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Jianing Feng1,2, Hongfei Tao1,2 and Zhimin Wang1*

1School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China, 2Centre for Cell and
Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
Matrix metalloproteinases are integral to the modification of the tumor

microenvironment and facilitate tumor progression by degrading the

extracellular matrix, releasing cytokines, and influencing the recruitment of

immune cells. Among the matrix metalloproteinases, membrane-type matrix

metalloproteinase 1 (MT1-MMP/MMP14) is the first identified membrane-type

MMP and acts as an essential proteolytic enzyme that enables tumor infiltration

and metastatic progression. Given the pivotal role of MT1-MMP in tumor

progression and the correlation between its overexpression in tumors and

unfavorable prognoses across multiple cancer types, a comprehensive

understanding of the potential functional mechanisms of MT1-MMP is

essential. This knowledge will aid in the advancement of diverse anti-tumor

therapies aimed at targeting MT1-MMP. Although contemporary research has

highlighted the considerable potential of MT1-MMP in targeted cancer therapy,

studies pertaining to its application in cell therapy remain relatively limited. In this

review, we delineate the structural characteristics and regulatory mechanisms of

MT1-MMP expression, as well as its biological significance in tumorigenesis.

Finally, we discussed the current status and prospects of anti-tumor therapies

targeting MT1-MMP.
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1 Introduction

According to the most recent publication from the International Agency for Research on

Cancer of the World Health Organization, cancer represents a significant threat to global

public health (1). Matrix metalloproteinases (MMPs) constitute a class of metal ion-dependent

proteases that are responsible for the degradation of extracellular matrix (ECM) and basement

membrane components. These enzymes possess highly structurally similar active sites within

their catalytic domains and share a conserved domain (2). MMPs are crucial in various

biological processes, including morphogenesis, wound healing, tissue remodeling, and repair,

as well as in the progression of numerous diseases, particularly cancer (3, 4). It is important to

note that MT1-MMP is overexpressed in pancreatic cancer, non-small cell lung cancer, breast

cancer, and various other cancer types, as well as in their microenvironments (5–7).
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(Figure 1A). The overexpression of MT1-MMP is frequently

correlated with enhanced tumor invasiveness, increased metastatic

potential, treatment resistance, and poor patient prognosis (8, 9). This

review aims to summarize the structural characteristics and regulatory

mechanisms governing the expression of MT1-MMP, examine its

physiological roles in tumorigenesis and development, and discuss the

current advancements in antitumor therapies targeting MT1-MMP.

This analysis will assist in identifying gaps in existing research and in

the development of targeted anti-tumor therapies. Finally, we will

explore the potential and limitations of MT1-MMP as a novel target

for anti-tumor interventions.
2 The fundamental structure and
functional regulation of MT1-MMP

2.1 Structure of MT1-MMP

Since the identification of the first member of the MMPs family,

MMP1, in 1962, a total of 23 distinct types of human MMPs have

been recognized (10). These enzymes are categorized into six groups

based on their substrate specificity and structural characteristics:

collagenases, gelatinases, stromelysins, matrilysins, membrane-type
Frontiers in Immunology 02
MMPs, and other MMPs (11). Typical MMPs are generally

composed of an inhibitory pro-domain, a catalytic domain, a

hinge region, and a hemopexin-like domain. Membrane-type

MMPs (MT-MMPs) are characterized by the presence of a

transmembrane domain and a cytoplasmic domain (11).

As a member of MT-MMPs, the gene encoding human MT1-

MMP contains 582 amino acids, including a signal peptide (Met1-

Thr20), an inhibitory pro-domain (Ala21-Arg111), a Furin protein

cleavage site (Arg108-Ile114), a catalytic domain (Tyr112-Ser287), a

hinge region (Gly288-Gly315), a hemopexin-like domain (Pro316-

Gly507), Linker (Cys508-Ala541), a transmembrane domain

(Val542Phe562), and a cytoplasmic domain (Arg563-Val582)

(Figure 1A) (12). The pro-domain masks the catalytic domain to

inhibit its proteolytic function, the Furin cleavage site is involved in

regulating the activation process of MT1-MMP, hemopexin-like

domain is used for dimerization substrate binding and

phospholipid bilayer interaction (13), and transmembrane

domain allows MT1-MMP to anchor to the cell membrane

surface. The cytoplasmic domain, consisting of only 20 amino

acids, contains multiple post-translational modified amino acids,

serving as a hub for signal transduction and participating in a series

of physiological processes such as the transport localization,

activation, and cell adhesion of MT1-MMP (14).
FIGURE 1

(A) Illustrates the structural diagram of the inactive MT1-MMP, with distinct colors denoting various functional segments. MT1-MMP is subjected to
hydrolysis by the Furin protein within the trans-Golgi apparatus, resulting in the release of the catalytic structural domain through the removal of the
pro-structural domain. (B) Following the dimerization of the hemagglutinin structural domain at the cell membrane, MT1-MMP associates with the
proMMP2-TIMP2 dimer, leading to the removal of the proMMP2 pre-structural domain and the subsequent release of its catalytic structural domain.
(C) MT1-MMP facilitates angiogenesis through the regulation of VEGF and bFGF signaling pathways. (D) MT1-MMP is involved in collagen hydrolysis
and the degradation of the extracellular matrix, thereby promoting tumor metastasis.
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2.2 Regulation of MT1-MMP
gene expression

2.2.1 The interaction between cis-acting
elements and trans-acting factors regulates
gene expression

As a member of MT-MMPs family, MT1-MMP plays a crucial

role in the maintenance of ECM homeostasis. Research has shown

that MT1-MMP is integral to the remodeling of the extracellular

matrix, with its aberrant regulation being strongly linked to

multiple pathological phenomena (15). Consequently, it is subject

to multi-layered regulatory mechanisms. At the transcriptional

level, the regulation of gene expression for MT1-MMP can be

summarized as follows (Figure 2A). A comprehensive

characterization of the promoter indicates that MT1-MMP is

devoid of a TATA box, possesses a distinctive binding site for the

Sp1 transcription factor, features multiple transcription start sites,

and includes an upstream repressive regulatory element (16).

Research has demonstrated that the infection of lymphatic

endothelial cells (LECs) by Kaposi sarcoma herpesvirus (KSHV)

results in the downregulation of PROX1 expression, which is
Frontiers in Immunology 03
accompanied by the upregulation of MT1-MMP expression and

the acquisition of an MT1-MMP-dependent invasive phenotype

(17). Further studies indicate the presence of a PROX1 binding site

located between 1139 and 1123 base pairs (bp) upstream of the

transcription start site (TSS) of the MT1-MMP gene. Additionally,

four consecutive PROX1 binding sites are identified between 1020

and 963 bp upstream of the TSS, with PROX1 binding capable of

inhibiting the expression of downstream genes. The absence of

PROX1 expression can promote the upregulation of MMP14

expression in tumor cells, while the reestablished expression of

PROX1 inhibits MT1-MMP expression and suppresses the three-

dimensional sprouting and invasion of cancer cells. Moreover, the

increased levels of MT1-MMP in the dermal lymphatics of mice

suggest that PROX1 suppresses MT1-MMP expression under

physiological conditions (18). It is crucial to emphasize that

MT1-MMP is currently the only known inhibitory target of

PROX1, making PROX1 the first identified direct inhibitor of

MT1-MMP (18). The overexpression of MT1-MMP in gastric

cancer has been confirmed to be associated with a favorable

prognosis for patients with gastric cancer (19). In intestinal

tumors characterized by PROX1 overexpression and defective
FIGURE 2

Regulation of MT1-MMP Gene Expression. (A) The transcription process of the MT1MMP gene involves interactions between various cis-acting
elements and trans-acting factors. In this diagram, green indicates promotion of gene expression, while red signifies inhibition. (B) Posttranscriptional
mRNA levels illustrate the regulation of MT1-MMP gene expression by various noncoding RNAs. Among these, microRNAs act directly, whereas
lncRNAs and circRNAs exert regulatory functions by modulating microRNAs.
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membrane types, PROX1 plays a crucial role in tumor stroma

activation and modulates the sensitivity of tumors to chemotherapy

in an MT1-MMP-dependent manner (20).

During endothelial tissue injury, the transcription factor

Krüppel-like factor 6 translocates to the nucleus, where it interacts

with the promoter of MT1-MMP and enhances the transcriptional

activity of MT1-MMP (21). Notably, in fibro-adipogenic progenitor

cells, microRNA-22-3p targets the KLF6/MT1-MMP axis, thereby

regulating fat infiltration during muscle degeneration (22). In renal

cell carcinoma, hypoxia-inducible factor 2 alpha functions

synergistically with specificity protein 1 within the promoter region

of MT1-MMP, thereby enhancing the expression of MT1-MMP and

contributing to increased invasiveness (23). In primary breast cancer,

N-a-acetyltransferase D is typically upregulated and is responsible for

mediating the N-a-terminal acetylation of histone H4. The absence of

NatD expression results in a diminished accumulation of N-terminal

acetylated histone H4 at the promoter region of FOXA2, which

directly inhibits the expression of FOXA2 and consequently

suppresses the expression of MT1-MMP (24). A study investigating

angiogenesis in liver cancer demonstrates that EVT4 regulates the

expression of MT1-MMP at the transcriptional level, thereby

promoting angiogenesis, migration, and invasion within the

hepatocellular carcinoma microenvironment (25). In a separate

investigation, E2F1, E2F3, and E2F5 have been identified as key

factors in the transcriptional regulation of the MT1-MMP gene.

Notably, E2F1 plays a critical role in modulating MT1-MMP

expression, which is tightly regulated by the retinoblastoma protein.

This finding was corroborated in tumor cells derived from human

papillomavirus, where the HPV derived E7 oncoprotein facilitates the

degradation of the Rb protein. This process subsequently activates
Frontiers in Immunology 04
E2F and leads to the upregulation of MT1-MMP expression (26–28).

Furthermore, within the tumor microenvironment, physical

stimulation enhances the expression levels of transcription factors

and early growth response protein 1, consequently facilitating the

upregulation of MT1-MMP (29). However, it is important to note

that even the same transcription factors can have different regulatory

roles in various tissues. Studies have demonstrated that the

transcription factors E2F1 and E2F3 are expressed in the placenta

but do not play a role in the regulatory control of MT1-MMP

expression (30).

Super-enhancers (SEs) are defined as genomic regions that

contain multiple closely spaced enhancers, distinguished by a

high concentration of transcription factors, co-factors, and

epigenetic modifications (31). However, Joseph W. Blayney and

others argue that SEs contain classic enhancers and promoters,

where the promoters do not possess inherent enhancer activity but

can enhance the function of traditional enhancers (32) (Figure 3).

Recent studies suggest that specific signaling events within tumors

function as critical oncogenic drivers that facilitate tumorigenesis.

Furthermore, the localization of these SEs indicates the

overactivation of numerous proto-oncogenes (33). Recent

research suggests that in tongue squamous cell carcinoma, the

transcription factors BATF and ATF3 interact with super-

enhancer regions in a switch-like manner to collaboratively

regulate the expression of MT1-MMP. Among them, ATF3

facilitates the transcription of MT1-MMP by engaging with the

enhancer region, whereas BATF inhibits this interaction, resulting

in a reduction of MT1-MMP expression (34).

It is noteworthy that, similar to the regulation of promoter

methylation in most human genes, the promoter region of MT1-
FIGURE 3

A schematic diagram illustrating the differences in gene expression regulation between classic enhancers and super-enhancers.
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MMP encompasses a CpG island. Methylation of this promoter

region serves to inhibit both gene expression and cell migration

(35, 36). This observation aligns with the minimal levels of

methylation observed in the MT1-MMP promoter within highly

invasive glioma cells, in contrast to the elevated levels of methylation

found in the MT1-MMP promoter of noninvasive breast cancer cell

lines (28, 37, 38).

2.2.2 Non-coding RNA regulates gene expression
MicroRNA, circular RNA (circRNA), and long non-coding

RNA (lncRNA) are all constituents of the non-coding RNA

category and have emerged as significant focal points in recent

research concerning the regulation of non-coding gene expression.

The regulatory mechanisms of non-coding RNAs that target MT1-

MMP have been identified in various pathological processes

(Figure 2B). In the context of rheumatoid arthritis, microRNA-

150-5p, which is derived from mesenchymal stem cells (MSCs),

targets MT1-MMP and vascular endothelial growth factor. This

targeting results in a reduction of the migration and invasion of

fibroblast-like synoviocytes associated with rheumatoid arthritis

(39). In lung adenocarcinoma, lncRNA FAM83A-AS1 facilitates

the proliferation, invasion, and epithelialmesenchymal transition

(EMT) of lung adenocarcinoma cells by targeting MT1-MMP via

microRNA-150-5p (40). CircRNA PTCH1 facilitates the invasion

and metastasis of renal cell carcinoma via the microRNA-485-5p/

MT1-MMP axis and the EMT process (41). In osteosarcoma, RREB1

transcriptionally enhances the expression of the lncRNA MELTF-

AS1, which in turn regulates the expression of MT1-MMP through

its interaction with microRNA-485-5p (42). MicroRNA-26a exerts

its effects by targeting MT1-MMP and matrix metalloproteinase 16,

thereby inhibiting the proliferation, migration, and invasion of skin

squamous cell carcinoma (43). In the context of colorectal cancer,

microRNA-26a-5p is influenced by the regulation of lncRNA TUG1,

thereby facilitating the progression of colorectal cancer via the MT1-

MMP/p38 MAPK/Hsp27 signaling pathway (44). MicroRNA-22

targets MT1-MMP and SNAI1 to inhibit the growth and

metastasis of gastric cancer, with SNAI1 serving to induce the

expression of MT1-MMP (45). In fibroblast progenitor cells,

microRNA-22-3p plays a role in the regulation of fat infiltration

during muscle degeneration (22). Additionally, microRNA-193a-3p,

microRNA-133a, and microRNA-149 have been identified as

regulators of MT1-MMP, significantly influencing the

proliferation, migration, and invasion of cells related to

intervertebral disc herniation, osteosarcoma, and pituitary

adenoma, respectively (46–48). In the context of cervical cancer,

decreased CpG methylation of the microRNA-484 promoter, which

is reliant on the activity of DNA methyltransferase DNMT1,

enhances the expression of microRNA-484. This upregulation

subsequently inhibits the expression of MT1-MMP and hepatocyte

nuclear factor 1A, thereby exerting a negative regulatory effect on the

WNT/MAPK and TNF signaling pathways (49). Furthermore,

lncRNA CCAT1 is significantly overexpressed in cervical cancer

and facilitates the proliferation and invasion of cancer cells via the

microRNA-181a-5p/MT1-MMP signaling pathway (50).
Frontiers in Immunology 05
2.3 Regulation of MT1-MMP protein activity

The function of MT1-MMP is subject to stringent regulation

not only at the gene expression level but also at various levels

concerning its protein activity. In this section, we examine the

regulatory mechanisms governing MT1-MMP activity across

different cellular regions. While the complete elucidation of these

regulatory mechanisms remains incomplete, it is clear that they are

essential for the accurate regulation of MT1-MMP protein activity,

which is essential for maintaining cellular homeostasis mediated by

MT1-MMP.

2.3.1 Activity regulation based on protein
hydrolysis and interactions

Similar to other members of MT-MMPs family, MT1-MMP is

initially synthesized as an inactive precursor that includes a pro-

domain within the cytoplasm (51). Following this, in the trans-

Golgi network, MT1-MMP undergoes activation via furin and

associated proprotein convertases through a hydrolytic process

that cleaves the pro-domain, thereby releasing the catalytic

domain (52) (Figure 1A). In LoVo cells derived from colorectal

cancer, proMT1-MMP is translocated to the cell membrane in a

manner that is resistant to Brefeldin A. This process is followed by

autocatalytic activation, suggesting that the activation of its catalytic

activity can occur through multiple mechanisms (53). Furthermore,

active MT1-MMP possesses the ability to self-catalyze the

generation of inactive fragments, as well as the release of its entire

catalytic domain at the cell surface. Notably, investigations into the

activity and sequence of both self-catalytic and non-self-catalytic

shed fragments have demonstrated that the fragments resulting

from the self-catalysis of MT1-MMP are situated within the

catalytic domain of MMPs. This finding suggests that the

shedding of the extracellular domain plays a crucial role in

modulating MT1-MMP activity, maintaining a delicate

equilibrium between active and inactive enzyme-solubilized

fragments (54, 55). Another study indicates that the inactive

membrane form 44-kDa product (44-MT1) generated by self-

catalysis of MT1-MMP enhances the level of active enzyme on

the cell surface by delaying the endocytosis rate of the 55-kDa active

enzyme (56, 57), although the regulatory mechanism has not yet

been completely clarified.

While MT1-MMP is capable of anchoring to the cell surface in

its activated state, the manifestation of certain functions is

contingent upon the homodimerization of MT1-MMP. When

collagen serves as a substrate, its degradation process depends on

the homodimerization of its hemopexin-like domain (58). The

activation of pro-MMP2, which is reliant on MT1-MMP and

TIMP2, necessitates the proximity of an additional free MT1-

MMP to the trimeric complex. This proximity facilitates the

cleavage of the pro-peptide of pro-MMP2, a process that is

accomplished through the formation of a homodimeric complex

of MT1-MMP (Figure 1B). Disrupting the formation of this dimer

can effectively inhibit the activation of proMMP-2 on the cell

surface (59).
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Endogenous tissue inhibitors of metalloproteinases (TIMPs)

constitute a class of proteins characterized by molecular weights

between 21 and 28 kDa, which possess the ability to reversibly

associate with MMPs, thereby modulating their activity (60).

Despite the high structural similarity and substrate compatibility

among TIMPs, their expression demonstrates notable tissue

specificity and certain selectivity (61). To date, only four types of

TIMPs have been found in humans, with the other three showing

inhibitory functions targeting MT1-MMP, aside from TIMP-1 (62).

It is worth mentioning that although TIMP2 is an inhibitor of MT1-

MMP, during the hydrolysis of pro-MMP2 by MT1-MMP, a

complex is formed between MT1-MMP and TIMP-2, with TIMP-

2 acting as a receptor for pro-MMP2, forming a three-molecule

complex that activates MMP2 (63). However, the TIMP2-

dependent activation of pro-MMP2 by MT1-MMP does not seem

to be unique, as evidenced in the MT1-MMP-dependent activation

process of pro-MMP2 induced by tight junction protein

claudins (64).

2.3.2 Active regulation based on protein transport
Unlike secreted MMPs, the proteolytic activity of MT1-MMP is

related to its expression level on the cell surface. After being

synthesized in the ribosome and modified in the endoplasmic

reticulum and Golgi apparatus, MT1-MMP is translocated to the

cell membrane through the active exocytosis of Rab8-positive

vesicles, a process facilitated by cytoplasmic microtubules and

motor proteins (65). In the context of metastatic breast cancer,

the inhibition of mammalian diaphanous-related formin 1 has been

shown to impede the microtubule-mediated localization of MT1-

MMP. This inhibition results in a diminished presence of active

MT1-MMP on the membrane surface, thereby leading to a

reduction in the invasive capabilities of breast cancer cells (66).

Additionally, research has demonstrated that a complex formed

between a subtype of plectin, referred to as iplectin

(i=invadopodial), and MT1-MMP is instrumental in modulating

the concentrations of cell surface enzymes through the initiation of

invasive podosome formation (67).

Numerous studies have demonstrated that the effective

internalization of MT1-MMP, mediated by clathrin and dynein,

along with its transport through various endosomal compartments,

serves a significant function in the coordinated regulation of the

activity of cell surface MT1-MMP (68). Remacle et al. conducted co-

localization studies utilizing various markers within endosomal

compartments, revealing that a portion of internalized MT1-

MMP can be recycled and subsequently relocated to the cell

membrane surface. This recycling process is intricately associated

with the targeted polarization of cellular invasive structures (69, 70).

Rab GTPases serve as pivotal regulators of membrane transport

pathways within cellular systems. Distinct isoforms of Rab GTPases

exhibit co-localization in diverse endosomal compartments, thereby

modulating the motility of each respective compartment. This

regulatory pattern has been established to be contingent upon

environmental factors (71, 72). Numerous studies have

demonstrated that the processes of endocytosis and recycling of
Frontiers in Immunology 06
MT1-MMP can occur in a manner that is dependent on Rab

GTPases (71, 73, 74). Furthermore, the transport and motility of

MT1-MMP are modulated by various regulatory markers, including

Rho GTPases, cdc42, RhoA, and Arf6, among others (75, 76).

While MT1-MMP is capable of internalizing from both early

and recycling endosomes to late endosomes and subsequently

recycling to the plasma membrane, a considerable proportion of

MT1MMP undergoes degradation within mature lysosomes.

Nevertheless, pertinent research has indicated that active MT1-

MMP is released in exosomes during the cultivation of human

fibrosarcoma (HT1080) and melanoma (G361) cell lines (77).

Recent studies have demonstrated that the active form of MT1-

MMP, which is secreted through exosomes, contributes to various

pathological processes, including tumor cell invasion, the induction

of an immune suppressive microenvironment, and tumor

angiogenesis (78–80).
3 Activity of MT1-MMP and its
biological functions in tumors

MT1-MMP, recognized as the first identified membrane-type

matrix metalloproteinase (MT-MMP), has its discovery intricately

linked to its role in the invasion of tumor cells (12). Among MMPs,

MT1-MMP is the sole collagenolytic membrane-type MMP. This

characteristic imparts distinct proteolytic functions to MT1-MMP,

thereby solidifying its central role in the overall functionality of

MMPs (81). Furthermore, in addition to its proteolytic function, the

interaction of its transmembrane structure with the cytoskeleton

enhances the roles of intercellular communication and intracellular

signaling. Studies have shown that tumor cells with elevated levels

of MT1-MMP exhibit an upregulation of hypoxia-inducible factor

1-alpha expression. This increase mediates the Warburg effect by

inhibiting the activity of the hypoxia-inducible factor 1-alpha

inhibitory factor through its cytoplasmic tail. Furthermore, the

Ras-Raf-MEK1/2 signaling pathway is contingent upon the

presence of MT1-MMP in response to growth factor stimuli.

Moreover, MT1-MMP engages with CD44, subsequently

promoting increased cellular motility by activating the epidermal

growth factor receptor-mediated MAPK and PI3K signaling

pathways. The heightened expression of MT1-MMP within

neoplastic cells has been demonstrated to facilitate tumor-

associated angiogenesis. Moreover, the formation of lamellipodia

and the motility of myeloid progenitor cells have been observed in

this context (82–85).
3.1 Tumor angiogenesis

During tumor development, new blood vessels are formed to

ensure nutrient and oxygen supply within the tumor and provide a

conducive environment for tumor metastasis. Research has shown

that MT1-MMP participates in tumor angiogenesis by specifically

upregulating the expression of VEGF-A through the activation of
frontiersin.org
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the Src tyrosine kinase signaling pathway (83). There are two

receptors for VEGF on the cell membrane, namely, VEGFR-1 and

VEGFR-2, with VEGFR-2 being the functional receptor and

VEGFR-1 serving as a competitive inhibitory receptor with higher

affinity (86). MT1-MMP can promote angiogenesis by cleaving

VEGFR-1 to facilitate the binding of VEGF to VEGFR-2 (87, 88).

Fibroblast growth factor 2 plays a crucial role in vascular

development, and MT1-MMP facilitates FGF-2 signaling by

hydrolyzing the metalloproteinase ADAM-9 and disintegrins,

thereby promoting the process of vascular development (88, 89)

(Figure 1C). In the context of pituitary adenomas, the pituitary

tumor-transforming gene is significantly associated with tumor

invasion. This correlation may be attributed to the elevated

expression of PTTG, which appears to facilitate the upregulation

of MT1-MMP, thereby inducing the expression of VEGF and

ultimately contributing to the process of angiogenesis (90). In

GBM, myeloid cells that express MT1MMP facilitate angiogenesis

through various signaling pathways, including Visfatin, VEGF, and

transforming growth factor beta (91). In ovarian cancer, knocking

out the COG3 gene inhibits the expression of MT1-MMP, leading

to suppressed angiogenesis (92). Additionally, in mouse models

with constitutive endothelial cell-specific deletion of MT1-MMP,

the growth and metastasis of melanoma are reduced, resulting in

decreased vascular permeability (93). Notably, MT1-MMPmay also

play a role in inhibiting tumor progression. For example, the

shedding of endoglin mediated by MT1-MMP leads to the

generation of soluble endoglin, which in turn exerts an inhibitory

effect on angiogenesis (94).
3.2 Tumor invasion and metastasis

3.2.1 MT1-MMP in EMT
During tumorigenesis and development, MT1-MMP induces

malignant transformation of various cancers under the pressure of

tumor suppressor gene or oncogene mutations and the tumor

microenvironment (95). Among the many tumor-associated

malignant transformations, EMT is an important step in the

process of tumor invasion and metastasis. Research has

demonstrated that the presence of MT1-MMP within the tumor

stroma can facilitate the invasion of cancer cells in vivo. This

suggests that, beyond its role in inducing ECM degradation,

MT1-MMP may also enhance tumor invasion through additional

mechanisms. Research indicates that the inhibition of MT1-MMP

can revert mesenchymal-like cancer cells, which express

endogenous MT1-MMP, to a normal phenotype. This finding

suggests that MT1-MMP within the tumor stroma may facilitate

cancer cell invasion by promoting EMT. Furthermore, exogenous

MT1-MMP has the capacity to induce EMT in adjacent cells that do

not express MT1-MMP by elevating the levels of active TGF-b (96).

This implies that although MT1-MMP is primarily expressed in

stromal cells in most cancer tissues (97), cancer cell invasion can

still be triggered by MT1-MMP produced through paracrine

pathways from stromal cells.
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3.2.2 MT1-MMP in ECM degradation
During tumor invasion, overcoming the physical barrier of the

ECM is necessary, and ECM degradation is closely related to MMPs

(Figure 1D). Among them, MT1-MMP is a key enzyme for tumor

cell invasion. As previously noted, MT1-MMP can accumulate at

invadopodia via intracellular recycling. Invadopodia are specialized

membrane protrusions that facilitate ECM degradation by invasive

cells. Notably, a dual role of collagenolytic invadopodia was

observed during cancer cell invasion (98). The ECM is mainly

composed of collagen, fibronectin, laminin, and other components

(88). Among all MT-MMPs, only MT1-MMP can cleave the

glycine-leucine covalent bond in collagen, converting it into

gelatin for further degradation (99). Furthermore, the degradation

and renewal of fibronectin are crucial for tumor metastasis,

morphogenesis, and motility (88). Research has demonstrated

that the acidic tumor microenvironment promotes cancer cell

motility mediated by MT1-MMP through the integrin b1/cofilin/
F-actin signaling pathway (100). Under conditions of starvation,

cancer cells exhibit a remarkable ability to sustain survival and

proliferation by augmenting the degradation of the ECM through

MT1-MMP, a process that is initiated by the mechanistic target of

rapamycin in response to the nutrient-deprived environment (101).

Furthermore, the stiffness of the ECM is associated with the

invasiveness and EMT of different cancer cell types. Additionally,

sensors that assess the mechanical characteristics of the ECM,

including integrins, play a crucial role in facilitating MT1-MMP-

med i a t e d c e l l i n v a s i on w i t h i n t h r e e - d imen s i on a l

microenvironments (102). In cancer cells, alterations in the ECM

remodeling capacity mediated by MT1-MMP may lead to

alterations in the mechanical characteristics of the cellular

microenvironment. These modifications possess the capacity to

impact the EMT process (103),which may subsequently induce

indirect variations in MT1-MMP expression (104).

3.2.3 Ameboid-like invasion and MT1-MMP
Previously, we discussed how MT1-MMP mediates cancer cell

invasion and metastasis through ECM degradation. Moreover, the

processes through which cells invade are intricately linked to the

structural and mechanical properties of the stroma, in addition to

the ability of cells to modify the extracellular matrix. It is generally

believed that cancer cells overcome ECM migration through a

protease-dependent manner, while in cases where the stroma has

larger pore sizes and mechanical plasticity, cancer cells can invade

the ECM through a non-protease-dependent manner, meaning cells

can squeeze through collagen networks in an ameboid-like

phenotype (28, 105). However, research has demonstrated that

HT-1080 or MDA-MB-231 cells with silenced MT1-MMP are

unable to adopt an invasive ameboid-like phenotype when

embedded in three-dimensional type I collagen gels. This finding

indicates a critical requirement for membrane-anchored MT1-

MMP in the process of cancer cell invasion (106). Although this

conclusion contradicts some findings from other studies, the

recombinant collagen gel structures used in those studies had

defects (107).
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3.3 Tumor immune suppression

MT1-MMP exhibits a strong correlation with tumor immune

invasion and significantly influences the onset and progression of

various types of tumors (108). MT1-MMP is translocated

intracellularly to the nucleus, where it modulates the induction of

macrophage immune responses by promoting the expression and

activation of the PI3Kd/Akt/GSK3b signaling pathway (109). In the

hypoxic tumor microenvironment, the downregulation of KIF2A

leads to a reduction in the membrane surface expression of MT1-

MMP. This, in turn, decreases the shedding of CD44 in dendritic

cells, which induces a DC2-like phenotype and promotes the Th2

polarization of naïve T cells, resulting in an increased production of

interleukin-4 (110) (Figure 4A). Recent studies have identified a

novel mechanism by which the upregulation of PLEK2 in gastric

cancer cells facilitates evasion from natural killer cell cytotoxicity.

Specifically, PLEK2 enhances the expression of MT1-MMP via the

PI3K-AKT-Sp1 signaling pathway. This process results in the

shedding of MICA, which subsequently inhibits the activation of

NKG2D on NK cells, thereby promoting immune evasion (111,

112) (Figure 4B). In GBM, the Toll-like receptor 2 signaling

pathway influences microglia, specifically tumor-associated

microglia, leading to an upregulation of MT1-MMP gene and

protein expression, which subsequently facilitates tumor

progression (113). Additionally, myeloid cells expressing MT1-
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MMP mediate immune suppression via chemokine receptor 1

(CCR1), with CCR1 upregulation associated with M2 macrophage

infiltration and increased PD-L1 expression (91) (Figure 4C).
3.4 Tumor cell proliferation

During tumorigenesis and development, MT1-MMP also

participates in the process of tumor cell proliferation. Relevant

literature reports that the growth and survival of melanoma require

activated Notch1, which is generally considered to be related to the

proteolytic activity of ADAM10 and ADAM17. Jun Ma et al.

identified a significant association between active Notch1 and

MT1-MMP in melanoma. This correlation was not observed with

ADAM10 and ADAM17, thereby elucidating a novel mechanism

through which MT1-MMP activates Notch1 in melanoma. This

indicates that MT1-MMP-dependent activation of Notch1

promotes melanoma cell growth (114). Furthermore, in the

context of gastric cancer, the downregulation of MT1-MMP

expression significantly impedes cell proliferation and invasion by

modulating the expression levels of vimentin and E-cadherin (115)

The ERK1/2 and PI3K/AKT signaling pathways, which are

regulated by MT1-MMP in MSCs, play a crucial role in

modulating invasiveness and proliferative capacity (116).

Additionally, the process of EMT is observed during tumor
FIGURE 4

MT1-MMP plays a crucial role in regulating the immune microenvironment within the tumor microenvironment. (A) MT1-MMP influences the
phenotypic differentiation of dendritic cells, which in turn modulates T cell phenotypes and cytokine secretion. (B) MT1-MMP downregulates surface
molecules on tumor cells, thereby inhibiting NK cell activation and facilitating tumor immune evasion. (C) MT1-MMP impacts microglia and
mesenchymal stem cells, contributing to immune suppression, enhancing tumor cell proliferation, angiogenesis, and invasive infiltration.
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progression, facilitating the acquisition of a mesenchymal

phenotype. We have reason to believe that MT1-MMP-dependent

cell proliferation in MSC may also occur in tumor cells that have

acquired a mesenchymal phenotype.
4 Current status and prospects of
MT1-MMP targeted
antitumor therapies

Despite the critical biological roles of MT1-MMP in

tumorigenesis and progression, coupled with its distinctive

structural characteristics that render it a promising target, the

current scarcity of research data pertaining to cell therapy, along

with an inadequate comprehension of the multifaceted functions of

MT1-MMP, indicates that its substantial potential for application in

cell therapy necessitates further extensive investigation over an

extended period. In mouse models, deficiency of MT1-MMP

results in delayed bone development, impaired angiogenesis,

severe fibrosis, arthritis, connective tissue diseases, and premature

death (117). Research has demonstrated that cartilage-specific,

tamoxifen-induced MT1-MMP knockout mice exhibit significant

chondrocyte hypertrophy; however, they do not display synovial

hyperplasia or evident arthritis (118). This indicates that the

potential therapeutic application of targeting MT1-MMP

necessitates highly cell type-specific inhibition.

The study conducted by Ragusa et al. found that the absence of

PROX1 in mouse intestinal tumors leads to the overactivation of

MT1-MMP, resulting in tumors that grow slowly but exhibit increased

aggressiveness and promote connective tissue proliferation.

Subsequent research revealed that tumors with overactivated MT1-

MMP displayed a denser and more complex microvascular network,

reduced immune cell infiltration, and resistance to chemotherapy.

Furthermore, organoid transplant tumors with PROX1-induced

overactivation of MT1-MMP also demonstrated slow tumor growth,

increased stromal content, and elevated levels of TGF-b, Ctgf, Opn,
and IL-1b (20, 119). Notably, in breast cancer, MT1-MMP expression

is heightened in chemotherapy-responsive cancer cells and stromal

cells (120). The variations in MT1-MMP expression and

chemotherapy resistance across different tumors suggest that

elucidating the detailed mechanisms of MT1-MMP in various

physiological and pathological processes will be essential for the

development of targeted anti-tumor therapies aimed at MT1-MMP.
4.1 Current antitumor therapies targeting
MT1-MMP

Despite the established pathological roles of MMPs in a variety

of diseases and their potential as therapeutic targets, over 50 MMP

inhibitors have failed to demonstrate efficacy in clinical trials for

various cancer types during the initial phases of drug development

(121). It is noteworthy that the failures of these clinical trials were

caused by multiple factors (122–124), including a lack of specificity
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in the drugs themselves and insufficient understanding of the

biological complexity of MMPs in diseases, which should receive

more attention. Various strategies have been implemented to

improve the targeting of MMPs inhibitor (MMPI). These

strategies include, but are not limited to, the utilization of protein

engineering to generate specific antibodies, the creation of targeted

delivery vehicles, and the application of click chemistry techniques

(125, 126). The initial development of MMPI primarily focused on

broad-spectrum agents such as Rebimastat, which aimed to target

multiple MMPs. However, Rebimastat failed in clinical trials (127–

129). The membrane-anchored structure and critical role of MT1-

MMP in tumorigenesis have led to increased interest in the

development of specific antibodies targeting MT1-MMP, resulting

in notable advancements in this area.

Research has reported that the MT1-MMP antibody Fab3369

remodels the tumor immune microenvironment and inhibits lung

metastasis in the MDA-MB-231 triple-negative breast cancer mouse

model (130). In the 4T1 mouse model, the MT1-MMP antibody

DX-2400 promotes M1-like phenotype differentiation, inhibits

TGF-b activation, and suppresses tumor growth (120). In

addition, the targeted drug MC-T-DOX, developed based on the

proteolytic activity of MT1-MMP and its enriched expression

characteristics in the tumor microenvironment, utilizes an MT1-

MMP-specific cleavable RGD-mimetic cyclic peptide to deliver

liposomes loaded with doxorubicin (DOX). This approach

integrates the promotion of tumor vascular regulation with

intelligent nanodrug delivery, thereby enhancing the treatment

efficacy for pancreatic cancer (5). 99mTc-(HYNIC-AF7p) is a

99mTc-labeled MT1-MMP specific binding peptide, which shows

great potential in in vivo MT1MMP targeting detection and may

become a promising molecular imaging probe to aid in early

diagnosis of breast cancer (131). ICT3205 is a peptide-based

prodrug conjugate that consists of a specific peptide targeting

MT1-MMP and paclitaxel. This conjugate demonstrates improved

pharmacokinetics and efficacy in targeting prostate cancer for the

delivery of active paclitaxel (132). BT1769 is a bicyclic peptide

designed to target the tumor antigen MT1-MMP. It is linked to the

cytotoxic agent monomethyl auristatin E through a molecular

spacer and a cleavable linker, resulting in a significant inhibition

of tumor growth in patient-derived xenograft models of

osteosarcoma (133, 134). ND-322 is characterized as a slowly

binding inhibitor of MT1-MMP and MMP2, demonstrating the

capacity to impede the growth, migration, and invasion of various

melanoma cell lines. Furthermore, it has been shown to significantly

diminish tumor growth and metastasis in an in situmouse model of

melanoma (135). Pb-BCY20603 is a radioactive conjugate drug

designed to target MT1-MMP. Experimental results obtained from

mouse models suggest that the bicyclic peptide targeting MT1-

MMP can serve as a high-contrast imaging probe for clinical

diagnosis and demonstrates significant potential for application in

targeted therapy (136). BT1718 is a bicyclic drug conjugate that

contains a constrained bicyclic peptide (Bicycle®), which binds to

MT1-MMP with high affinity and specificity, covalently linked to

the potent microtubule inhibitor DM1 via a sterically hindered
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disulfide bond. In clinical trial, the first phase stabilized tumors in

54% of candidate patients and showed good tolerability, currently

traversing phase 2 expansion trials (137–139).

Surprisingly, despite the good anti-tumor effects demonstrated

by the aforementioned MT1-MMP targeting studies in the fields of

small molecule inhibitors and targeted drugs (Table 1) (Figure 5),

research related to targeting MT1-MMP in cell therapy is

quite scarce.
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4.2 Prospects and challenges of targeting
MT1-MMP for anti-tumor therapy

4.2.1 MT1-MMP inhibitors
The biological functions of MT1-MMP in tumor cells and its

regulatory processes are indeed complex and variable. As the

understanding of the diverse functions of MT1-MMP in tumors

becomes more comprehensive, its potential as a target for anti-
FIGURE 5

Schematic diagram of various molecules currently targeting MT1-MMP in TME.
TABLE 1 Research progress of drugs targeting MT1-MMP.

Drug Drug Type Target Active Indication
Drug

Highest Phase

BT-1718
(137–139)

Peptide drug conjugates MMP14 × Tubulin
Neoplasms Advanced Malignant Solid Neoplasm Non-

Small Cell Lung Cancer
Phase 2

BT-1769
(133, 134)

Peptide drug conjugates MMP14x Tubulin Osteosarcomas Preclinical

212Pb BCY-
20603 (136)

Small molecule drug
Diagnostic radiopharmaceuticals

MMP14 Neoplasms Preclinical

Pb-
BCY20603 (136)

Peptide Conjugate Radionuclide
Therapeutic radiopharmaceuticals

MMP14 Neoplasms Preclinical

ICT3205 (132) Peptide drug conjugates MMP14
Neoplasms

Prostatic Cancer
Preclinical

Rebimastat
(127–129)

Small molecule drug

MMP1 Non-Small Cell Discontinued
(Phase 3)

MMP2 Lung Cancer

MMP8 Kaposi Sarcoma

MMP9 Prostatic Cancer

MMP14 Breast Cancer

KD-014 (120) Monoclonal antibody MMP14 Solid tumor Pending (Discovery)

ND-322 (135) Small molecule drug MMP14 MMP2 Melanoma Pending (Discovery)
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tumor therapies is increasingly recognized. Nevertheless, the prior

shortcomings observed in MMPI clinical trials necessitate a more

thorough investigation into the diverse roles of MT1-MMP across

various tumor types, at different temporal stages, and under distinct

physiological conditions (140). Indeed, MT1-MMP may exert

contrasting effects on fundamental aspects of tumor progression

depending on varying conditions (121, 141). This variability

presents considerable challenges for the development of anti-

tumor pharmacological agents that target MT1-MMP. Specific

inhibitors designed to target MT1-MMP and inhibit particular

functions have been validated through preclinical experiments

(142). This approach can specifically limit some activities of

MT1-MMP and reduce the drug’s toxic side effects, but it also

somewhat weakens the anti-tumor effect and raises higher demands

for assessing disease progression during drug use. Furthermore, the

development of carriers for drug delivery that specifically target

tumor-associated MT1-MMP may enhance the penetration of

therapeutic agents into solid tumors. However, existing studies

have indicated that the in vivo efficacy of these carriers is not as

optimal as anticipated (143, 144). Considering that tumors

represent complex systemic diseases, the effects attainable through

partial functional inhibition aimed at a single target are inherently

limited. Consequently, the integration of this approach with other

anti-tumor therapies is anticipated to be a prevailing trend.

4.2.2 MT1-MMP targeted drugs
Antibody-drug conjugates (ADCs) have achieved great success

in recent years in the field of targeted anti-tumor drugs. Currently

approved ADCs typically target antigens that are overexpressed in

cancer cells (145). Following ADCs, PDCs present several

advantages, including enhanced tumor penetration, reduced

immunogenicity, and decreased production costs. PDC drugs

targeting MT1MMP have already demonstrated excellent anti-

tumor effects in preclinical studies (133, 137, 138).

Furthermore, BRC drugs have demonstrated promise in clinical

diagnosis and targeted therapy (136). This approach effectively

circumvents a comprehensive investigation into the intricate

biological roles of MT1-MMP in tumors by administering small

molecule toxins or radioactive conjugates that specifically target

antigens overexpressed in neoplastic tissues. However, a one-size-

fits-all antitumor approach also brings new issues, as MT1-MMP,

while overexpressed in tumors and their stromal cells, also has low-

level expression in normal tissue cells. Furthermore, due to immune

evasion mechanisms such as antigen modulation, antigen masking

and covering, and antigen exhaustion present in tumor cells (146–

148). Recent advancements in ADC anti-tumor therapies have

enhanced tumor targeting through modified antibodies,

multispecific antibodies, and conditionally activated antibody

prodrug conjugates (149, 150). These developments offer valuable

insights for the creation and refinement of targeted drugs.

The internalization efficiency of targeted antibodies in ADCs

significantly influences the overall efficacy of these therapies, and

this internalization is typically antibody-dependent (151). The

previous section described a mechanism for regulating the activity
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of membrane surface MT1-MMP that relies on the endocytosis and

transport of MT1-MMP, suggesting that the development of

targeted drugs against MT1-MMP may enhance internalization

efficiency. Although ADCs demonstrate considerable efficacy, they

are still associated with notable side effects during clinical

application, including hematological adverse reactions,

neurotoxicity, and hepatotoxicity (152). It is crucial to recognize

that off-target toxicity resulting from small molecule toxins is a

major contributor to adverse reactions in ADCs (153, 154). This

underscores the necessity of further improving drug stability and

enhancing targeted delivery efficiency in the ongoing development

of MT1-MMP-targeted ADCs to mitigate the occurrence of

adverse reactions.

4.2.3 Application of MT1-MMP in cell therapy
In the field of anti-tumor therapy, cell therapy has achieved

remarkable results, especially in Chimeric antigen receptor (CAR)-

T cell therapy for hematological tumors (155). However, there is

currently a lack of cell therapies targeting MT1-MMP. Some studies

have shown that CAR-147 macrophage therapy with

overexpression of activated CD147 can degrade ECM by

increasing the expression of MMPs, thereby promoting T cell

infiltration and inhibiting tumor growth (156). Although MT1-

MMP is involved in this process, it has not yet been the primary

research focus in cell therapy.

In this section, we investigate the potential application of MT1-

MMP in CAR-T cell therapy. The TME associated with solid

tumors considerably restricts the effectiveness of CAR-T cell

therapy. In the TME, CAR-T cells must navigate through the

tumor ECM and withstand various environmental challenges,

including immune suppression, hypoxia, and low pH, to

effectively target and engage tumor cells (157–159). Although

numerous strategies have been proposed to mitigate the

limitations of the tumor microenvironment, the identification of

appropriate targets remains essential for the advancement of CAR-

T research. Notably, almost all currently studied solid tumor CAR-

T target antigens can be classified into four categories: tumor-

specific antigens(TSA), tumor-associated antigens(TAA), cancer-

associated stromal cel l surface ant igens(CASC), and

glycosphingolipid antigens (160). Research indicates that CAR-T

cells targeting fibroblast activation protein (FAP), when combined

with CAR-T cells targeting claudin 18.2, can effectively eliminate

tumor-associated fibroblasts in the treatment of pancreatic cancer.

This combination promotes the infiltration of claudin 18.2-targeted

CAR-T cells and reduces immune suppression within the TME,

thereby enhancing the anti-solid tumor effects of CAR-T therapy

(161). Similar efficacy has been observed with the combination of

FAP-targeted CAR-T cells and glypican-3 (GPC3)-targeted CAR-T

cells in the treatment of liver cancer (162). These studies suggest

that the concurrent use of CAR-T cells targeting CASC alongside

those targeting tumor-associated antigens TAA may represent an

effective strategy for CAR-T therapy to overcome solid tumors.

Numerous studies have demonstrated that MT1-MMP functions as

a tumor-associated antigen and is overexpressed on the surface of
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various cancer cells, as well as their cancer-associated stromal cells

(6, 108, 163). It is plausible to hypothesize that CAR-T cells directed

against MT1-MMP may effectively eliminate cells that express

MT1-MMP. Given that MT1-MMP is expressed in specific tumor

cells as well as in cancer associated fibroblasts, macrophages,

epithelial cells, and bone marrow-derived MSCs (164, 165), CAR-

T cells that target MT1-MMP may exhibit enhanced efficacy in the

elimination of solid tumors. This efficacy may stem not only from

immune infiltration resulting from the destruction of stromal cells

but also from a reduction in immune suppression through the

elimination of immunosuppressive cells, in addition to the direct

targeting of tumor cells that express MT1-MMP (Figure 6).

In addition, a major challenge faced by CAR-T therapy is that

tumor cells can achieve immune evasion by downregulating surface

antigens, which is also considered a primary reason for tumor

recurrence after CAR-T treatment (166, 167). As previously

discussed, the expression of MT1-MMP is closely linked to

processes such as angiogenesis, tumor invasion, and immune

suppression during tumor progression. Reducing the expression of

MT1-MMP may enhance the efficacy of other antitumor

immunotherapies, thereby making the combination of MT1-MMP-

targeted CAR-T therapy with addi t ional ant i- tumor

immunotherapies a viable option. Although MT1-MMP is
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expressed at low levels in normal tissues and produces soluble

functional fragments, these characteristics do not preclude its

potential as a target for CAR-T cell therapy. As a matter of fact, the

results from clinical phase I trials for BT1718 indicate that direct cell

killing targeting MT1-MMP has acceptable side effects at appropriate

doses. Furthermore, off-target effects, commonly referred to as on-

target off tumor effects, have become a notable issue within the

framework of CAR-T cell therapy. Numerous strategies have been

suggested to alleviate CAR-T OTOT, including the modification of

the affinity of targeting sequences, the implementation of logic-gated

CAR-T systems, and the incorporation of exogenous control

structures (168). CAR-T cells recognize and eliminate target cells,

releasing a substantial amount of cytokines and further activating

immune cells. This process creates a positive feedback loop of

cytokine release, resulting in a systemic inflammatory response and

significant damage to tissues and organs, a condition known as

cytokine release syndrome (CRS). CRS is the most common and

notable acute toxic reaction associated with CAR-T therapy in the

treatment of hematological malignancies (169). Currently, in addition

to optimizing the structure of CAR-T cells to reduce the incidence of

CRS, the FDA has approved a range of clinical treatment options for

CRS, including the IL-6 receptor blocker tocilizumab and the TNF-a
blocker etanercept (170).
FIGURE 6

CAR-T cells that specifically target MT1-MMP are capable of inducing cytotoxic effects on both tumor cells and tumor-associated stromal cells that
express the MT1-MMP antigen. MT1-MMP is predominantly found in tumor cells and a range of immunosuppressive stromal cell populations. The
targeted lysis of MT1-MMP-positive stromal cells mitigates the release of various cytokines and dismantles physical barriers, thereby facilitating the
infiltration of immune cells, reducing immune suppression within the tumor microenvironment, and ultimately inhibiting tumor progression.
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Excitingly, Roei D and colleagues have identified the presence of

endogenous natural antibodies against MT1-MMP in the tumor

tissues of high-grade serous ovarian cancer. These antibodies have

the capacity to specifically target tumor cells and bind to tumor-

associated molecules (171).

Unfortunately, it has not yet been proven that these endogenous

MT1-MMP antibodies are specific (171). The generation of these

antibodies is unexpected and introduces renewed potential into the

field of cancer immunotherapy. It is anticipated that this

endogenous and tumor-specific targeting antibody, following

thorough validation and optimization, could evolve into an

almost CAR-T targeting sequence. It is noteworthy that a specific

type of regulatory activated CAR-T therapy, which leverages the

enrichment of MMPs within the TME, has the potential to enhance

the safety profile of CAR-T treatment while simultaneously

improving anti-tumor efficacy (172). We posit that comparable

effects may be attained through the indirect targeting of MT1-

MMP-optimized CAR-T cells.
5 Summary

In this review, we primarily summarize the various

physiological and pathological aspects involved in the role of

MT1-MMP in tumorigenesis and development. We also outline

the current progress of anti-tumor therapies targeting MT1-MMP.

Finally, we discuss the potential and limitations of targeting MT1-

MMP for anti-tumor purposes. For a long time, the TME has been a

significant factor contributing to the poor efficacy of many anti-

tumor therapies. Most anti-tumor treatments typically target only

specific components of the tumor as a systemic disease. While this

approach can somewhat limit tumor progression, the inherent

complexity of tumors makes it challenging for a single treatment

strategy to achieve favorable therapeutic outcomes. Although

numerous studies have demonstrated that combination therapies

can yield enhanced anti-tumor effects, investigating whether the

combined use of different therapies can achieve significant

synergistic effects requires considerable time and effort. Here, we

propose a novel target, MT1-MMP, which is abundantly expressed

in both tumors and the stromal cells of their microenvironment.

This characteristic endows certain anti-tumor therapies targeting

MT1-MMP with the potential to view tumors and the TME as an

integrated system, representing a new direction for overcoming the

challenges of target selection in solid tumors. It is crucial to

emphasize that the development of anti-tumor therapies targeting

MT1-MMP is still in the exploratory stage, and extensive research is

needed to uncover the specific effects of these therapies.
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15. Poincloux R, Lizárraga F, Chavrier P. Matrix invasion by tumour cells: a focus on
MT1MMP trafficking to invadopodia. J Cell Science. (2009) 122:3015–24. doi: 10.1242/
jcs.034561

16. Lohi J, Lehti K, Westermarck J, Kahari VM, KeskiOja J. Regulation of
membrane-type matrix metalloproteinase-1 expression by growth factors and
phorbol 12-myristate 13-acetate. Eur J Biochem. (1996) 239:239–47. doi: 10.1111/
j.1432-1033.1996.0239u.x

17. Cheng F, Pekkonen P, Laurinavicius S, Sugiyama N, Henderson S, Günther T,
et al. KSHVInitiated notch activation leads to membrane-type-1 matrix
metalloproteinase-dependent lymphatic endothelial-to-mesenchymal transition. Cell
Host Microbe. (2011) 10:577–90. doi: 10.1016/j.chom.2011.10.011

18. Gramolelli S, Cheng JP, Martinez-Corral I, Vähä-Koskela M, Elbasani E,
Kaivanto E, et al. PROX1 is a transcriptional regulator of MMP14. Sci Rep-Uk.
(2018) 8(1):9531. doi: 10.1038/s41598-018-27739-w

19. Laitinen A, Böckelman C, Hagström J, Kokkola A, Kallio P, Haglund C. High
PROX1 expression in gastric cancer predicts better survival. PloS One. (2017) 12(8):
e0183868. doi: 10.1371/journal.pone.0183868
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