking plot shows the

percentages of the four types of malignant tumor cells in the high-

and low-risk score groups. The results revealed that the majority of

the cluster 2 subtype was in the low-risk score group, whereas the

cluster 0 and cluster 1 subtypes accounted for a greater percentage

of the high-risk score group (Supplementary Figure 8C). The

“FindMarkers” function of the R package “seurat” was used to

identify DEGs in the high- and low-risk score groups. A total of 397

DEGs were identified under the conditions of p_val_adj< 0.05 and |

avg_log2FC| > 0.25. The UMAP plot shows the calculated risk

scores for malignant tumor cells (Supplementary Figure 8D). On

the basis of the DEGs between the high- and low-risk score groups,

we performed simulation analysis for the cellular differentiation

trajectory of all malignant tumor cells. In the trajectory plot, the

blue color became darker as the cell differentiated earlier, indicating

that the tumor cells differentiated from left to right over time

(Supplementary Figure 8E). We then investigated the

differentiation process of tumor cells in the high- and low-risk

score groups and found that cells in the low-risk score group

differentiated earlier than those in the high-risk score group did

(Supplementary Figure 8F).
3.8 Relationships between the COMAR risk
score and the tumor microenvironment

To research on the relationships between the COMAR risk score

model and the TME of LUAD, functional enrichment analyses were

conducted on the basis of different risk score groups. We performed

GO_BP and KEGG pathway enrichment analyses via the GSVA
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algorithm in the bulk dataset GSE68465. The results revealed that

samples in the high-risk score group were associated with cell

proliferation and energy metabolism, whereas samples in the low-

risk score group were associated with the activation of immune

pathways (Figure 5A). For example, the cell cycle, DNA replication

and ATP biosynthesis pathways were significantly activated in the
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high-risk score group, whereas pathways such as B-cell receptor, T-cell

activation in the immune response and T-cell cytokine production

were significantly activated in the low-risk score group (Figure 5A).

Moreover, according to the KEGG enrichment analysis, the B-cell

receptor signaling pathway, the T-cell receptor signaling pathway, the

chemokine signaling pathway, and cytokine and cytokine receptor
FIGURE 2

Construction of the coagulation-related 15-gene prognostic model in the training cohort. (A) Scatter plot showing the trajectory of each
independent variable. The abscissa axis represents the log value of the independent variable lambda. The vertical axis indicates the coefficient of the
independent variable. (B) The dynamic process diagram of variables screened by LASSO regression analysis and the selection process diagram of the
cross-validation parameter lambda. (C) Coefficient of each gene included in the prognostic model. (D) The risk score distributions of the patients.
(E) Survival status of the patients. (F) The overall survival curve of patients in the high- and low-risk score groups. The abscissa axis shows the
survival time, whereas the ordinate axis shows the survival probability. The blue color represents patients with low risk scores, whereas the red color
represents patients with high risk scores. The grouping status of the patients is indicated at the bottom of the chart. P< 0.05 in the log-rank test was
considered statistically significant. (G) ROC curve for predicting the 1-, 3-, and 5-year survival of patients according to the risk score. The abscissa
axis represents specificity, and the vertical axis represents sensitivity. Different colors represent different predictive times.
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FIGURE 3

Validation of the predictive efficacy of the 15-gene prognostic model in external independent cohorts: (A) GSE37745 cohort, (B) GSE41271 cohort,
(C) GSE42127 cohort, (D) GSE50081 cohort, (E) GSE72094 cohort, and (F) TCGA-LUAD cohort. The upper part of each panel shows the overall
survival curve of patients in the high- and low-risk score groups. The abscissa axis shows the survival time, whereas the ordinate axis shows the
survival probability. The blue color represents patients with low risk scores, whereas the red color represents patients with high risk scores. The
grouping status of the patients is indicated at the bottom of the chart. The lower part of each panel is the ROC curve for predicting the 1-, 3-, and
5-year survival of patients according to the risk score. The abscissa axis represents specificity, and the vertical axis represents sensitivity. Different
colors represent different predictive times.
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FIGURE 4

Forest plots of the univariate and multivariate Cox regression analyses for the prognostic model in the training and validation cohorts. (A) Univariate Cox
regression analysis for the training cohort GSE68465. (B) Multivariate Cox regression analysis for the training cohort GSE68465. (C) Univariate Cox regression
analysis for the validation cohort GSE37745. (D) Multivariate Cox regression analysis for the validation cohort GSE37745. (E) Univariate Cox regression analysis
for the validation cohort GSE41271. (F) Multivariate Cox regression analysis for the validation cohort GSE41271. (G) Univariate Cox regression analysis for the
validation cohort GSE42127. (H) Multivariate Cox regression analysis for the validation cohort GSE42127. (I) Univariate Cox regression analysis for
the validation cohort GSE50081. (J) Multivariate Cox regression analysis for the validation cohort GSE50081. (K) Univariate Cox regression analysis for the
validation cohort GSE72094. (L) Multivariate Cox regression analysis for the validation cohort GSE72094. (M) Univariate Cox regression analysis for the TCGA-
LUAD validation cohort. (N) Multivariate Cox regression analysis for the TCGA-LUAD validation cohort. The variables are on the left of each panel. The hazard
ratio of each variable and the corresponding forest plot are in the middle of each panel. The p value of the corresponding variable is on the right.
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interactions were activated in the low-risk score group (Figure 5B).

Similar results were obtained by validating the GO and KEGG

enrichment analyses in the scRNA-seq cohort GSE131907.

According to the GO enrichment analysis, the DEGs in the high-

and low-risk score groups were enriched in pathways such as T-cell

activation, the humoral immune response, the inflammatory response,

antigen processing and presentation, and apoptosis (Figure 5E).
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Moreover, KEGG enrichment analysis revealed that the differentially

expressed genes were enriched mainly in antigen processing and

presentation, the B-cell receptor signaling pathway, apoptosis, Th17

cell differentiation, the IL-17 signaling pathway and the TNF signaling

pathway (Figure 5F). GSEA was also conducted on both bulk RNA-seq

and scRNA-seq data. The results of bulk RNA-seq data revealed that

pathways such as cell adhesion molecules, Th17 cell differentiation,
FIGURE 5 (Continued)
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FIGURE 5 (Continued)

Biological functional analyses of different risk groups on the basis of bulk RNA-seq data and scRNA-seq data. (A) GO_BP enrichment analysis of the
bulk RNA-seq data via the GSVA algorithm revealed differentially activated biological processes between the low- and high-risk score groups.
(B) KEGG pathway enrichment analysis of the bulk RNA-seq data via the GSVA algorithm revealed differentially activated biological pathways
between the low- and high-risk score groups. The risk score, coagulation cluster, sex, age, smoking status and survival status are used as patient
annotations and are at the top of the panels. The biological processes and pathways are listed on the right. Red represents activation, whereas blue
represents inhibition. (C) Pathways that were activated in the risk score low group in the bulk RNA-seq cohort according to GSEA enrichment
analysis. (D) Pathways that were activated in the high-risk score group in the bulk RNA-seq cohort according to GSEA enrichment analysis. The
abscissa axis represents the ranked gene list according to their expression levels in the two groups. The vertical axis represents the running
enrichment score. Curves of different colors represent different pathways. (E) GO_BP enrichment analysis of the scRNA-seq cohort via the
“clusterProfiler”. (F) KEGG pathway enrichment analysis of the scRNA data via the “clusterProfiler”. The left column represents the names of the
enriched pathways. The bubbles in the middle column represent the weights of the corresponding pathways, and those in the right column
represent the corresponding annotations. (G) Pathways that were activated in the low-risk score group in the scRNA-seq cohort according to GSEA
enrichment analysis. (H) Pathways that were activated in the high-risk score group in the scRNA-seq cohort according to GSEA enrichment analysis.
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MAPK, Wnt and JAK-STAT were significantly activated in patients in

the low-risk score group (Figure 5C). Biosynthesis of amino acids, the

cell cycle, DNA replication, mismatch repair and P53 signaling

pathways were activated in patients in the high-risk score group

(Figure 5D). The results of the scRNA-seq data revealed that

signaling pathways such as hematopoietic cell lineage, Th1 and Th2

cell differentiation, and Th17 cell differentiation were significantly

activated in cells from the low-risk score group (Figure 5G). Bacterial

invasion of epithelial cells and the pyrimidine metabolism pathway

were activated in cells in the high-risk score group (Figure 5H). These

results indicated that the immune landscape may differ between

samples in the high- and low-risk score groups, potentially leading to

a diversity of clinical outcomes.

To further explore the correlation between the risk score and

tumor immune characteristics, we quantified different immune cell

types infiltrating different bulk samples via the CIBERSORT

algorithm. The results revealed that immune cell infiltration, such

as that of resting dendritic cells, resting mast cells, CD8+ T cells and

resting memory CD4+ T cells, was greater in the low-risk score

group than in the high-risk score group (Figure 6A). However, the

infiltration of the three subtypes of macrophages was greater in the

high-risk score group (Figure 6A). In addition, we analyzed the

Spearman correlations between the risk score and the immune

score, stromal score, tumor purity, and ESTIMATE score. The

results revealed that the risk score was negatively correlated with the

immune score, stromal score and ESTIMATE score but positively

correlated with tumor purity (Figures 6B–E).
3.9 Differences in cellular communication
between the high- and low-risk score
groups based on the prognostic model

Cellular communication is indispensable for the functions of cells

in the TME. In this study, cellular communication analysis was

performed between immune and tumor cells in the scRNA-seq data

via the “CellChat” package. We found that tumor cells in the high-risk

group had strong cellular communication with myeloid cells through

the GAS signaling pathway, with fibroblasts through the GAS and

PERIOSTIN signaling pathways, with endothelial cells through the

HSPG and PERIOSTIN signaling pathways, and with T/NK cells

through the PAR signaling pathway (Supplementary Figures 9A–D).
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3.10 Value of the COMAR signature in
predicting drug sensitivity and clinical
outcomes of immunotherapy

To study whether the COMAR signature have predictive value

in LUAD therapy using chemical drugs, the drug IC50 values of

the samples in the GSE68465 cohort were predicted via the R

package “oncoPredict” and the expression profiles of the drug

information in the GDSC database, and the Spearman correlation

between the risk score and the drug log2(IC50) was also

calculated. The results showed that drugs such as Uprosertib

and Doramapimod were significantly positively correlated with

the risk score (Figures 7A, B), while drugs like Erlotinib and

Gefitinib were significantly negatively correlated with the risk

score (Figures 7C, D).

To explore the predictive efficacy of the 15-gene prognostic

model based on the DEGs between different COMAR patterns, we

chose the NSCLC cohort GSE135222 treated with anti-PD1/PD-L1

immunotherapy for our analyses. First, we analyzed the relations

between the expression of the 15 genes and immune checkpoints in

LUAD. The results revealed that the expression levels of some genes,

including CORO1A, IFIH1, KYNU and VSIG4 were significantly

correlated with those of multiple immune checkpoints

(Supplementary Figure 10). Subsequently, accordingto the risk

score algorithm, the patients were equally divided into risk score

high and low groups (Figure 7H), and most deaths were in the risk

score high group (Figure 7I). Survival analysis revealed that patients

in the low-risk score group had a superior overall survival status than

patients in the high-risk score group did (log-rank test, p = 1.02e-01)

(Figure 7E). The AUCs of patients at 4 months, 8 months and 12

months were relatively high at 0.938, 0.871 and 0.782, respectively

(Figure 7F). Patients who experienced progression after

immunotherapy also tended to have higher risk scores (Figure 7G).

In addition, we analyzed the correlation between the

immunophenoscore (IPS) and the risk score in the TCGA-LUAD

cohort. The results revealed that patients in the low-risk score group

had a greater IPS with anti-PD1, anti-CTLA4, and anti-PD1+CTLA4

immunotherapy or without immunotherapy (Figures 7J–M), which

suggested a better immunotherapy response for patients in the low-

risk score group. The above results indicate that the 15-gene

prognostic model based on the COMAR patterns has potential

value in guiding the clinical treatment of LUAD.
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3.11 Validation of the results in
proteinic data

Our previous results were based on analyses of RNA expression

data. To investigate whether the results were reliable at the protein level,

the performance of COMAR genes was validated with proteinic data

from publicly available databases and our experiments. The results

revealed that the expression levels of some COMAR genes involved in

the prognostic model were consistent with the RNA expression data

(Figure 8A), the proteomic expression data (Figure 8B) and the

immunohistochemical staining intensity (Figures 8C–H). For

example, LY6D, MUC16, SPINK1 and SPP1 were upregulated

(Figures 8A–D, F, G), whereas S100A8 and VSIG4 were

downregulated in LUAD compared with normal lung tissues

(Figures 8A, B, E, H). We also performed immunohistochemical

staining experiments using clinical LUAD samples, and

representative images of negative, low and high staining of the

VSIG4 gene are shown in Figures 9A–C Among the COMAR genes

included in the prognostic model, S100A8, SPP1 and VSIG4 were risk

factors for the prognosis of LUAD patients according to the survival

analysis of the proteomic data (Figures 9D–F).
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4 Discussion

LUAD is a very complex type of lung malignancy with high

morphologic and genetic heterogeneity (2, 3). Individual patients

have different therapeutic responses, and the 5-year survival rate

of LUAD patients remains low despite improvements in early

diagnosis and current treatment methods (4, 5). Precision

oncology, which has led to significant advances in the diagnosis

and treatment of cancer, is becoming increasingly rapid (5). The

development and widespread use of cancer genome analysis has

had a great impact on our understanding of the molecular

heterogeneity in different cancer patients and has contributed to

the development of clinically useful therapeutic agents (5).

Therefore, further investigations of the molecular heterogeneity

of LUAD may be conducive to precision medicine. The significant

roles of the tumor microenvironment (TME) in tumor

development and treatment have been revealed by an increasing

number of studies (6, 7). As the most abundant immune

population of the TME, TAMs strongly affect the progression,

metastasis and therapeutic efficacy of LUAD. The functions of

TAMs in cancer development are closely related to the coagulation
FIGURE 6

Correlation between the risk score and the tumor immune microenvironment. (A) Relative abundances of the 22 types of immune cells in the low-
risk score and high-risk score groups. The abscissa axis represents the names of the immune cells. The vertical axis represents the infiltration
fraction. (B) The correlation between the risk score and the stromal score. (C) The correlation between the risk score and immune score.
(D) The correlation between the risk score and ESTIMATE score. (E) The correlation between the risk score and tumor purity. * p< 0.05; ** p< 0.01;
*** p< 0.001; **** p< 0.0001; ns, not significant, p> 0.05.
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FIGURE 7

The coagulation-related 15-gene prognostic signature predicts the therapeutic outcomes of patients with LUAD. (A) The six drugs that have the
highest positive correlation with the risk score. The abscissa axis indicates the correlation coefficient. The vertical axis indicates the names of the six
drugs. (B) The logIC50 values of the top six positively correlated drugs in the low-risk score and high-risk score groups. The abscissa axis indicates
the names of the six drugs. The vertical axis indicates the logIC50 value. Different colors represent different risk score groups. (C) The six drugs that
have the highest negative correlation with the risk score. The abscissa axis indicates the correlation coefficient. The vertical axis indicates the names
of the six drugs. (D) The logIC50 values of the top six negatively correlated drugs in the low-risk score and high-risk score groups. The abscissa axis
indicates the names of the six drugs. The vertical axis indicates the logIC50 value. Different colors represent different risk score groups. (E) The
overall survival curve of patients in the high- and low-risk score groups in the anti-PD-1/PD-L1 cohort GSE135222. The abscissa axis shows the
survival time, whereas the ordinate axis shows the survival probability. Blue represents patients with low risk scores, whereas red represents patients
with high risk scores. The grouping status of the patients is indicated at the bottom of the chart. P< 0.05 in the log-rank test was considered
statistically significant. (F) ROC curve for predicting the 4-, 8- and 12-month overall survival of patients with LUAD. The abscissa axis represents
specificity, and the vertical axis represents sensitivity. Different colors represent different predictive times. (G) Violin plot showing the risk score of
patients with progression or no progression after anti-PD-1/PD-L1 blockade immunotherapy. (H) The risk score distributions of the patients. (I) The
survival status of the patients. (J–M) Correlation analysis between the immunophenoscore (IPS) of anti-cytotoxic T-lymphocyte antigen-4 (CTLA-4)
and anti-PD-1 blockade and the risk score in the TCGA-LUAD dataset: (J) IPS, (K) IPS-PD1, (L) IPS-CTLA4, and (M) IPS-PD1 + CTLA4. ****, p < 0.0001.
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process. TAMs can generate coagulation factors such as factor X

(FX), which promotes cell-autonomous FXa-PAR2 signaling in

TME cells and results in tumor immune evasion and poor patient

prognosis (27, 28). Moreover, some coagulation-related factors

can also enhance the tumor-promoting effects of TAMs (29, 30).

In our study, a novel molecular classification method for LUAD

was developed on the basis of the RNA expression levels of

coagulation and macrophage-related (COMAR) genes, and we
Frontiers in Immunology 15
believe that this classification method may provide guidance for

the precision oncology of LUAD.

According to the classification method, LUAD patients can be

grouped into three COMAR subtypes (Clusters 1, 2 and 3,

Figures 1B–F) on the basis of the expression of the 33 COMAR

genes. Interestingly, patients in Cluster 3 had significantly better

prognoses than those in Clusters 1 and 2 did (Figure 1E). Therefore,

we intended to further explore the underlying mechanisms that
FIGURE 8

Validation of the expression of the COMAR genes in the prognostic model via proteinic data. (A) RNA expression levels of the genes included in the
prognostic model in normal lung tissues and LUAD. (B) Proteomic expression levels of the genes included in the prognostic model in normal lung
tissues and LUAD. The abscissa axis represents the gene names. The vertical axis represents the expression levels. (C–H) Immunohistochemical staining
images of LY6D (C), MUC16 (D), S100A8 (E), SPINK1 (F), SPP1 (G), and VSIG4 (H). * p< 0.05; ** p< 0.01; *** p< 0.001; ns, not significant, p> 0.05.
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caused the prognostic differences between the clusters. First, we

investigated the expression levels of the 33 COMAR genes in the

three COMAR clusters (Supplementary Figure 4; Supplementary

Table 4). The results revealed that most of the genes were

downregulated in Cluster 3 (Figure 1F). Previous studies have

suggested that most of these genes, such as OLR1, VSIG4, APOE,

APOC1, AXL, CSTB, ITGAM, TLR4, and LCK, are oncogenes,

many of which can lead to the progression of LUAD and are

associated with poor prognosis (36, 39–45). This finding was

consistent with our results (Figure 1F).

In the subsequent analyses, DEGs were identified between

different COMAR clusters to further explore the biological

heterogeneity between COMAR subtypes. Then, functional

enrichment analyses were performed for the 341 DEGs

(Supplementary Figures 5A–D; Supplementary Table 5). The

results of the GO BP analysis revealed that the DEGs were

enriched in biological processes associated with antitumoral

immune activation, such as T-cell activation, positive regulation

of cytokine production and leukocyte migration (Supplementary

Figure 5A). Consistently, the GO CC and GO MF analyses

suggested that the DEGs were enriched in MHC protein complex
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formation and binding, immune receptor activity, and cytokine and

chemokine activity, which are also related to immune activation

(Supplementary Figures 5B, C). On the basis of the above results, we

speculated that in the COMAR subtype Cluster 3, the biological

pathways related to antitumoral immune responses were activated,

so patients in Cluster 3 had a better prognosis (Figure 1E).

Next, a COMAR subtype-related prognostic signature was

constructed on the basis of the 341 DEGs through univariate and

LASSO regression analyses. In total, 60 genes were found to be

prognostic for LUAD via univariate analysis (Supplementary

Figure 6A; Supplementary Table 6). Finally, 15 genes were

included in the COMAR prognostic model via LASSO regression

analysis (Figures 2A–C). Among the 15 genes, KYUN, FOXM1,

IFIH1, LY6D, S100A8, SPP1, VSIG4, PPARG andMUC16 were risk

factors for patient prognosis, whereas XIST, HLF, SPINK1, SPINK5,

EPHA4 and CORO1A were protective factors (Figure 2C). FOXM1

was reported to be associated with poor prognosis in multiple

cancers, including LUAD (46). FOXM1 can modulate the

expression of PD-L1 in NSCLC cells, which promotes cell

proliferation in NSCLC (47). MUC16 facilitates the tumorigenesis

and metastasis of NSCLC by regulating TSPYL5 through the JAK2/
FIGURE 9

Validation of the predictive value of the COMAR genes in the prognostic model in clinical samples. (A–C) Representative images of the immunohistochemical
staining intensity of VSIG4: (A) negative staining, (B) low staining, (C) high staining. (D–F) Survival curves of LUAD patients in the low- and high-
S100A8 (D), SPP1 (E), and VSIG4 (F) expression groups. The abscissa axis shows the survival time, whereas the ordinate axis shows the survival
probability. Blue represents patients whose genes are expressed at low levels, whereas red represents patients whose genes are highly expressed.
The grouping status of the patients is indicated at the bottom of the chart. P< 0.05 in the log-rank test was considered statistically significant.
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STAT3/GR axis (48). Moreover, evidence suggests that LY6D, SPP1

and VSIG4 are also associated with NSCLC development and poor

prognosis (49–51). There are few reports about the functions of

KYUN, IFIH1, S100A8, SPP1 and PPARG in LUAD, which need to

be further investigated. Among the protective genes in the

prognostic signature, HLF, SPINK5, EPHA4 and CORO1A have

been shown to inhibit the proliferation, migration, and invasion of

NSCLC cells (52–55). However, XIST and SPINK1 are promoters of

NSCLC progression and poor prognosis according to published

studies (56–59), which contradicts the results of our study. We will

further validate the roles of XIST and SPINK1 in LUAD in

future studies.

According to the prognostic model, patients in the training

cohort were equally divided into high-risk score and low-risk score

groups, and the former had significantly shorter survival times than

did the latter (Figure 2D). The COMAR model had high prognostic

sensitivity and specificity (Figure 2E), which were validated in

several external datasets (Figures 3A–F). The COMAR prognostic

signature was also proven to be an independent prognostic factor by

univariate and multivariate analyses (Figures 4A–N). These findings

demonstrated that the COMAR signature had effective and robust

predictive efficacy for LUAD patient prognosis.

The COMAR prognostic model could be used to depict the

TME in LUAD. The results of GSVA enrichment analysis revealed

that some antitumoral immunity-related biological pathways, such

as T-cell activation involved in the immune response, the B-cell

receptor signaling pathway, the T-cell receptor signaling pathway,

and the regulation of the tumor necrosis factor-mediated signaling

pathway, were activated in the low-risk score group. Pathways

related to cell proliferation, such as the DNA biosynthetic

process, DNA replication and the cell cycle, were activated in the

high-risk score group (Figures 5A, B). The results of the GSEA were

consistent with those of the GSVA (Figures 5C, D). Similar results

were obtained in the enrichment analyses of the scRNA-seq dataset

GSE131907. DEGs between LUAD cells in the low-risk score and

high-risk score groups were predominantly enriched in pathways

associated with immune cell activation and antigen presentation

(Figures 5E, F). Pathways related to immune cell differentiation

were more active in the low-risk group of LUAD cells than in the

high-risk group (Figure 5G). Immune infiltration analysis revealed

that the fraction of infiltrating CD8 T cells, which are tumor

suppressive, was greater in the low-risk score group than in the

low-risk score group, whereas the proportion of protumoral M2

macrophages was greater in the high-risk score group (Figure 6A).

The risk score was also negatively correlated with the immune score

but positively correlated with tumor purity (Figures 6C, E). These

results suggest that the activation of the immune response to tumors

may be the reason why LUAD patients in the low-risk score group

had a superior prognosis.

The discovery and clinical implementation of immune

checkpoint inhibitors (ICIs) that target PD-1 and PD-L1 have

revolutionized the treatment of cancer. However, the therapeutic

effects vary among individuals (60). The COMAR prognostic model

showed predictive value for the prognosis of NSCLC patients

receiving anti-PD1/PD-L1 immunotherapy (Figures 7E–I).
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Moreover, the COMAR model could also be applied to predict

the therapeutic efficacy of small-molecule drugs by analyzing the

correlation coefficient between risk scores and drug IC50 values

(Figures 7A–D). Thus, the COMAR model in our study may

provide guidance for personalized ICI immunotherapy and

targeted therapy.

The results were validated at the protein level. For validation

via RNA expression data from TCGA, proteomic data from the

research of Jun-Yu Xu et al. (37), and immunohistochemical

staining images from the Human Protein Atlas and our

experiments, the expression levels of some genes included in the

prognostic model were consistent between normal lung tissues

and LUAD (Figures 8A–H, 9A–C). S100A8, SPP1 and VSIG4 were

found to be risk factors for LUAD prognosis in the survival

analysis via the proteomic data, which was consistent with

previous results from the analyses of RNA expression data

(Figures 2C, 9D–F). These findings confirmed that the results of

our study were reliable.

Certainly, there were limitations in our study. First, our study

was based mainly on bioinformatic analyses of public datasets and

was only partially verified by experiments on clinical tissues.

Biological and molecular experiments in vitro and/or in vivo are

needed to further investigate the functions of the key genes and the

activities of the corresponding signaling pathways. Second, owing to

the retrospective nature of our study, bias might be inevitable, and

prospective experiments are needed for further validation.
5 Conclusion

LUAD can be classified into three molecular subtypes on the

basis of the cross-talk of coagulation- and macrophage-related

(COMAR) genes. A COMAR subtype of LUAD with activation of

antitumoral immunity in the TME and a superior prognosis was

identified. A 15-gene prognostic signature was constructed on the

basis of the DEGs between COMAR subtypes. This signature had

high predictive efficacy for prognosis and could depict the TME for

LUAD. The novel classification method and key genes identified in

our study may contribute to precision oncology for LUAD.
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SUPPLEMENTARY FIGURE 1

Overall survival analysis for the subgroups that contained different
abundances of macrophages. (A) OS curve for the subgroups with high and

low abundances of M1 macrophages. (B) OS curve for the subgroups with

high and low abundances of M2 macrophages. The abscissa axis shows the
survival time, whereas the ordinate axis shows the survival probability. Blue

represents low macrophage abundance, whereas red represents high
macrophage abundance. The grouping status of the patients is indicated at

the bottom of the chart. P< 0.05 in the log-rank test was considered
statistically significant. (C) Sample clustering in the WGCNA without finding

any outliers. (D, E) Detecting the optimal soft-thresholding power. When the

power value was seven, the degree of independence was > 0.85 for the first
time. (F) Cluster dendrogram of modular genes associated with M2

macrophage infiltration. Branches of the dendrogram correspond to the
different gene modules. Each leaf on the dendrogram represents a gene.

Each block marked by a color represents a module that contains a group of
highly correlated genes. A total of 10 gene modules were identified. (G)
Correlations between gene modules and clinical traits. The correlation

coefficient and corresponding p value are annotated in the blocks of the
module–trait relationship heatmap. Red represents a positive correlation, and

blue represents a negative correlation. WGCNA, weighted gene coexpression
network analysis.

SUPPLEMENTARY FIGURE 2

Quality control of the scRNA-seq data. (A) The number of genes detected in

each cell of each sample. The abscissa axis shows the names of the samples,
and the vertical axis shows the number of genes. Each black dot represents a

cell. (B) The total number of counts in each cell of each sample. The abscissa
axis shows the names of the samples, and the vertical axis shows the number

of counts. Each black dot represents a cell. (C) The percentage of
mitochondrial genes in each cell of each sample. The abscissa axis shows

the names of the samples, and the vertical axis shows the percentage of
mitochondrial genes. Each black dot represents a cell. (D)Correlation analysis

revealed that the number of genes detectedwas positively correlated with the

depth of sequencing. (E) Scatter plot of the top 3000 variable genes. (F) The
top 20 PCs in the principal component analysis (PCA) for grouping the cells.

SUPPLEMENTARY FIGURE 3

Acquisition of TAM marker genes. (A) The TSNE plot of the samples after
removal of the batch effect in the harmony analysis. Different colors represent

different samples. The names of the samples are annotated on the right of the

plot. (B) The TSNE plot of the cells after removal of the batch effect in the
harmony analysis. Different colors represent different cell types. The names of

the cell types are annotated on the right of the plot. (C) Volcano plot showing
the genes differentially expressed between different cell types. The red dots

indicate upregulated genes , whereas the blue dots indicate
downregulated genes.

SUPPLEMENTARY FIGURE 4

Venn diagram showing the 33 COMAR genes identified from the cross-talk of

coagulation-related genes, the M2 macrophage-related genes identified by
WGCNA, and the TAM markers. CRGs, coagulation-related genes; WGCNA,

weighted gene coexpress ion network analys is ; TAM, tumor-
associated macrophage.

SUPPLEMENTARY FIGURE 5

Enrichment analysis of the DEGs among the three coagulation patterns. (A)
GO_BP enrichment analysis. (B) GO_CC enrichment analysis. (C) GO_MF
enrichment analysis. (D) KEGG pathway enrichment analysis. The left column

represents the names of the enriched pathways. The bubbles in the middle
column represent the weights of the corresponding pathways, and those in

the right column represent the corresponding annotations.
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SUPPLEMENTARY FIGURE 6

Prognosis-related genes among the genes differentially expressed between
the three coagulation patterns. (A) The forest plot shows the 60 prognosis-

related genes. The gene names, hazard ratios and p values of the

corresponding genes are on the left of the figure. The corresponding forest
plot of these genes is shown on the right of the figure. (B) The overall survival

curves of the six genes with the lowest p values. The abscissa axis shows the
survival time, whereas the ordinate axis shows the survival probability. The

blue color represents low expression, whereas the red color represents
high expression.

SUPPLEMENTARY FIGURE 7

The ROC curves of the risk score model and clinical factors at 1, 3, and 5-year

follow-up. (A-C) ROC analysis of the COMAR risk score, age, sex, and tumor
stage on the prognosis at 1-year (A), 3-year (B) and 5-year (C) follow-up in

GSE37745 cohort. (D-F) ROC analysis of the COMAR risk score, age, sex,
tumor stage and adjuvant chemotherapy on the prognosis at 1-year (D), 3-
year (E) and 5-year (F) follow-up in GSE42127 cohort. (G-I) ROC analysis of

the COMAR risk score, age, sex, T stage and N stage on the prognosis at 1-
year (G), 3-year (H) and 5-year (I) follow-up in GSE50081 cohort.

SUPPLEMENTARY FIGURE 8

Pseudotime analysis of the scRNA-seq data. (A) The TSNE plot of all the samples
after removing the batch effect of malignant tumor cells. Different colors
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represent different samples. (B) The TSNE plot showing different subgroups of
malignant tumor cells. Different colors represent different subgroups of tumor

cells. (C) Percentage chart showing the percentages of different subgroups of

tumor cells in the low-risk score and high-risk score groups. (D) The TSNE plot
showing the calculation results of the risk score for malignant tumor cells. Each

dot represents a tumor cell. The red dots represent cells in the high-risk group,
whereas the blue dots represent cells in the low-risk group. (E) Temporal

differences in the differentiation of malignant tumor cells. Different colors
represent different pseudotimes. (F) Differentiation of cells in the high- and

low-risk score groups. Different colors represent different cell groups.

SUPPLEMENTARY FIGURE 9

Differences in cellular communication between the high- and low-risk score
groups. (A) Tumor cells in the high-risk score group strongly communicate

withmyeloid cells and fibroblasts through the GAS pathway. (B) Tumor cells in
the high-risk score group strongly communicate with endothelial cells

through the HSPG pathway. (C) Tumor cells in the high-risk score group

strongly communicate with T/NK cells through the PAR pathway. (D) Tumor
cells in the high-risk score group strongly communicate with endothelial cells

and fibroblasts through the PERIOSTIN pathway.

SUPPLEMENTARY FIGURE 10

The correlation analysis between the expression of the 15 genes and immune

checkpoints in LUAD.
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32. Lefrançais E, Ortiz-Muñoz G, Caudrillier A, Mallavia B, Liu F, Sayah DM, et al.
The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors.
Nature. (2017) 544:105–9. doi: 10.1038/nature21706

33. Khalil J, Bensaid B, Elkacemi H, Afif M, Bensaid Y, Kebdani T, et al. Venous
thromboembolism in cancer patients: an underestimated major health problem.World
J Surg Oncol. (2015) 13:204. doi: 10.1186/s12957-015-0592-8

34. Zhang Y, Yang Y, Chen W, Guo L, Liang L, Zhai Z, et al. China Venous
Thromboembolism (VTE) Study Group. Prevalence and associations of VTE in
patients with newly diagnosed lung cancer. Chest. (2014) 146:650–8. doi: 10.1378/
chest.13-2379

35. Lee JW, Cha SI, Jung CY, Choi WI, Jeon KN, Yoo SS, et al. Clinical course of
pulmonary embolism in lung cancer patients. Respiration. (2009) 78:42–8.
doi: 10.1159/000176208

36. Li Z, Yin Z, Luan Z, Zhang C, Wang Y, Zhang K, et al. Comprehensive analyses
for the coagulation and macrophage-related genes to reveal their joint roles in the
prognosis and immunotherapy of lung adenocarcinoma patients. Front Immunol.
(2023) 14:1273422. doi: 10.3389/fimmu.2023.1273422

37. Xu JY, Zhang C, Wang X, Zhai L, Ma Y, Mao Y, et al. Integrative proteomic
characterization of human lung adenocarcinoma. Cell. (2020) 182:245–61.
doi: 10.1016/j.cell.2020.05.043

38. Kim N, Kim HK, Lee K, Hong Y, Cho JH, Choi JW, et al. Single-cell RNA
sequencing demonstrates the molecular and cellular reprogramming of metastatic lung
adenocarcinoma. Nat Commun. (2020) 11:2285. doi: 10.1038/s41467-020-16164-1

39. SuWP, Chen YT, Lai WW, Lin CC, Yan JJ, Su WC. Apolipoprotein E expression
promotes lung adenocarcinoma proliferation and migration and as a potential survival
marker in lung cancer. Lung Cancer. (2011) 71:28–33. doi: 10.1016/
j.lungcan.2010.04.009

40. Ko HL, Wang YS, Fong WL, Chi MS, Chi KH, Kao SJ. Apolipoprotein C1
(APOC1) as a novel diagnostic and prognostic biomarker for lung cancer: A marker
phase I trial. Thorac Cancer. (2014) 5:500–8. doi: 10.1111/1759-7714.12117

41. Terry S, Abdou A, Engelsen AST, Buart S, Dessen P, Corgnac S, et al. AXL
targeting overcomes human lung cancer cell resistance to NK- and CTL-mediated
cytotoxicity. Cancer Immunol Res. (2019) 7:1789–802. doi: 10.1158/2326-6066.CIR-18-
0903

42. Gong F, Peng X, Luo C, Shen G, Zhao C, Zou L, et al. Cathepsin B as a potential
prognostic and therapeutic marker for human lung squamous cell carcinoma. Mol
Cancer. (2013) 12:125. doi: 10.1186/1476-4598-12-125

43. Larroquette M, Guegan JP, Besse B, Cousin S, Brunet M, Le Moulec S, et al.
Spatial transcriptomics of macrophage infiltration in non-small cell lung cancer reveals
determinants of sensitivity and resistance to anti-PD1/PD-L1 antibodies. J Immunother
Cancer. (2022) 10:e003890. doi: 10.1136/jitc-2021-003890

44. Theivanthiran B, Yarla N, Haykal T, Nguyen YV, Cao L, Ferreira M, et al.
Tumor-intrinsic NLRP3-HSP70-TLR4 axis drives premetastatic niche development
Frontiers in Immunology 20
and hyperprogression during anti-PD-1 immunotherapy. Sci Transl Med. (2022) 14:
eabq7019. doi: 10.1126/scitranslmed.abq7019

45. Balbin OA, Prensner JR, Sahu A, Yocum A, Shankar S, Malik R, et al.
Reconstructing targetable pathways in lung cancer by integrating diverse omics data.
Nat Commun. (2013) 4:2617. doi: 10.1038/ncomms3617

46. Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, et al. The
prognostic landscape of genes and infiltrating immune cells across human cancers. Nat
Med. (2015) 21:938–45. doi: 10.1038/nm.3909

47. Madhi H, Lee JS, Choi YE, Li Y, Kim MH, Choi Y, et al. FOXM1 inhibition
enhances the therapeutic outcome of lung cancer immunotherapy by modulating PD-
L1 expression and cell proliferation. Adv Sci (Weinh). (2022) 9:e2202702. doi: 10.1002/
advs.202202702

48. Lakshmanan I, Salfity S, Seshacharyulu P, Rachagani S, Thomas A, Das S, et al.
MUC16 regulates TSPYL5 for lung cancer cell growth and chemoresistance by suppressing
p53. Clin Cancer Res. (2017) 23:3906–17. doi: 10.1158/1078-0432.CCR-16-2530

49. Lu Y, Lemon W, Liu PY, Yi Y, Morrison C, Yang P, et al. A gene expression
signature predicts survival of patients with stage I non-small cell lung cancer. PloS Med.
(2006) 3:e46. doi: 10.1371/journal.pmed.0030467

50. Matsubara E, Yano H, Pan C, Komohara Y, Fujiwara Y, Zhao S, et al. The
significance of SPP1 in lung cancers and its impact as a marker for protumor tumor-
associated macrophages. Cancers (Basel). (2023) 15:2250. doi: 10.3390/cancers15082250

51. Liao Y, Guo S, Chen Y, Cao D, Xu H, Yang C, et al. VSIG4 expression on
macrophages facilitates lung cancer development. Lab Invest. (2014) 94:706–15.
doi: 10.1038/labinvest.2014.73

52. Chen J, Liu A, Lin Z, Wang B, Chai X, Chen S, et al. Downregulation of the
circadian rhythm regulator HLF promotes multiple-organ distant metastases in non-
small cell lung cancer through PPAR/NF-kb signaling. Cancer Lett. (2020) 482:56–71.
doi: 10.1016/j.canlet.2020.04.007

53. Li Q, Wang T, Tang Y, Zou X, Shen Z, Tang Z, et al. A novel prognostic signature
based on smoking-associated genes for predicting prognosis and immune
microenvironment in NSCLC smokers. Cancer Cell Int. (2024) 24:171. doi: 10.1186/
s12935-024-03347-9

54. Saintigny P, Peng S, Zhang L, Sen B, Wistuba II, Lippman SM, et al. Global
evaluation of Eph receptors and ephrins in lung adenocarcinomas identifies EphA4 as
an inhibitor of cell migration and invasion. Mol Cancer Ther. (2012) 11:2021–32.
doi: 10.1158/1535-7163.MCT-12-0030

55. Sun Y, Ma Q, Chen Y, Liao D, Kong F. Identification and analysis of prognostic
immune cell homeostasis characteristics in lung adenocarcinoma. Clin Respir J. (2024)
18:e13755. doi: 10.1111/crj.13755

56. WangW, Min L, Qiu X,Wu X, Liu C, Ma J, et al. Biological function of long non-
coding RNA (LncRNA) xist. Front Cell Dev Biol. (2021) 9:645647. doi: 10.3389/
fcell.2021.645647

57. Xu X, Zhou X, Chen Z, Gao C, Zhao L, Cui Y. Silencing of lncRNA XIST inhibits
non-small cell lung cancer growth and promotes chemosensitivity to cisplatin. Aging
(Albany NY). (2020) 12:4711–26. doi: 10.18632/aging.102673

58. Zhou X, Xu X, Gao C, Cui Y. XIST promote the proliferation and migration of
non-small cell lung cancer cells via sponging miR-16 and regulating CDK8 expression.
Am J Transl Res. (2019) 11:6196–206.

59. Xu L, Lu C, Huang Y, Zhou J, Wang X, Liu C, et al. SPINK1 promotes cell growth
and metastasis of lung adenocarcinoma and acts as a novel prognostic biomarker. BMB
Rep. (2018) 51:648–53. doi: 10.5483/BMBRep.2018.51.12.205

60. Kraehenbuehl L, Weng CH, Eghbali S, Wolchok JD, Merghoub T. Enhancing
immunotherapy in cancer by targeting emerging immunomodulatory pathways. Nat
Rev Clin Oncol. (2022) 19:37–50. doi: 10.1038/s41571-021-00552-7
frontiersin.org

https://doi.org/10.1016/j.celrep.2018.10.082
https://doi.org/10.1016/j.celrep.2018.10.082
https://doi.org/10.1007/s00262-010-0836-y
https://doi.org/10.1182/blood-2011-08-376426
https://doi.org/10.1038/nature21706
https://doi.org/10.1186/s12957-015-0592-8
https://doi.org/10.1378/chest.13-2379
https://doi.org/10.1378/chest.13-2379
https://doi.org/10.1159/000176208
https://doi.org/10.3389/fimmu.2023.1273422
https://doi.org/10.1016/j.cell.2020.05.043
https://doi.org/10.1038/s41467-020-16164-1
https://doi.org/10.1016/j.lungcan.2010.04.009
https://doi.org/10.1016/j.lungcan.2010.04.009
https://doi.org/10.1111/1759-7714.12117
https://doi.org/10.1158/2326-6066.CIR-18-0903
https://doi.org/10.1158/2326-6066.CIR-18-0903
https://doi.org/10.1186/1476-4598-12-125
https://doi.org/10.1136/jitc-2021-003890
https://doi.org/10.1126/scitranslmed.abq7019
https://doi.org/10.1038/ncomms3617
https://doi.org/10.1038/nm.3909
https://doi.org/10.1002/advs.202202702
https://doi.org/10.1002/advs.202202702
https://doi.org/10.1158/1078-0432.CCR-16-2530
https://doi.org/10.1371/journal.pmed.0030467
https://doi.org/10.3390/cancers15082250
https://doi.org/10.1038/labinvest.2014.73
https://doi.org/10.1016/j.canlet.2020.04.007
https://doi.org/10.1186/s12935-024-03347-9
https://doi.org/10.1186/s12935-024-03347-9
https://doi.org/10.1158/1535-7163.MCT-12-0030
https://doi.org/10.1111/crj.13755
https://doi.org/10.3389/fcell.2021.645647
https://doi.org/10.3389/fcell.2021.645647
https://doi.org/10.18632/aging.102673
https://doi.org/10.5483/BMBRep.2018.51.12.205
https://doi.org/10.1038/s41571-021-00552-7
https://doi.org/10.3389/fimmu.2025.1518102
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	A novel classification method for LUAD that guides personalized immunotherapy on the basis of the cross-talk of coagulation- and macrophage-related genes
	Introduction
	2 Materials and methods
	2.1 Data collection and preprocessing
	2.2 WGCNA to construct gene coexpression networks
	2.3 Estimation of immune cell infiltration in the TME
	2.4 Unsupervised clustering analysis of coagulation-related genes
	2.5 Identification of the DEGs between different coagulation patterns
	2.6 Functional enrichment analysis and construction of the protein interaction network
	2.7 Construction of the prognostic model
	2.8 Pseudotime analysis and cellular communication analysis of the scRNA-seq data
	2.9 Analyses of biological functions
	2.10 Collecting the immunotherapeutic cohorts
	2.11 Predicting sensitivity to chemotherapeutic drugs
	2.12 Validation of the key COMAR genes at the protein level
	2.13 Statistical analysis

	3 Results
	3.1 Screening the macrophage-related genes involved in this study through WGCNA
	3.2 Acquiring TAM marker genes via scRNA-seq data
	3.3 Obtaining the COMAR genes in LUAD
	3.4 Identification of different COMAR patterns in LUAD
	3.5 Analyzing the DEGs between different COMAR patterns
	3.6 Construction and validation of the prognostic model based on the DEGs between different COMAR patterns
	3.7 Pseudotime analysis of single-cell RNA-seq data
	3.8 Relationships between the COMAR risk score and the tumor microenvironment
	3.9 Differences in cellular communication between the high- and low-risk score groups based on the prognostic model
	3.10 Value of the COMAR signature in predicting drug sensitivity and clinical outcomes of immunotherapy
	3.11 Validation of the results in proteinic data

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


