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Background: Osteoarthritis (OA) is a chronic joint condition that causes pain,

limited mobility, and reduced quality of life, posing a threat to healthy aging. Early

detection is crucial for improving prognosis. Recent research has focused on the

role of ubiquitination-related genes (URGs) in early OA prediction. This study

aims to integrate URG expression data with machine learning (ML) to identify

biomarkers that improve diagnosis and prognosis in the early stages of OA.

Methods:OA single-cell RNA sequencing datasets were collected from the GEO

database. Single-cell analysis was performed to investigate the composition and

relationships of chondrocytes in OA. The potential intercellular communication

mechanisms were explored using the CellChat R package. URGs were retrieved

from GeneCards, and ubiquitination scores were calculated using the AUCell

package. Gene module analysis based on co-expression network analysis was

conducted to identify core genes. Additionally, ML analysis was performed to

identify core URGs and construct a diagnostic model. We employed XGBoost, a

gradient-boosting ML algorithm, to identify core URGs and construct a

diagnostic model. The model’s performance was evaluated using the area

under the curve (AUC) of the receiver operating characteristic (ROC) curve. In

addition, we explored the relationship between core URGs and immune

processes. The ChEA3 database was utilized to predict the transcription factors

regulated by core ubiquitination-related genes. The expression of select URGs

was validated using qRT-PCR and immunohistochemistry (IHC).

Results: We identified WDR74 and TNFRSF12A as pivotal ubiquitination-related

genes associated with OA, exhibiting considerable differential expression. The

diagnostic model constructed with URGs exhibited remarkable accuracy, with

area under the curve (AUC) values consistently exceeding 0.9. The expression

levels of WDR74 and TNFRSF12A were significantly higher in the IL-1b-induced
group in an in vitro qPCR experiment. The IHC validation on human knee joint

specimens confirmed the upregulation of WDR74 and TNFRSF12A in OA tissues,

corroborating their potential as diagnostic biomarkers.
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Conclusions: WDR74 and TNFRSF12A as principal biomarkers highlighted their

attractiveness as therapeutic targets. The identification of core biomarkers might

facilitate early intervention options, potentially modifying the illness trajectory

and enhancing patient outcomes.
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Introduction

Osteoarthritis (OA) is a degenerative joint disease affecting over

250 million people worldwide, leading to significant physical

disability and substantial societal burden (1–5). The onset and

progression of OA are complex, posing challenges for clinicians

and researchers (3, 6, 7). OA development is linked to

inflammatory, mechanical, and metabolic processes, leading to

the deterioration of structures such as articular cartilage,

subchondral bone, synovium, joint capsule, ligaments, and peri-

articular muscles (8, 9). However, medical professionals often face

challenges in proactive monitoring and managing OA in its early

stages (10–12). Consequently, patients typically present with

symptoms during the intermediate and advanced stages, limiting

effective disease management (13, 14). Therefore, it is crucial to

identify and validate prospective biomarkers for early OA detection.

This could enable more proactive management and improve patient

outcomes (15).

Recent genomic breakthroughs have shed light on the complex

molecular landscape of OA, highlighting the ubiquitin-proteasome

system (UPS) as a crucial regulatory mechanism in the disease’s

pathogenesis (16, 17). A growing contingent of researchers is

concentrating on the influence of the ubiquitination process in

OA, rendering it a prominent area of investigation. Ubiquitination

is a crucial post-translational modification that plays a role in

protein breakdown and cellular communication, and it is

impaired in several disorders, including OA (16, 18). This process

entails the conjugation of ubiquitin molecules to target proteins,

which is essential for controlling protein stability, function, and

intracellular localization (17). Ubiquitination influences

OA by contributing to the deterioration of articular cartilage,

involvement in immune system inflammatory responses, and

modulation of apoptosis. Furthermore, ubiquitination affects the

function and destiny of chondrocytes by engaging with other

cellular signaling networks, including the Wnt/b-catenin pathway

(19). Additionally, ubiquitination can influence the activity of

transcription factors, thereby modulating the expression of genes

related to OA (20). Consequently, therapies aimed at the

ubiquitination process may yield novel techniques for OA

treatment, and the identification of differentially expressed
02
ubiquitination-related genes (URGs) in OA could present new

biomarkers for diagnosis and therapy.

Advances in genomic technology, particularly single-cell

RNA sequencing (scRNA-seq), have significantly enhanced our

understanding of cellular diversity in complex tissues like

cartilage (21, 22). ScRNA-seq enables the precise identification

of various cell types and their unique molecular characteristics

within the joint, offering detailed, high-resolution gene

expression profiles (23). However, the extensive and complex

data generated by these technologies require advanced analytical

methods to fully understand their biological significance.

The advent of machine learning (ML) has revolutionized

bioinformatics, enabling the precise and effective analysis of

complex biological datasets (24, 25). ML algorithms can detect

patterns and connections in large gene expression datasets,

uncovering diagnostic indicators that might not be identifiable

with conventional statistical methods (26–28).

In this study, we present a novel diagnostic approach that

integrates bioinformatics and advanced ML algorithms. Our

method leverages the high resolution of scRNA-seq to identify

the diverse cell types in cartilage tissue. Meanwhile, we used

robust bioinformatics techniques, including quality control,

dimensionality reduction, and cell type annotation, to ensure data

accuracy and clarity. By applying ML, we aimed to identify patterns

and connections in gene expression data that conventional

statistical methods might miss. Finally, we identified key cell

types and hub genes and validated these key cell types and hub

genes through ML analysis and clinical samples. Additionally, we

developed a diagnostic model to enhance the application of hub

genes for OA diagnosis. Furthermore, we investigated the

relationship between hub genes and immune cells, immunological

processes, and immune checkpoint molecules. We also illustrated

the association between hub gene expression with the TNF family

and the chemokine family. In the research, we stressed that the

occurrence and progression of OA are significantly influenced by

genes associated with ubiquitination. This study identifies

diagnostic indicators connected with ubiquitination-related genes

for patients, improving the capacity for early-stage OA diagnosis. It

provides novel insights for individualized medical diagnosis and

therapeutic approaches.
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Methods

Patients and specimens

The clinical sample data source utilized in this investigation was

received from Shanghai Sixth People’s Hospital. Articular

specimens were procured from 55 patients who were diagnosed

with knee OA and underwent knee arthroplasty surgery. Specimens

from all layers of cartilage and subchondral bone were separately

obtained and separated into two groups: the damaged area

(designated as OA) and the corresponding undamaged area

(designated as undamaged). All human studies were approved by

the ethics committee of Shanghai Sixth People’s Hospital [Approval

Number: 2019-KY-007(K)], and full written consents were obtained

before the operative procedure. We assessed the expression level of

genes associated with core necroptosis in 55 OA tissues and 55

undamaged tissues. We performed all the experiments described in

accordance with The Code of Ethics of the World Medical

Association (Declaration of Helsinki).
Data collection

The OA single-cell sequencing datasets were obtained from the

GEO database (https://www.ncbi.nlm.nih.gov/geo/). Specifically,

dataset GSE169454 was utilized, comprising three normal

cartilage tissues and four OA cartilage tissues sequenced on the

10X sequencing platform. In addition to GSE169454, the analysis

incorporated datasets GSE89406, GSE57218, and GSE117999. The

GSE89406 dataset includes 28 normal samples and 22 OA samples,

serving as the training set for the diagnostic model. Dataset

GSE57218 consists of 7 normal samples and 33 OA samples,

utilized as the initial validation set for the diagnosis model. Lastly,

dataset GSE117999 comprises 10 normal samples and 10 OA

samples, selected as the second validation set for the diagnostic

model. These datasets were chosen to enhance the robustness and

reliability of our analysis across different cohorts and conditions.
Single-cell sequencing data processing

The single-cell data analysis was performed using Seurat version

4.2.2. Upon importing the datasets, quality control measures were

applied to remove cells exhibiting mitochondrial or ribosomal

proportions exceeding 10% or 40%, respectively, and cells with

nFeature_RNA values below 500 or above 5000. Data

normalization and scaling were achieved using the SCTransform

function. Dimensionality reduction and clustering were conducted

based on the first 15 principal components using the RunUMAP

function to generate results. Cell annotation was carried out with

SingleR in accordance with literature reports. Marker genes for each

cell type were identified using the FindAllMarkers function. Doublet

cells were identified and removed using the DoubletFinder function.
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Cell communication analysis

The “CellChat” R package (version 1.5.0) was used to reveal the

fundamental processes of cell-to-cell communication in single-cell

data. The createCellChat function was utilized to instantiate a

CellChat object, while the aggregateNet function detailed the

signals originating from each cell type. The netVisual_circle

function was utilized to visually represent the extent and

significance of cell-to-cell communication, whereas the

netAnalysis_computeCentrality function deduced the input and

output weights of certain signaling pathways.
Ubiquitination scoring

A total of 1232 ubiquitination-related genes were gathered from

the Genecard official website, specifically selecting genes with a

relevance score greater than 5. These genes comprise a gene set that

is associated with ubiquitination. The AUCell package was

employed for ubiquitination scoring, with the AUCell_calcAUC

function acting as the main scoring mechanism. The ggplot2

package’s violin plot was utilized to exhibit the scores.
High-dimensional weighted gene co-
expression network analysis

HdWGCNA extends the functionality of WGCNA specifically

for analyzing single-cell data, employing a systems biology

approach to identify correlations between genes from high-

throughput gene expression data. The SetupForWGCNA function

was used to instantiate a WGCNA object, facilitating the initial

setup for analysis. Subsequently, the MetacellsByGroups function

was employed to generate metacells information, providing insights

into cellular groupings based on gene expression profiles. To

identify gene modules, an analysis of the co-expression network

was performed using a soft threshold. This process included

computing module eigengenes to identify core genes within each

module. The analysis was executed using the hdWGCNA program,

which specializes in handling single-cell transcriptomic data.
Differential expression and
enrichment analysis

In our study, we conducted differential expression analysis

using the Limma software package. Genes were selected for

further analysis if they exhibited an absolute log fold change

(logFC) of at least 1 and had an adjusted P-value below 0.05. We

set the significance level (a) at 0.05, which corresponds to a 5% risk

of a Type I error, or incorrectly rejecting the null hypothesis. The P-

value represents the probability of obtaining a test statistic as

extreme as, or more extreme than, the observed result under the
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assumption that the null hypothesis is true. A P-value of 0.05 or

lower led us to conclude that the observed changes in gene

expression were statistically significant, prompting us to reject the

null hypothesis. For enrichment analysis, we used the

ClusterProfiler package to identify biological terms that were

overrepresented among the differentially expressed genes. This

approach assessed whether the observed count of genes in specific

pathways was significantly higher than what would be expected by

random chance. Furthermore, to visualize the differential

expression results, we generated volcano plots with ggplot2.

Additionally, we used ggplot2 to create star plots for visualizing

the outcomes of our enrichment analysis. These visualizations

provide a clear and intuitive representation of our findings.
XGBoost machine learning and diagnostic
model construction

The ML investigation employed XGBoost, a highly efficient

gradient-boosting implementation. The analysis utilized the

XGboost package along with the DALEX and breakDown

packages for result interpretation. Partial dependence plots were

employed to assess the significance of genes, where higher values

indicated greater importance. The rms package was utilized to

optimize the selection of core genes for OA diagnosis and develop

a diagnostic model. Visualization of the model was achieved using

the replot program to create a nomogram. ROC curves for the

diagnostic model were generated using the pROC and ROCR

packages. Additionally, decision curve analysis (DCA) was

conducted using the rmda package to assess the clinical utility of

the diagnostic model. To optimize the performance of our XGBoost

model, we conducted a systematic process of hyperparameter

tuning. We employed a grid search method combined with cross-

validation to identify the optimal set of hyperparameters. For model

validation, we utilized a rigorous cross-validation technique.

Specifically, we employed K-fold cross-validation with K set to 5.

This method involves dividing the dataset into K subsets, training

the model on K-1 of these subsets, and then validating it on the

remaining subset. This process is repeated K times, with each subset

serving as the validation set once. The performance metrics are

averaged across all K folds to provide a comprehensive assessment

of the model’s performance. Additionally, decision curve analysis

(DCA) was conducted using the rmda package to assess the clinical

utility of the diagnostic model.
Immune-related analysis

The GSVA software and GSEABase package were used to

compute relative enrichment scores for 29 immune cell types and

immunological processes. Heat maps were generated to visualize

the associations between core genes and immune cells, processes, as

well as checkpoint molecules. To explore the relationships in gene

expression, the Ggcor package was employed to analyze correlations

between core genes and gene families such as TNF and chemokines.
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Consensus clustering

The ConsensusClusterPlus package was utilized to do

unsupervised clustering for disease subgroup mining, which is a

commonly employed technique. The most suitable K-value was

established by analyzing clustering heatmaps and cumulative

distribution function (CDF) curves, with each sample classified

according to its subgroup. The FactoMineR package and factoextra

package were utilized to generate PCA diagrams, while the

pheatmap tool was employed to visualize the expression heatmap

of core genes in various subgroups.
Drug screening and transcription
factor analysis

Drug predictions were conducted using Enrichr’s DSigDB database

(https://maayanlab.cloud/Enrichr/), and the ggplot2 software was

utilized to display the top 10 drugs. Transcription factor

predictions were conducted utilizing the ChEA3 website (https://

maayanlab.cloud/chea3/), and the Cytoscape software was used to

generate a network diagram illustrating the relationships between

medicines, transcription factors, and their respective target genes.
Culture and treatment of ATDC5 cells

ATDC5 mouse chondrocytes (SNL-178; Sunncell, Wuhan,

China) were cultured in the DMEM/F12 (Gibco) with 5% FBS.

The ATDC5 cell line has been validated through STR profiling and

recent mycoplasma testing. All cells were maintained in a

humidified incubator that contained 5% CO2 at 37°C.

Interleukin-1b (IL-1b) can induce cartilage degradation by

promoting the expression of matrix metalloproteinases (MMPs)

in chondrocytes (29) and is widely used in the inflammatory

induction model of chondrocytes in OA (30). We used IL-1b to

stimulate ATDC5 cells to simulate this microenvironment of

inflammation and used qRT-PCR to verify the expression level of

related genes. The cells were seeded onto 96-well plates with 1,0000

cells per well and cultivated with IL-1b to simulate the cell variation

observed in OA.
RNA extraction and quantitative real-time
polymerase chain reaction

The extraction of total RNA from ATDC5 cells was performed

using the EZ-press RNA Purification Kit (EZBioscience). The

quantification of RNA was carried out using the NanoDrop 2000

spectrophotometer (Thermo, Waltham, USA). Reverse

transcription was performed using a Reverse Transcription

Master Mix (EZBioscience) to produce complementary DNA. The

qPCR assay was conducted using Vazyme buffers on QuantStudio 7

(Thermo). The expression levels were normalized using b actin as a

reference. The primers are listed in Table 1.
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Immunohistochemistry assays

Tissues were fixed in 4% paraformaldehyde (PFA) and

subsequently decalcified with ethylenediaminetetraacetic acid

(EDTA, pH 7.4). The tissues were processed for paraffin

embedding and cut into slices with a thickness of 4 µm. For

immunohistochemistry (IHC) staining of human tissues, the

sections were subjected to heat at 95°C for 15 minutes, followed

by treatment with 3% H2O2 and 0.5% Triton X-100. The 10%

bovine serum albumin was used to inhibit nonspecific binding for

one hour at room temperature. The sections were subsequently

subjected to an overnight incubation at 4°C with the primary

antibody (WDR74, 1:200, GeneTex, GTX119013) and

(TNFRSF12A, 1:100, Affinity Biosciences, DF8023). Finally, the

sections were subjected to incubation with a secondary antibody,

followed by counterstaining with hematoxylin and visualization

with DAB solution for IHC. The level of immunoreactivity was

quantified using Image J software.
Statistical analysis

Data are presented as means with standard error (SD) to

account for variability within our datasets. A Student’s t-test was

used to compare the differences between the two groups. This

method is appropriate for our experimental design and is a standard

approach for comparing means in independent samples. For

comparisons involving more than two groups, we used one-way

ANOVA followed by post-hoc tests to adjust for multiple

comparisons, ensuring that the results were robust and reliable.

The Mann-Whitney U test was utilized for non-parametric data to

compare differences between groups. Pearson’s correlation

coefficient was calculated to assess the relationship between

continuous variables. Linear regression models were used to

evaluate the association between variables, adjusting for potential

confounding factors. A P value of less than 0.05 was considered

statistically significant for all tests, which is a conventional

threshold in many scientific fields. All statistical analyses were

conducted using Prism GraphPad, SPSS (version 24.0), and R

program (version 3.6.2), which are widely recognized and

validated tools in the field.
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Results

Cell composition and characteristics in OA

Following the integration and quality verification of the single-cell

data, a total of 7924 cells from the normal group and 4955 cells from

the OA group were selected for further study. According to the

ElbowPlot analysis, the top 15 primary components were chosen to

reduce the number of dimensions and group the data. This led to the

formation of 15 clusters, numbered from 0 to 14. The clusters were

categorized into 10 cell types based on SingleR analysis and

information from existing literature (Figure 1A). The marker genes

associated with each cell type are as follows: homeostatic chondrocytes

(HomC) (HSPA1A, HSPA1B, HSPA6), regulatory chondrocytes

(RegC) (CHI3L1, CHI3L2), proliferating chondrocytes (ProC)

(BMP2, HMGA1), prefibrocartilage chondrocytes (preHTC) (PRG4,

ABI3BP, CRTAC1), inflammatory chondrocytes (InfC) (CXCL8,

CCL20, CXCL1), red blood cells (HBB, HBA1, HBA2), hypertrophic

chondrocytes (HTC) (COL10A1, SPP1), effector chondrocytes (EC)

(FRZB, CYTL1, CHAD, CLEC3A), repair chondrocytes (RepC) (CILP,

OGN), and fibrocartilage chondrocytes (FC) (MMP2, COL1A2,

COL1A1) (Figure 1B). The stacked bar and density plots of cell

proportions illustrate a significant increase in the proportions of

RegC, ProC, InfC, and HTC in the OA group, along with a

substantial decrease in HomC and FC (Figures 1C, D). The analysis

of cell communication reveals that ProC demonstrates a significant

number of output signals, suggesting its potential involvement in the

advancement of OA (Figures 1D, E). Figure 1F presents a bubble chart

that shows the receptor-ligand pairings involved in ProC

communication. This chart also demonstrates the activation of

several pathways associated with collagen. Plasma cells showed the

highest ubiquitination score, as determined by the AUCell

algorithm (Figure 1G).
Ubiquitination activity and core gene
identification in OA

The study examined which cell type exhibited an upregulation

of ubiquitination activity following a preliminary analysis of the

cellular composition and characteristics in OA. The AUCell
TABLE 1 Primer sequences for qRT-PCR analysis.

Name Origin Forward (5’→3’) Reverse (5’→3’)

Col2a1 Mouse GGGAATGTCCTCTGCGATGAC GAAGGGGATCTCGGGGTTG

Sox9 Mouse CGGAACAGACTCACATCTCTCC GCTTGCACGTCGGTTTTGG

Mmp3 Mouse ACATGGAGACTTTGTCCCTTTTG TTGGCTGAGTGGTAGAGTCCC

Mmp13 Mouse CTTCTTCTTGTTGAGCTGGACTC CTGTGGAGGTCACTGTAGACT

WDR74 Mouse TCGGCAAGGGCGTCTACTGG GGGGCTTTGAAGGGTGACACTG

TNFRSF12A Mouse GGGGCTTTGAAGGGTGACACTG CGCCAAAACCAGGACCAGACTAAG

b-actin Mouse GGCTGTATTCCCCTCCATCG CCAGTTGGTAACAATGCCATGT
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algorithm was employed to calculate the ubiquitination scores of

each cell type, which were composed of the ubiquitination-related

genes. FC cells, as evidenced by their highest score, were involved in

the most ubiquitination processes (Figure 2A). The hdWGCNA

algorithm was employed to identify core genes associated with

ubiquitination. A flexible threshold of 6 was selected to divide the

genes into five functional modules: blue, turquoise, brown, green,

and yellow, as determined by the FC’s characteristics (Figures 2B–

D). FC has the highest correlation with genes in the blue module, as

evidenced by a correlation bubble chart (Figure 2E). This suggests

that these genes may be associated with the ubiquitination process.

The feature plot also suggests that the aggregate scores of genes in

the blue module are concentrated in FC (Figure 2F).

The blue module contained 407 genes with a correlation greater

than 0.3. Enrichment analysis revealed that these genes are primarily

associated with the synthesis of ribosomal RNA and non-coding

RNA (Figure 3A). The bulk sequencing data of OA was also screened

for corresponding OA-related genes, resulting in 2151 differentially
Frontiers in Immunology 06
expressed genes (Figure 3B). A Venn diagram of the core genes in the

blue module and the differential genes from bulk sequencing

identified 10 OA ubiquitination-related genes (Figure 3C).

Expression correlation analysis demonstrated that the majority of

genes are positively correlated, with the exception of MGLL, which is

negatively correlated with other genes (Figure 3D). GENEMANIA

analysis indicates that OA ubiquitination-related genes primarily

have predicted functions (Figure 3E).
Diagnostic performance of core OA-
related ubiquitination-related genes

Box plots of differential expression show that, except for MGLL,

other OA ubiquitination-related genes are highly expressed in the OA

group (Figure 4A). The XGBoost algorithm calculated the partial

dependence and feature importance of the 10 OA ubiquitination-

related genes, and based on the decrease in feature importance,
FIGURE 1

Identification of osteoarthritis (OA) cartilage cell composition and relationships through single-cell sequencing. (A) UMAP plot depicting the clustering of
cells into 10 groups. (B) Bubble chart illustrating marker genes associated with each cell type. (C) Stacked bar graph showing the proportions of cell
types. (D, E) CellChat communication analysis elucidating the quantity and intensity of cell-to-cell communication. (F) Density plot displaying the core
cell type composition in control and OA groups. (G) Bubble chart indicating receptor-ligand pairs involved in cell communication interactions.
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TNFRSF12A, ABCE1, WDR74, and GLIPR1 were identified as core

OA ubiquitination-related genes (Figures 4B, C). The diagnostic

efficacy of individual core OA ubiquitination-related genes was

unstable, with AUC values fluctuating between 0.5 and 0.9 in the

training and two validation sets (Figures 4D–F). To enhance the

diagnostic capability of the core OA ubiquitination-related genes, a

diagnostic model was constructed, with WDR74 and TNFRSF12A

emerging as independent diagnostic predictors (Figure 5A). Both the

training set and the two validation sets demonstrated excellent

diagnostic ability, with AUC values greater than 0.9 (Figures 5B–

D). Decision curves also indicated that the diagnostic model aids in

clinical decision-making (Figures 5E–G).
Immunological relevance and
subgroup stratification

Genes related to core OA ubiquitination are generally positively

correlated with immune cells and immune processes, and they also
Frontiers in Immunology 07
exhibit an extensive positive correlation with the expression of

immune checkpoints (Figures 6A, B). This suggests that these

genes are associated with immune processes and may be potential

targets for immunotherapy. The correlation matrix indicates that the

expression of core OA ubiquitination-related genes is significantly

correlated with the TNF and chemokine families. This suggests that

the pathogenesis of OA may be associated with inflammatory

immune processes, with ubiquitination potentially being implicated

(Figure 6C). Furthermore, genes associated with the ubiquitination of

core OA also hold clinical subgroup guiding importance. Consensus

clustering analysis reveals that both the training and validation sets of

patients can be classified into two distinct subgroups based on the

expression patterns of core OA ubiquitination-related genes

(Figures 7A–C). Furthermore, the principal components on the

principal component analysis (PCA) plot are significantly separated

for these subgroups (Figures 7D–F). In the same way, the two

subgroups also show variation in the expression of key genes linked

to OA ubiquitination. Specifically, ABCE1, WDR74, and GLIPR1

tend to exhibit comparable expression patterns (Figures 7G–I).
FIGURE 2

High-dimensional weighted gene co-expression network analysis (hdWGCNA) of single-cell data. (A) Ubiquitination scoring to identify
ubiquitination-associated cell types. (B) Soft threshold selection plot to determine the optimal threshold. (C) Gene module clustering diagram. (D–F)
Identification of specific gene modules and their correlation analysis with cell types, highlighting gene clusters most relevant to cell types.
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Drug target prediction and transcription
factor analysis

The target drugs for core OA ubiquitination-related genes were

predicted, showing the top ten drugs and their regulatory gene

networks (Figures 8A, B). In addition, the regulatory transcription

factors for core OA ubiquitination-related genes, including FOXD1,

were also predicted (Figures 8C, D).
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The expression level of WDR74
and TNFRSF12A

The diagnostic model demonstrated that WDR74 and

TNFRSF12A were independent diagnostic predictors, and both the

training set and the two validation sets exhibited exceptional diagnostic

ability. Consequently, the study selected WDR74 and TNFRSF12A for

external validation in order to investigate their relationship with OA.
FIGURE 3

Screening of differentially expressed ubiquitination-related genes. (A) GO enrichment analysis of genes in the blue module. (B) Volcano plot from
differential expression analysis of OA dataset, showcasing differentially expressed genes. (C) Venn diagram identifying OA ubiquitination-related
genes from bulk sequencing data. (D) Correlation analysis of differentially expressed ubiquitination-related genes. (E) GENEMANIA analysis of
protein-protein interaction networks of differentially expressed ubiquitination-related genes.
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IL-1b decreased the expression of Col2a1 and SOX9 in ATDC5

cells and increased the expression of Mmp3 and Mmp13, indicating

that induction methods were consistent with the molecular

characteristics of OA. At the same time, IL-1b can also upregulate
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the expression of WDR74 and TNFRSF12A (Figure 9A). Our results

showed that WDR74 and TNFRSF12A genes were significantly

upregulated in the OA group, which was confirmed by external

human samples (Figures 9B–E). Immunohistochemical analysis
FIGURE 4

Machine learning-based selection of core ubiquitination-related genes. (A) Box plots of differential expression for ubiquitination-related genes. (B, C)
XGBoost machine learning algorithm for the selection of core ubiquitination-related genes. (D–F) ROC curves of individual core ubiquitination-
related genes across three validation cohorts.
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showed that WDR74 and TNFRSF12A were significantly

upregulated in OA, suggesting a correlation between these genes

and OA (Figures 9F, G).
Discussion

OA is a multifactorial degenerative joint disease characterized

by the progressive deterioration of articular cartilage, subchondral
Frontiers in Immunology 10
bone remodeling, and synovial inflammation (31, 32). So far, no

singular definitive cause of OA has been established. The primary

risk factors for OA are aging and joint injury, both of which can

result in cartilage deterioration (33). This deterioration is partially

attributable to the formation of senescent chondrocytes in joint

tissues, which frequently display distinct cellular dysfunctions, such

as autophagy downregulation, mitochondrial impairment, and

inflammasome overactivation (14, 34). Nonetheless, the precise

mechanisms by which these risk factors induce the start of OA
FIGURE 5

Diagnostic model of core ubiquitination-related genes. (A) Nomogram of the diagnostic model for core ubiquitination-related genes. (B–D) ROC
curves of the diagnostic model in different OA datasets. (E–G) Decision curve analysis (DCA) of the diagnostic model across various OA datasets.
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are not fully comprehended, and the molecular processes involved

remain ambiguous. To enhance comprehension of the pathogenic

mechanisms of OA, novel diagnostic tools, strategies, and

technologies must be utilized to investigate its pathogenesis.

Recent studies have emphasized the pivotal function of

ubiquitination in modulating diverse cellular processes related to OA

(35). Ubiquitination is a crucial post-translational modification that

plays a role in protein degradation, cell cycle regulation, and apoptosis,
Frontiers in Immunology 11
all of which are vital for preserving the homeostasis of bone joint

tissues. The dysregulation of ubiquitination pathways is strongly

associated with the pathophysiology of OA, as changes in protein

turnover can result in the accumulation of misfolded proteins and the

disruption of normal cellular activities (36). In OA, articular

chondrocytes inevitably experience metabolic imbalance, leading to

the degradation of the cartilage matrix. Ubiquitination regulates this

process by mediating the degradation of specific proteins. For instance,
FIGURE 6

Immunological relevance of core ubiquitination-related genes. (A) Heatmap of the correlation between core ubiquitination-related genes and
immune cells and processes. (B) Heatmap illustrating the correlation between core ubiquitination-related genes and immune checkpoint molecules.
(C) Correlation matrix showing the association between core ubiquitination-related genes and chemokine and TNF families.
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the ubiquitination of certain cytokines and enzymes may enhance or

inhibit chondrocyte apoptosis, thereby affecting cartilage health (37).

Additionally, ubiquitination plays a crucial role in the chronic

inflammatory process of OA, as it impacts inflammation-related

signaling pathways (such as the NF-kB pathway) and subsequently

regulates the expression of pro-inflammatory cytokines. The excessive

expression of these cytokines can result in damage and pathological

changes to joint tissues (35). Moreover, ubiquitination is involved in

regulating the life and death decisions of chondrocytes. By modulating

the ubiquitination of apoptosis-related proteins (such as p53 and Bcl-

2), the balance between cell survival and death is disrupted, further

promoting cartilage degradation (38). Furthermore, ubiquitination can

influence the activity of transcription factors, thereby regulating the

expression of OA-related genes (39). For example, the ubiquitination of
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certain transcription factors may lead to their degradation in the

nucleus, affecting the expression of target genes (such as matrix

metalloproteinases, MMPs), which play a critical role in the

degradation of the cartilage matrix (40). Therefore, ubiquitination

exerts multifaceted effects on the occurrence and progression of OA,

impacting chondrocyte function, the inflammatory state of the joints,

and the survival and apoptosis of cells.

Comprehending the interaction between ubiquitination-related

genes and OA yields significant insights into the molecular

mechanisms underlying disease progression and presents new

opportunities for prospective treatment approaches. In the study,

we revealed a diagnostic model for OA by integrating URG

expression with ML algorithms, followed by qRT-PCR and IHC

validation in gene levels and on human specimens, respectively. The
FIGURE 7

Construction of ubiquitination-related molecular subtypes. (A–C) Consensus clustering analysis to identify molecular subtypes in different OA
datasets. (D–F) PCA analysis based on molecular subtypes. (G–I) Expression heatmaps of core ubiquitination-related genes across identified
molecular subtypes.
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identification of WDR74 and TNFRSF12A as core biomarkers

underscored their potential as therapeutic targets and highlighted

the value of precision medicine in OA management. Our approach

diverged from traditional diagnostic methods by harnessing the

power of ML to analyze the complex data generated from scRNA-

seq. The use of ML algorithms has allowed for the identification of

subtle patterns in URG expression that are indicative of OA,

surpassing the limitations of conventional statistical methods (41).

In this combined investigation, of ML and bioinformatics,

we explored cell-to-cell communication within the joint

microenvironment using the CellChat program. This research

revealed complex networks of cellular interactions that may be

potentially pivotal in the development of OA. Notably, proliferating

chondrocytes (ProC), identified as significant communicative signal

producers, may play a critical role in driving disease progression,

warranting further investigation. Utilization of the AUCell program

facilitated the calculation of ubiquitination scores across diverse cell

subpopulations, crucial for identifying URGs with prominent

ubiquitination activity. Employing hdWGCNA, we identified

specific cell types and gene modules closely associated with OA.

The blue module, notably linked with FC cells, is particularly notable

for its potential involvement in ubiquitination processes. Differential

expression analysis using Limma, complemented by enrichment

analysis via clusterProfiler, highlighted a subset of URGs showing

differential expression in OA. These genes, implicated in roles such as

ribosomal RNA and non-coding RNA synthesis, likely contribute to

OA’s molecular pathogenesis (42, 43). Integration with bulk RNA

sequencing data facilitated the identification of a core set of OA-
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related URGs, subsequently subjected to additional ML-based

analysis to refine their significance in disease mechanisms.

Notably, our research identified core URGs linked to OA,

especially WDR74, and TNFRSF12A, laying a solid foundation

for the development of important biomarkers for early OA

detection. Our findings demonstrated that these two genes are

independent predictors of OA diagnosis, exhibiting excellent

diagnostic efficacy in the training cohort. Their predictive value

has been validated in two independent cohorts and further

confirmed through histological analysis.

The involvement of WDR74 in OA is intricate and requires a

comprehensive analysis within the context of molecular biology,

genetics, and clinical significance. The WDR74 gene encodes the

WD repeat domain 74 protein and is implicated in different

functions of cartilage cells, especially in relation to OA, a

degenerative joint disorder marked by the progressive degradation

of cartilage (44). WDR74 is a key component of the MTR4-EXO1

complex, which is involved in the degradation of pre-ribosomal

RNA in the nucleolus (45). This process is essential for ribosome

biogenesis and protein synthesis, both of which are crucial for

maintaining cartilage integrity in chondrocytes (46). Dysregulation

of WDR74 could disrupt this process, potentially leading to the

accumulation of misfolded proteins and the disruption of normal

cellular activities, both of which are associated with OA

pathogenesis (36). Moreover, WDR74 has been shown in the

regulation of the Wnt/b-catenin signaling pathway, which plays a

vital role in chondrocyte proliferation and differentiation (47).

Dysregulation of this pathway can lead to the degeneration of
FIGURE 8

Drug and transcription factor analysis of core ubiquitination-related genes. (A, B) Drug screening based on the DSigDB database. (C, D) Prediction of
transcription factors regulating core ubiquitination-related genes using the ChEA3 database.
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articular cartilage, a hallmark of OA (48). Furthermore, WDR74’s

role in ribosomal activity could indirectly impact cartilage health, as

chondrocytes in the joint are metabolically active and rely on

efficient protein synthesis to maintain cartilage integrity (49).

TNFRSF12A, encoding the TNF-like weak inducer of apoptosis

(TWEAK) receptor r, is part of the TNF receptor superfamily and
Frontiers in Immunology 14
regulates cell survival, proliferation, and apoptosis (50). Studies suggest

that during OA progression, dysregulation of mechanotransduction

and extracellular matrix pathways may be influenced by TNFRSF12A

(51). Additionally, TNFRSF12A has been identified as a potential

candidate gene driving pathological calcification in OA cartilage,

contributing to disease progression and irreversibility (52). The
FIGURE 9

The expression level WDR74 and TNFRSF12A in ATDC5 cells with different concentrated IL-1b and human OA cartilage. (A) qRT-PCR measurement
of Col2a1, Sox9, Mmp3, Mmp13, WDR74 and TNFRSF12A in ATDC5 cells treated with different concentrated IL-1b. ** p<0.01; *** p<0.001. (B, C)
Immunohistochemistry assay with anti-WDR74 in undamaged cartilage tissues and OA cartilage tissues. (D, E) Immunohistochemistry assay with
anti-TNFRSF12A in undamaged cartilage tissues and OA cartilage tissues. Scale bar, Left, 100mm; Right, 20mm. (F, G) Relative expression level in OA
(n=55) and corresponding undamaged (n=55) cartilage tissues based on an immunohistochemistry assay and significance was evaluated by paired
Student’s t test.
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TNFRSF12A-TWEAK pathway serves as a central mediator of

inflammatory responses and regulates the expression of catabolic

factors like matrix metalloproteinases (MMPs) and ADAMTS

enzymes, which are important in breaking down the cartilage matrix

(53). The activation of this pathway can lead to increased joint

inflammation and the deterioration of cartilage in OA (54).

Furthermore, the TWEAK-Fn14 axis could potentially play a role in

the development of OA by influencing the survival and function of

chondrocytes, with TWEAK promoting the production of pro-

inflammatory cytokines such as IL-6 and TNF- a by different cell

types present in the joint (55).

Long-term low-level chronic inflammation and innate and

adaptive immune system activation play critical roles in all aspects

of OA pathogenesis (56, 57). The results of our study indicate a strong

connection between genes related to ubiquitination in OA and

immune cells, indicating a complex interplay between the immune

system and OA pathogenesis. This paves the way for potential

immunotherapeutic approaches that could utilize immune response

modulation to treat or slow the progression of OA. Additionally, the

correlation between these genes and the TNF and chemokine families

suggests the involvement of inflammation in OA, where

ubiquitination processes may play a role. The significance of our

findings lies in the ability to categorize patients into specific

subgroups based on the expression of key OA ubiquitination-

related genes. The categorization has the potential to provide

valuable insights for tailoring treatment tactics to individual

patients and enhancing patient outcomes. Moreover, the

identification of therapeutic targets and regulatory transcription

factors for these essential genes provides opportunities for the

advancement of precision medicines.

Although the precise roles of WDR74 and TNFRSF12A in OA

are still being explored, their participation in critical cellular

processes that influence cartilage integrity positions them as

promising candidates for further research and therapeutic

development. Comprehending the mechanisms by which WDR74

and TNFRSF12A contribute to OA pathogenesis is essential for

evaluating their potential as therapeutic targets. Such insights could

facilitate the development of innovative treatment strategies for

individuals afflicted by this severe ailment.

There are some limitations in our study. Firstly, the

generalizability of our diagnostic model needs validation in larger

cohorts with more diverse demographic characteristics. This will

help to ensure that our findings are applicable across different

populations. Secondly, while we have identified WDR74 and

TNFRSF12A as potential biomarkers for early OA, the functional

significance of these genes in the context of OA pathogenesis

requires further experimental validation. Additional in vitro and

in vivo studies are necessary to confirm their roles in disease

development and progression. Lastly, potential biases in our study

may arise from the reliance on existing datasets, which may not

fully capture the heterogeneity of OA across different patient

populations. To address this, we have implemented rigorous

quality control measures and employed advanced bioinformatics

techniques to ensure the robustness of our findings. Despite these
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limitations, our study provides valuable insights into the role of

ubiquitination-related genes in OA and lays the groundwork for

future research in this area.
Conclusion

In conclusion, our study has identified WDR74 and

TNFRSF12A as potential biomarkers for early OA using machine

learning and immunohistochemistry. These findings provide

valuable insights into the molecular mechanisms underlying OA

and may pave the way for the development of novel diagnostic and

therapeutic strategies. The high diagnostic accuracy of our model,

along with the validation of WDR74 and TNFRSF12A in human

samples, underscores the potential clinical utility of these

biomarkers. Further research is needed to fully elucidate their

roles in OA pathogenesis and to translate these findings into

clinical practice.
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