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Diffuse large B-cell lymphoma (DLBCL) and chronic lymphocytic leukemia (CLL)

are subtypes of non-Hogkin lymphoma (NHL) that are generally distinct form one

cases, but the transformation of one of these diseases into the other is possible.

Some patients with CLL, for instance, have the potential to develop Richter

transformation such that they are diagnosed with a rare, invasive DLBCL subtype.

In this study, bioinformatics analyses of these two NHL subtypes were

conducted, identifying key patterns of gene expression and then

experimentally validating the results. Disease-related gene expression datasets

from the GEO database were used to identify differentially expressed genes

(DEGs) and DEG functions were examined using GO analysis and protein-protein

interaction network construction. This strategy revealed many up- and down-

regulated DEGs, with functional enrichment analyses identifying these genes as

being closely associated with inflammatory and immune response activity. PPI

network analyses and the evaluation of clustered network modules indicated the

top 10 up- and down-regulated genes involved in disease onset and

development. Serological analyses revealed significantly higher ALB, TT, and

WBC levels in CLL patients relative to DLBCL patients, whereas the opposite was

true with respect to TG, HDL, GGT, ALP, ALT, and NEUT% levels. In comparison to

the CLL and DLBCL groups, the healthy control samples demonstrated higher

signals of protein peak positions (621, 643, 848, 853, 869, 935, 1003, 1031, 1221,

1230, 1260, 1344, 1443, 1446, 1548, 1579, 1603, 1647 cm-1), nucleic acid peak

positions (726, 781, 786, 1078, 1190, 1415, 1573, 1579 cm-1), beta carotene peak

positions (957, 1155, 1162 cm-1), carbohydrate peak positions (842 cm-1),

collagen peak positions (1345 cm-1), and lipid peak positions (957, 1078, 1119,

1285, 1299, 1437, 1443, 1446 cm-1) compared to the CLL and DLBCL groups.

Verification of these key genes in patient samples yielded results consistent with
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findings derived from bioinformatics analyses, highlighting their relevance to

diagnosing and treating these forms of NHL. Together, these analyses identified

genes and pathways involved in both DLBCL and CLL. The set of molecular

markers established herein can aid in patient diagnosis and prognostic

evaluation, providing a valuable foundation for their therapeutic application.
KEYWORDS
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Introduction

Diffuse large B-cell lymphoma (DLBCL) and chronic

lymphocytic leukemia (CLL) are both subtypes of non-Hodgkin

lymphoma (NHL). DLBCL, the most common form of NHL, is

characterized by lymph node enlargement and potential organ

invasion. DLBCL cases originate from mature B cells of germinal

center or non-germinal center origin (1–3). The classification of

DLBCL cases is based on the biological features of these cells of

origin and the overall clinical disease course. ABC-DLBCL, for

instance, has a poorer prognosis than GCB-DLBCL. In ABC-

DLBCL tumor cells, prolonged B cell receptor (BCR) signaling

leads to high levels of NF-kB pathway activity, whereas in GCB-

DLBCL tumor cells, BCR signaling contributes to high levels of

PI3K signaling activity (4, 5). The characteristics of DLBCL tumor

cells influence both tumor progression and overall host immune

function. Certain proteins expressed specifically within the central

nervous system (CNS) can reportedly bind to the BCRs of DLBCL

tumor cells, contributing to oncogenic progression (6). In one

study, a bias toward IGV rearrangement was noted in PCNSL

tumor cells, with the particular prioritization of IGHV4-34,

enabling the recognition of galectin-3 expression on various CNS

cells (7). Kawano et al. (8) described a series of primary adrenal

DLBCL cases, among which 9 were positive for EBV and 3 had a

history of tumors. This provides further support for potential

excessive B cell infiltration in particular immunological niches in

the context of chemotherapy-induced cancer-related immune

dysfunction, as has been reported in EBVMCU cases (9). In their

analysis of 62 primary intestinal DLBCL cases, Ishikawa et al.

identified 10 cases that were EBV-positive, almost all of which

presented with features of immunosuppression and clinical and

pathological features overlapping with those of immunodeficient

PCNSL (10). In stark contrast, cases of primary gastric EBV-

positive DLBCL often present even without any apparent

evidence of immunosuppression (11, 12). While the pathogenesis

of lymphomas arising in immune-privileged sites appears to be

linked with organ-specific immune function and systemic immune

activity, the precise biological mechanisms underlying these

oncogenic processes remain incompletely understood.

Unlike DLBCL, CLL tends to primarily affect elderly patients,

often progresses slowly, and may be asymptomatic during its early
02
stages (13). CLL cases originate from the clonal expansion of

abnormal populations of B cells expressing markers such as CD19

and CD20, with these abnormal lymphocyte populations ultimately

accumulating in the blood, bone marrow, and lymph nodes. As a class

of indolent lymphoma, tumor invasion in CLL cases tends to be

relatively limited, and the overall survival of affected patients tends to

be relatively long. Even with early treatment, significant improvements

in clinical outcomes are rare such that conservative observation is

generally adopted in most CLL cases (14). The approach to treating

CLL is generally dependent on the stage of disease and overall patient

health status and can include observation, immunotherapy, targeted

therapy, or immunotherapeutic interventions. As a highly

heterogeneous disease, certain patients present with a less aggress

form of disease, particularly in cases characterized by a lack of

immunoglobulin heavy chain (IGHV) gene mutations, and

mutations in the del (17p), del (11q), and TP53 genes (15). CD38

and ZAP-70 are regarded as being indicative of a poor prognosis in

immunophenotyping assays (16). Specifically, CD38 is related to

IGHV mutational status and may also offer some independent

prognostic utility, whereas ZAP-70 is an intracellular protein

normally produced in T cells that is commonly dysregulated in CLL

cells from certain patients such that it is relevant to patient prognosis

(17). CLL progression, in addition to being related to malignant clone

characteristics, is also associated with severe immunodeficiency, as

these conditions are conducive to the evasion of host immune-

mediated detection and elimination. This highlights the closely

interrelated, co-evolving nature of tumor cells and their

microenvironment over the course of disease progression (18).

Monocyte-derived nurse-like cells (NLCs), NK cells, T cells, NKT

cells, and mesenchymal stromal cells are all vital environmental

components that communicate with CLL cells through a series of

chemokine receptors, tumor necrosis factor (TNF) family proteins,

adhesion molecules, and soluble mediators (19). CLL can promote the

outgrowth of immune cells that suppress immune activity such as

regulatory T cells and myeloid-derived suppressor cells, thereby

facilitating immune evasion (20). CLL clones often present with

characteristics consistent with those of regulatory B cells (Bregs).

Indeed, the phenotypes of leukemic B cells and Bregs are often similar,

including CD5, CD24, and CD27 expression together with low surface

IgM levels. The physiological similarities of these cells also extend to

IL-10 production, consistent with their ability to serve as negative
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regulators of T cell activation and immunity (21). The CD40-CD40L

interactions that take place between leukemic B cells and activated

CD4+ T cells can promote CLL cell proliferation and anti-apoptotic

protein upregulation. T cells can also promote leukemic cell survival

through the upregulation of anti-apoptotic Bcl-2 in a process mediated

by secreted proteins including IL-4 and IFN-g (22). Peripheral T cell

numbers are raised in patients with CLL, primarily owing to increased

CD8+ T cell counts, resulting in decreased CD4:CD8 ratios. As a

consequence, even though the overall T cell count is higher, these T

cells tend to exhibit reduced functionality including impaired immune

synapse formation, limited cytokine production, insufficient

degranulation, and decreased cytotoxic antitumor activity (23).

These CLL-related T cells also exhibit the overexpression of PD-1

and other marker proteins associated with chronic activation and

exhaustion, contributing to the further impairment of their immune

synapse formation and cytotoxic activity (24). Key malignant cell

features and their disruption of the associated microenvironment

additionally contribute to therapeutic resistance in patients. While

studies of the CLL-associated microenvironment and BCR signaling

have led to the design of targeted therapies including the BTK

inhibitor ibrutinib, there are still challenges that remain to be

addressed (25). The efficacy of novel immunotherapies has been

very limited in CLL as a consequence of the lack of effector T cells

in these patients (26). Additional research is thus essential to establish

better approaches to treating this form of cancer.

While abnormal B cell growth is a hallmark of both CLL and

DLBCL, the two diseases are not causally linked. Indeed, each is

characterized by distinct genetic determinants, risk factors, and

clinical features. In some instances, patients may nonetheless

transition between CLL and DLBCL, as in the rare cases of CLL

patients who develop Richter transformation, leading to a more

invasive DLBCL diagnosis that tends to progress rapidly while

exhibiting biological features and therapeutic responsivity in line

with the features of primary DLBCL. The etiological basis for

Richter transformation remains incompletely understood, but it is

thought to be linked to genetic factors, microenvironmental

conditions, and immune escape. Clarifying the differences

between these two forms of NHL and the transitions that can

arise between the two is vital to optimizing the treatment of affected

patients and improving their outcomes.

In this study, a bioinformatics approach was utilized for the

identification of key differentially expressed genes (DEGs) between

DLBCL and CLL patient samples to assist cancer diagnosis and

management. These efforts are valuable, and DEGs can plausibly

serve as diagnostic biomarkers suitable for accurately distinguishing

between DLBCL and CLL in the clinic in the early stages of diseases,

ensuring that clinicians are able to accurately select an appropriate

treatment plan given that the two diseases require very different

therapeutic approaches. Some of these DEGs may also offer

prognostic value, supporting the precise formulation of

personalized treatment plans. DEGs are also ideal candidate

targets for new or existing therapeutic agents. If a given gene is

overexpressed in DLBCL but absent in CLL, for instance, then any

drug targeting that gene would exhibit differential efficacy between

these two cancers. On the whole, studies of these DEGs will assist
Frontiers in Immunology 03
the understanding of the mechanisms underlying DLBCL and CLL

pathogenesis, benefitting overall research focused on the targeted

treatment of these and other diseases.

The implementation of bioinformatics analyses and Raman

spectroscopy-based approaches to identifying DEGs through the

comparison of DLBCL and CLL samples is thus invaluable as a

means of improving diagnostic accuracy for these two forms of

disease, supporting personalized treatment, novel drug development,

and a greater overall understanding of the mechanistic basis for

these diseases.
Materials and methods

Data source

Data were downloaded from the Gene Expression Omnibus

(GEO) database (http://www.ncbi.nlm.nih.gov/geo/) and included

the GSE57083 dataset (species: Homo sapiens, 20 samples collected

with the GPL570 Affymetrix HG-U133-Plus_2 Array platform) and

the GSE68950 dataset (species: Homo sapiens, 7 total samples

co l l ec ted wi th the GPL3921 Affymetr ix HG-U133A

Array platform).
Gene expression analyses

Data (CEL format) were analyzed with R (v 3.6.2) to perform

the background correction and normalization of these expression

data, converting the format, adding missing values, performing

background correction with the MAS method, and standardizing

data using quantiles. DLBCL data were separated into the DLBCL

and CLL groups to screen for DEGs with unpaired t-tests performed

with the limma package, using Benjamini and Hochberg

(BH)-corrected P values. DEGs were defined by a P < 0.05 and a |

logFC| > 1. DEG heatmaps were developed using the pheatmap

package in R.
Functional enrichment

The online DAVID tool (https://david.ncifcrf.gov/) was used for

DEG annotation in the GO biological process (GO-BP), cellular

component (GO-CC), and molecular function (GO-MF) categories.

KEGG pathway enrichment was also performed.
Protein-protein interaction networks

STRING 11.0 (https://sring-db.org/) was utilized for the

construction of the DEG PPI network, followed by the use of

Cytoscape to compute the degree centrality scores for the nodes,

with higher scores being indicative of more critical nodes. The

functions of the 10 top DEGs in the network were further evaluated

as potential key nodes.
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Sample collection

Serum biochemical analyses were performed with patients

recruited from the Hematology Hospital of the Chinese Academy

of Medical Sciences (Institute of Hematology, Chinese Academy of

Medical Sciences). These 56 patients included 18 DLBCL patients (8

female, 10 male; age range: 25-71 years) and 38 CLL patients (13

female, 25 male; age range: 35-76 years) (Supplementary Table S1).

Raman spectroscopy, ELISA and Real-time fluorescence

quantitative PCR analyses were performed using blood samples

from patients who visited the Hematology Hospital of the Chinese

Academy of Medical Sciences from January 2024 to April 2024,

including 5 men and 4 women between 31 and 73 years. For all

patients, bone marrow puncture was used to assess bone marrow

cell morphology, conduct flow cytometry analyses, perform electron

microscopy, and conduct fusion gene, chromosome, and tissue cell

chemistry analyses. Patient clinical diagnoses were based on these

results and were confirmed according to FAB. These patients

included 4 CLL patients, 5 DLBCL patients, and 5 controls. The

Ethics Committee (KT2020016-EC-2) of the Hematology Hospital

of the Chinese Academy of Medical Sciences approved this study.

Routine serum biochemical testing was performed for all patients in

the Clinical Testing Center of the Hematology Hospital of the

Chinese Academy of Medical Sciences. A study overview is

illustrated in Figure 1.
Clinical data collection

For each participant, medical history, clinical data, and blood-

related biomarkers were collected. Briefly, after 10 h of fasting,

blood was collected and biochemical indices in the sera were

quantified with a fully automated biochemical analyzer. Analyzed

parameters included white blood cells (WBC), platelets (PLT),

hemoglobin (HGB), neutrophil percentage (NEU%), absolute

neutrophil count (NEU #), lymphocyte percentage (LYMPH%),

absolute lymphocyte count (LYMPH #), total protein (TP), albumin
Frontiers in Immunology 04
(ALB), globulin (GLB), alanine transaminase (ALT), aspartate

transaminase (AST), alkaline phosphatase (ALP), glutamyl

transpeptidase (GGT), total bile acid (TBA), total bilirubin

(TBIL), direct bilirubin (DBIL), urea (UREA), creatinine (CREA),

uric acid (UA), lactate dehydrogenase (LDH), creatine kinase (CK),

CK isoenzyme (CK-MB), 5-hydroxybutyrate dehydrogenase (a-

HBDH), amylase (AMY), potassium (K), sodium (Na), chlorine

(Cl), calcium (Ca), phosphorus (P), magnesium (Mg), carbon

dioxide combining power (CO2CP), glucose (GLU), triglycerides

(TG), total cholesterol (TC), high/low-density lipoprotein (HDL

and LDL), folic acid (FA), vitamin B12 (B12), ferritin (F),

erythropoietin (TPO), iron (Iron), unsaturated iron (UIBC), total

iron binding force (TIBC), iron saturation (ISAT), prothrombin

time (PT), international standardized ratio (INR), partial

thromboplastin time (APTT), thrombin time (TT), fibrinogen

(FIB) antithrombin III activity (ATI I), fibrinogen decomposition

products (FDB), D-dimer quantification (DD), immunoglobulin G

(IgG), immunoglobulin A (IgA), immunoglobulin M (Ig),

complement C3 (C3), complement C4 (C4), C-reactive protein

(CRP), and rheumatoid factor Anti Streptolysin O (ASO) levels.
Raman spectroscopy

After adding 5 mL of serum to calcium fluoride or quartz slides,

samples were analyzed with a confocal Raman spectrometer

XploRA Raman microscope using a 40x objective lens, a 785 nm

excitation laser, and a 10 mW output power with the sample fixed

on the XYZ 3D platform. Imaging was performed with a 40 0.6 NA

Nikon lens, with a spot size range of ~2 × 2 mm exposed to the laser

beam. Measurements were taken in the 600-1800 cm-1 range, with 6

measurement points per group at a 1 cm-1 resolution. Raman

spectra for quartz glass slides were analyzed as the background

signal. Smoothing, background correction, and baseline correction

were performed with the Labspec6 software. Intensity values for all

spectra were normalized based on the 1450 cm-1 Raman peaks,

which were used as internal standards.
FIGURE 1

A schematic overview of the Raman spectroscopy and bioinformatics-based analysis of DLBCL and CLL samples. Raman spectra were obtained and
analyzed through multivariate statistical analyses performed with SIMCA 14.1.
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Clinical and Raman spectroscopy data
analyses and model development
and establishment

OPLS-DA analyses of clinical data from the CLL and DLBCL

sample groups and the Raman spectral data from the control, CLL, and

DLBCL sample groups were performed with the SIMCA14.1 software.

OPLS model performance was assessed based on the R2 and Q2

parameters. Two hundred resamplings were performed by randomly

changing the y matrix. Cluster analyses were conducted and ROC

curves were plotted. The Raman peaks that differed significantly in the

classification model were considered candidate biomarkers using V+S

analysis, selecting those peak positions with variable importance (VIP)

> 0.5 and a correlation coefficient (or distance from the center in the V

+S plot) within the range of equivalent front positions. The significance

of the candidate biomarkers was assessed using P < 0.05. Origin

software was utilized for analysis.
Measurement of serum IL-15 levels
by ELISA

Blood samples were collected from normal donors, CLL patients,

and DLBCL patients. Sera were obtained after centrifugation at 1000

g for 10 min and the IL-15 concentrations in the samples were

measured using a human IL-15 ELISA kit (Abclonal Technology,

Woburn, MA, USA). A Spark microplate reader (Tecan, Switzerland)

was used to measure absorbance at 450 nm and the IL-15

concentrations in the samples were calculated from a standard curve.
Real-time fluorescence quantitative PCR

Total RNA was extracted from peripheral blood mononuclear

cells using an RNA assay kit and was reverse-transcribed to cDNA.

Fluorescence quantitative PCR was used to assess the expression of

IL-15 using primers designed and synthesized by Beijing Qingke

Biotechnology Co., Ltd. (Supplementary Table S16). The 20 mL
reaction system was composed according to the instructions of

TaKaRa’s fluorescent quantitative reagent. The threshold cycle

number (Ct) values of IL15 and GAPDH in the samples were

obtained using the sample fitting method and, using GAPDH as the

internal reference and the relative quantification (RQ) values, the

relative mRNA expression of IL15 and PIK3CG was determined in

the tissues. The RQ of the target gene was calculated and statistically

analyzed based on RQ=2- D D Ct. The qPCR data was normalized

using the 2-DDCt method, setting the control group as the baseline

(expression level = 1). The specificity of the PCR products was

analyzed using dissolution curves to eliminate the influence of

primer dimers and non-specific amplification products. The

reaction conditions were pre-denaturation at 90°C for 10 seconds,

followed by denaturation at 95°C for 5 seconds, and extension at

60°C for 40 seconds, for a total of 40 cycles. A blank control was

used for each PCR reaction. The PCR products were analyzed using

2% agarose gel electrophoresis.
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Statistical analyses

Data were analyzed with SPSS 27.0 and GraphPad Prism 9.0.

Spectral data were independent of one another. Normally

distributed data are presented as means ± SE (standard error) and

were compared via one-way ANOVAs with Bonferroni’s multiple

comparisons test when homogenously distributed, whereas they

were compared Groups with Welch’s ANOVA and Tamhane’s T2

multiple comparisons test when heterogeneous variance. When

non-normally distributed, the results are given as medians

(interquartile range) and were compared using Kruskal-Wallist

tests and Dunn’s multiple comparisons tests.

Clinical data are represented as described above, respectively

comparing continuous data that were normally distributed with and

without equal variance using unpaired t-tests andWelch’s unpaired t-

test. Non-normally distributed continuous data were compared with

Mann-Whitney U tests. Categorical data were compared with chi-

square and Fisher’s exact tests. P < 0.05 was considered significant.
Results

DEG identification

A total of 715 DEGs (195 upregulated, 520 down-regulated) were

identified in the GSE57083 dataset (Supplementary Tables S4, S5),

whole 1,043 DEGs (438 upregulated, 605 down-regulated) were

detected in the GSE68950 dataset (Supplementary Tables S6, S7).

Of these DEGs, 179 were shared between GSE57083 and GSE68950

(39 upregulated, 140 down-regulated) (Supplementary Tables S8, S9).

The distributions of these genes were reported using volcano plots

(Figures 2A, C) and heatmaps (Figures 2B, D).
Functional enrichment analyses

The functions of the overlapping DEGs were examined using

the DAVID platform, leading to the identification of 99 enriched

GO-BP pathways including the immune response, inflammatory

response, cellular response to tumor necrosis factor, cellular

response to interference gamma, and positive regulation of

GTPase activity pathways. Moreover, DEG enrichment was found

in 30 GO-CC terms including the cytoskeleton, plasma membrane,

endothelial reticulum lumen, cytochrome, and focal adhesion

terms, together with 20 GO-MF pathways of which the most

strongly enriched were the cytochrome activity, protein binding,

cytochrome binding, actin filament binding, and CCR chemokine

receptor binding terms. These DEGs were also enriched in 11

KEGG pathways, the most strongly enriched of which were the

Cytokine Cytokine Receptor Interaction, Viral Protein Interaction

with Cytokine and Cytokine Receptors, Amoebiasis, NF-kB
Signaling, and African Trypanosomatosis pathways (Figure 3,

Supplementary Table S10).

When specifically focusing on upregulated DEGs, 8 enriched

GO-BP terms were detected including the inflammatory response,
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protein phosphorylation response, innate immune response, cell

activation, cytoskeleton, and GTP protein-related response

pathways. The only enriched GO-CC term was RNA polymerase

II transcription factor complex, while the only enriched GO-MF

term was the significant upregulation of protein serine/threonine

kinase activity. Protein kinases are key mediators of processes like

cell cycle progression, metabolic regulation, and cellular signaling,

suggesting that this result may be associated with these functions.

These DEGs were also enriched in the platelet activation KEGG

pathway, potentially implicating it as a differential mediator of the

development of these two forms of cancer. Platelets are closely

associated with coagulation, immune activity, and inflammation.

These upregulated DEGs may thus play a vital role in driving tumor

cell activity in DLBCL (Figure 4, Supplementary Table S11).

Similar analyses were also conducted for significantly down-

regulated DEGs identified when comparing DLBCL and CLL

samples, yielding 90 enriched GO-BP terms including the immune

response, cellular response to TNF and IFN-g, positive regulation of

ERK1 and ERK2 signaling pathways, and lymphocyte chemotaxis

pathways. Moreover, 30 GO-CC terms were enriched for these DEGs,
Frontiers in Immunology 06
including the plasma membrane, cytoskeleton, cytoplasmic

membrane, endothelial reticulum lumen, and extracellular exosome

terms that may play roles related to structural preservation, signal

transduction, and material transport. Additionally, 20 enriched GO-

MF terms were identified including the cytokine activity, actin

filament binding, cytokine binding, protein binding, and CCR

chemokine receptor binding pathways potentially associated with

cytoskeletal stabilization, the release of cytokines, and interactions

between cells. These molecular functions are also relevant to cellular

migration, immune activity, and inflammatory response regulation.

These downregulated DEGs were also enriched in 9 KEGG pathways

including the Cytokine Cytokine Receptor Interaction, Viral Protein

Interaction with Cytokine and Cytokine Receptors, African

Trypanosomatosis, Pathways in Cancer, and Amoebiasis pathways.

These enriched pathways may be related to oncogenic progression,

cytokine signaling, viral infections, and the pathogenesis of

amoebiasis and other forms of disease. In CLL, the genes enriched

in these pathways may thus be closely associated with the emergence

of malignant cells, their development, and the modulation of normal

physiological activity (Figure 5, Supplementary Table S12).
FIGURE 2

Heatmaps and volcano plots for the GSE57083 and GSE68950 datasets. (A, C) Volcano plots for DEGs in GSE57083 (A) and GSE68950 (C), with
symbols representing individual genes and red or gene respectively denoting up-regulation or down-regulation. P < 0.05 was the significance
threshold, and a fold-change value of 1 was established as the threshold for DEG identification. Key genes such as IL15, CCL4, FLNA, CCL5, IL7,
VCAM1, ACTN1, CCL20 and IL1R1 were significantly downregulated in DLBCL, indicating their role in modulating immune response and positive
regulation of GTPase activity. Key genes such as SYK were significantly upregulated in DLBCL, indicating their role in protein phosphorylation
process. (B, D) Heatmaps for DEGs in GSE57083 (B) and GSE68950 (D), with rows representing genes and columns representing biological samples
colored based on grouping.
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FIGURE 4

(A) Significantly upregulated DEGs identified when comparing samples from DLBCL and CLL patients. (B-E) GO-BP, GO-CC, GO-MF, and KEGG
results for DEGs identified when comparing DLBCL and CLL patient samples. (F) Functions and pathways associated with genes most likely to be of
value in distinguishing between DLBCL and CLL.
FIGURE 3

(A) Significant DEGs identified when comparing samples from DLBCL and CLL patients. (B-E) GO-BP, GO-CC, GO-MF, and KEGG pathway
enrichment results for DEGs identified when comparing DLBCL and CLL patient samples. (F) Functions and pathways associated with genes most
likely to be of value in distinguishing between DLBCL and CLL.
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PPI network analyses

A PPI network was next constructed using the DEGs

overlapping between the GSE57083 and GSE68950 datasets

incorporating 125 nodes and 418 edges (Figure 3A). The network

had a high topology score, allowing for the identification of the key

nodes within the network. The nodes with the top 10 degree values

are presented in Supplementary Table S13. After visualizing this

PPI network using STRING and the Cytoscape plugin, 10 key DEGs

were selected including IL15, CCL4, FLNA, CCL5, IL7, VCAM1,

SYK, ACTN1, CCL20, and IL1R1. A majority of these DEGs were

classified as down-regulated in the above analyses, indicating

markedly higher expression in CLL samples. The PPI network

constructed for upregulated DEGs (10 nodes, 20 edges) is

presented in Figure 4A, and the top 10 key DEGs identified in

this network were ANKMY2, PIK3CG, BZW2, BACH2, BCL6,

ZHX2, SYK, CD72, CD180, and SLA (Supplementary Table S14).

The PPI network constructed for downregulated DEGs (100 nodes,

332 edges) is presented in Figure 5A, and the top 10 key DEGs

identified in this network were IL15, VCAM1, FLNA, CCL5, CCL4,

IL7, CCL20, IL1R1, ACTN1, and APP (Supplementary Table S15).

qRT-PCR was performed to verify the mRNA expression levels of

IL15 and PIK3CG. It was found that IL15 was strongly expressed in

the peripheral blood of CLL patients, significantly higher than its

expression in the peripheral blood of DCBCL patients. In contrast,

PIK3CG showed significantly higher expression in the peripheral

blood of DCBCL patients than in patients with CLL (Figure 6A).
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The expression levels of both genes were consistent with the

bioinformatics results. The IL15 concentrations in the sera of

DLBCL and CLL patients were measured by ELISA, showing that

its levels were significantly higher in patients with CLL compared

with DCBCL patients (Figure 6B).
Establishment of a multi-parameter
approach to distinguishing between DLBCL
and CLL

Next, a multi-parameter analysis approach was implemented to

differentiate between DLBCL and CLL samples by combining these

two groups into a single dataset. The SIMCA-P application was then

used for supervised orthogonal partial least squares discriminant

analysis (OPLS-DA) of the sample data, enabling detailed analyses

and comparisons. Permutation plots (Figure 7A), clustering analysis

plots (Figure 7B), and ROC plots (Figure 7C) were utilized to assess

the discriminatory performance of the supervised OPLS-DA

models. Permutation was also used to assess model validity, with

permutation analyses revealing that the Q2 Y-intercept was

negative, consistent with a valid model free of overfitting

(Figure 7A). Clustering analyses also confirmed that this model

exhibits good discriminatory performance on each set of samples.

The generated ROC curves yielded AUC values of exactly 1 for both

DLBCL and CLL (Figure 7C), indicative of high accuracy and the

ability to reliably distinguish between these two cancers.
FIGURE 5

(A) Significantly downregulated DEGs identified when comparing samples from DLBCL and CLL patients. (B-E) GO-BP, GO-CC, GO-MF, and KEGG
results for DEGs identified when comparing DLBCL and CLL patient samples. (F) Functions and pathways associated with genes most likely to be of
value in distinguishing between DLBCL and CLL.
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Potential biochemical biomarker selection
and verification

To more fully probe the links between DLBCL and CLL, the OPLS-

DAmodel was further used to screen for potential biomarkers associated

with these hematological malignancies. The OPLS-DA score plot

(Figure 7D) includes a horizontal axis corresponding to score values

for the main components during OSC analyses, whereas the vertical axis

corresponds to scores for orthogonal components during this analysis.

The clear clustering of the two sets of samples in this plot confirmed the

successful differentiation between these two malignancies with this

model, providing a foundation for efforts to further screen for the

biomarkers that can distinguish between the two.When constructing the

OPLS-DA loading plot to conduct preliminary screening for the factors

that contribute to the effective differentiation between DLBCL and CLL

(Figure 7E), correlations were noted between the loading and score plots

such that factors with higher positive values on the vertical axis of the

loading plot tended to exhibit higher positive values on the horizontal

axis of the score plot, with the same also being true for negative values.

The OPLS-DA VIP plot also exhibited associations between peak VIP

values and model correlation coefficients (Figure 7F), with redder peak

coloration being indicative of a stronger correlation coefficient for that

peak position in the discrimination model. A V+S plot was also

constructed incorporating VIP and correlation coefficient values in a

single figure wherein individual points correspond to a given indicator of

interest and the redder the coloration of that point, the stronger the

correlation coefficient consistent with a greater contribution to the

overall performance of the classification model. In contrast, bluer

coloration is indicative of weaker contributions to this classification

model. Points situated further from the center of the V+S plot also made

greater contributions to the performance of the classification model.

This V+S plot was thus used for further biomarker screening, testing for

significance based on characteristic peak positions in subsequent

analyses as a means of clarifying which features were able to reliably

differentiate between DLBCL and CLL (Figure 7F). The VIP values for

relevant factors in this classification model were used to assess the

contributions of these factors to the model, providing a list of
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hematological indices ranked based on their VIP values, with VIP >

0.5 and biological significance being used to guide biomarker selection.

When the peripheral blood biochemical data from study subjects were

analyzed (Figures 7G–O), ALB, TT, and WBC levels were markedly

increased in the CLL group relative to the DLBCL group (P<0.05),

whereas the opposite was true for TG, HDL, GGT, ALP, ALT, and

NEUT% levels (P<0.05).
Raman spectroscopy of sera from controls
and CLL and DLBCL patients

In total, 25, 29, and 30 serum Raman spectra were obtained

from the CLL, DLBCL, and control patient samples. The

corresponding peak assignments are shown in Supplementary

Table S3. Raman spectra for these groups were detectable in the

600-1800 cm-1 tange and were broadly similar, consistent with the

generally comparable composition of the compounds present in

samples from these three groups (Figure 8). Based on the visual

inspection of these spectra alone, differentiating between these three

groups is impossible, underscoring the need for a multivariate

statistical classification model.
Development of a Raman spectroscopy-
based method to distinguish between CLL,
DLBCL, and control samples

Raman spectral data from the control, CLL, and DLBCL

patients were next used to conduct supervised OPLS-DA analyses.

In the permutation analyses, no overfitting was observed as

evidenced by a Q2 value with a negative Y-intercept consistent

with OPLS-DA model validity (Figure 9A). Cluster analyses showed

that the OPLS-DA model could differentiate among the three

groups with 100% accuracy (Figure 9B). The ROC curves for all

three sample types using this model were exactly 1 (Figure 9C),

consistent with a high degree of discriminant performance.
FIGURE 6

(A) Validation of the expression levels of IL15 and PIK3CG using qRT-PCR. (B) Measurement of IL15 concentrations in the serum of DLBCL and CLL
patients using ELISA. *P ≤ 0.05.
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Potential Raman biomarker selection
and identification

To more fully clarify the utility of specific biomarkers capable of

distinguishing among control, CLL, and DLBCL serum samples, the

OPLS-DA model was further analyzed using an approach similar to

that outlined above. In the OPLS-DA score plot (Figure 10A), the

horizontal axis enabled the visualization of differences among
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groups whereas the vertical axis enabled differentiation among

samples. As all three sample groups were clearly differentiated in

the generated plot, with control samples on the positive X-axis

whereas the DLBCL and CLL samples were on the negative X-axis,

these results confirmed the ability of this OPLS-DA model to

effectively distinguish between these different sample types. These

results provided a foundation for the further examination of

metabolic differences among control, CLL, and DLBCL samples.
FIGURE 7

(A) OPLS-DA permutation plots for the DLBCL and CLL groups. (B) Cluster analysis. (C) ROC curves for the DLBCL and CLL groups, both exhibiting
AUC values of 1. (D) DLBCL and CLL discrimination OPLS-DA score plot showing Hotelling’s 95% confidence ellipse. (E) CLL and DLBCL loading plot.
(F) V+S plot for CLL and DLBCL (G) ALB. (H) TG (I) HDL. (J) GGT. (K) ALP. (L) ALT. (M) TT. (N) WBC. (O) NEUT%. *P ≤ 0.05, **P ≤ 0.01, ***p ≤ 0.001.
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The OPLS-DA loading plot utilized for preliminary screening of the

Raman peaks contributing to the classification model for control,

CLL, and DLBCL samples is shown in Figure 9B. Peaks in red, blue,

green, purple, orange, and black respectively correspond to nucleic

acids, proteins, b-carotene, lipids, carbohydrates, and collagen. A

correlation was evident between the score plot and the loading plot

such that peak positions with larger values on the positive end of the

loading plot vertical axis tended to be present at relatively higher

levels on the positive horizontal axis of the score plot, while the

same was also true for negative values. This approach revealed

significantly higher peak intensity values for the peaks
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corresponding to proteins (621, 1603 cm-1), nucleic acids (726,

1579 cm-1), b-carotene (1155 cm-1), carbohydrates (842 cm-1), and

lipids (1446 cm-1) in control samples relative to those from CLL and

DLBCL patients (Figure 10B).

In the OPLS-DA V+S plot including VIP values and

correlations corresponding to peak positions in the classification

model (Figure 10C), individual points indicate a specific peak

position and the color of these points denotes the strength of the

correlation coefficient, with red and blue respectively denoting

stronger and weaker contributions to the classification model.

Peaks further from the plot center contributed more significantly
FIGURE 8

Average serum spectra for the Control, CLL, and DLBCL groups (from bottom to top).
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to the model. To more fully investigate the peak positions

contributing to the model, the V+S plot was also utilized to

screen for promising biomarkers, performing significance testing

on characteristic peak positions to clarify those peaks capable of

discriminating among control, CLL, and DLBCL samples

(Figure 10C). BIP values corresponding to the positions of Raman

peaks in this classification model were the primary index used to

assess the contribution of peak position to the model, yielding a list

of Raman peak positions ranked based on VIP values, retaining
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those peaks with a VIP > 0.5 and biological significance as

candidate biomarkers.

Based on the model developed for the different groups, the

control group was combined with the CLL and DLBCL samples for

OPLS-DA analysis (Figures 10D–L). The OPLS-DA score plots for

the respective control vs. CLL, control vs. DLBCL, and CLL vs.

DLBCL model comparisons are illustrated in Figures 10D, G, J.

Clear sample clustering was evident in the resultant scatter plots,

consistent with the ability of the OPLS-DA models to effectively
FIGURE 9

(A) OPLS-DA permutation plots for control, CLL, and DLBCL samples. (B) Cluster analyses of the groups. (C) ROC curves for the groups, each with
an AUC value of 1. (D-F) Permutation plot (D), cluster analysis (E), and ROC plot (F) results for the control and CLL groups, with the latter exhibiting
AUC values of 1 for both CLL and control samples. (G-I) Permutation plot (G), cluster analysis (H), and ROC plot (I) results for the control and DLBCL
groups, with the latter exhibiting AUC values of 1 for both DLBCL and control samples. (K, L) Permutation plot (J), cluster analysis (K), and ROC plot
(L) results for the CLL and DLBCL groups, with the latter exhibiting AUC values of 1 for both CLL and DLBCL samples.
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extract information capable of differentiating among these groups

of serum samples, reliably identifying the samples in each model

(Figures 10D, G, J). The respective loading plots for the control vs.

CLL, control vs. DLBCL, and CLL vs. DLBCL models are presented

in Figures 10E, H, K. These results demonstrated that the control

group was associated with peak positions corresponding to proteins

(621, 643, 848, 853, 869, 935, 1003, 1031, 1221, 1230, 1260, 1344,

1443, 1446, 1548, 1579, 1603, and 1647 cm-1), nucleic acids (726,
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781, 786, 1078, 1190, 1415, 1573, and 1579 cm-1), and b-carotene
(957, 1155, and 1162 cm-1). The peak intensities corresponding to

sugars (842 cm-1), collagen (1345 cm-1), and lipids (957, 1078, 1119,

1285, 1299, 1437, 1443, 1446 cm-1) was significantly increased in

control samples relative to those from CLL and DLBL patients. The

V+S plots for the control vs. CLL, control vs. DLBCL, and CLL vs.

DLBC models are respectively presented in Figures 10F, I, L. These

plots offer a list of Raman peak plots ranked based on VIP values
FIGURE 10

OPLS-DA analyses of sera from the control, DLBCL, and CLL groups. (A) Hotelling’s T2 ellipse OPLS-DA score plots showing the 95% confidence
zone for the control, CLL, and DLBCL groups. (B) Loading plot for the control, CLL, and DLBCL groups. (C) V + S plot for the control, CLL, and
DLBCL groups. (D-L) Hotelling’s T2 ellipse score map (D, G, J), loading plot (E, H, K), and V+S plot (F, I, L) for the control and CLL (D-F), control and
DLBCL (G-I), and CLL and DLBCL (J-L) groups.
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suitable for the identification of candidate biomarkers for these

three models (Figures 10C, F, I, L). Candidate biomarkers were

defined as those peaks with a VIP > 0.5 and biological significance.

In the four established models, biomarker selection was based on

VIP values, correlation coefficients, loading, and the distance from

the center of the V+S plots, enabling the identification of key

Raman peak positions related to sample classification. During the

course of biomarker validation, nonsignificant Raman peak

positions were excluded from further biomarker consideration.
Raman biomarker verification

Potential Raman biomarkers were next validated (Figures 11A, B),

revealing that peak intensities associated with specific proteins in the

control group were greater than those in the CLL and DLBCL groups,

among which the peaks at 621, 643, 848, 853, 869, 935, 1003, 1031,

1221, 1230, 1260, 1344, 1443, 1446, 1548, 1579, 1603, and 1647 cm-1

differed significantly relative to the CLL and DLBCL groups (P<0.05).

Similarly, nucleic acid peak intensities in the control samples were

markedly greater than those in the CLL and DLBCL groups, with

significant differences for the peaks at 726, 781, 786, 1078, 1190, 1415,

1573, and 1579 cm-1 (P<0.05). The peak intensities for b-carotene
(957, 1155, 1162 cm-1) were all significantly higher in control samples

relative to CLL and DLBCL samples (P=0.000).

Peak intensity values for carbohydrates (842 cm-1) and collagen

(1345 cm-1) in control samples were significantly greater than those

for CLL and DLBCL samples (P<0.001). Similarly, lipid peaks (957,

1078, 1119, 1285, 1299, 1437, 1443, 1446 cm-1) exhibited

significantly higher intensity values in control samples relative to

CLL and DLBCL samples (P<0.05).

To date, there has been no exploration of the utility of Raman

spectroscopy as a means of distinguishing between DLBCL and CLL

using serum samples, and there is a corresponding lack of

information regarding glycolipid metabolism-related serological

indices in these patients. This study was thus designed with the

goal of developing a model capable of distinguishing among

DLBCL, CLL and control samples via Raman spectroscopy

combined with multivariate analyses. Screening was also
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performed for Raman peaks that contributed to the DLBCL and

CLL classifications for potential utilization as a biomarker for these

cancers, providing a foundation for the effective and rapid detection

of early-stage DLBCL and CLL.
Discussion

DLBCL and CLL are both relatively common hematological

malignancies. Intensive research efforts have informed the diagnosis

of these cancers, as well as and the creation of targeted therapies,

immunotherapies, and allogeneic hematopoietic stem cell

transplantation (HSCT) treatment approaches. However, each of

these therapeutic strategies has some risk, such as complications,

recurrent disease, and death, underscoring a need for further in-

depth research exploring the diagnosis, treatment, and prognostic

assessment of DLBCL and CLL.

In this study, two independent datasets from the GEO dataset

were normalized and analyzed, identifying 179 DEGs when

comparing DBLCL and CLL samples, of which 39 and 140 were

respectively upregulated and down-regulated. In functional

analyses, these overlapping DEGs were enriched in pathways,

including immune and inflammatory responses, cellular TNF and

IFN-g responses, and positive regulation of GTPase activities. A

core set of 10 key DEGs was selected through further bioinformatics

analyses that included IL15, CCL4, FLNA, CCL5, IL7, VCAM1,

SYK, ACTN1, CCL20, and IL1R1, with a majority of these genes

being significantly overexpressed in CLL relative to DLBCL. To

further explore the signaling pathways relevant to the treatment of

these genes, DEGs were further screened to identify the top 10 key

upregulated DEGs (ANKMY2, PIK3CG, BZW2, BACH2, BCL6,

ZHX2, SYK, CD72, CD180, and SLA) as well as the top 10 key

down-regulated DEGs (IL15, VCAM1, FLNA, CCL5, CCL4, IL7,

CCL20, IL1R1, ACTN1, and APP). The top 5 DEGs in each

category are the focus of the remainder of this discussion section.

Vascular cell adhesion molecule-1 (VCAM-1) is an

immunoglobulin (Ig) superfamily member and type I

transmembrane glycoprotein with multiple Ig-like domains

containing disulfide-linked loops (27). VCAM-1 plays a role in
FIGURE 11

(A) Statistical analyses of candidate biomarkers (nucleic acids, lipids, carotenoids, collagen) for the Control vs CLL vs DLBCL comparisons.
(B) Statistical analyses of candidate biomarkers (proteins, carbohydrates) for the Control vs CLL vs DLBCL comparisons. *P ≤ 0.05, **P ≤ 0.01,
***p ≤ 0.001, ****p = 0.000.
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the inflammatory process, facilitating the interstitial adhesion of

leukocytes and the migration of these cells. Endothelial exposure to

inflammatory cytokines can elicit the release of soluble VCAM-1

(sVCAM-1), promoting monocyte, lymphocyte, and eosinophil

recruitment, migration, and adhesion (28). VCAM-1 expression is

evident in the heart, brain, kidneys, placenta, bladder, lymph nodes,

and spleen. The sVCAM-1 levels in patients with atrial fibrillation,

ischemic cardiomyopathy, coronary artery disease, and acute

myocarditis are elevated, and both VCAM-1 and sVCAM-1 are

regarded as biomarkers of autoimmune myocarditis, cancer, and

immunological diseases (29–31). Under conditions of persistent

inflammation, T cells, macrophages, and/or NK cells can release

inflammatory mediators, including IL-1b and TNF-a (32), the

latter of which promotes VCAM-1 upregulation and interacts

with the receptor TNFR1 to recruit a complex consisting of

TRAF2, RIP1, and cIAP1/2 that promotes TAK1 and IKK

signaling pathway activity. IKK, in turn, promotes the

degradation of the NF-kB inhibitor IkB, thereby driving NF-kB
activation and VCAM-1 upregulation (33). miR-126 can promote

angiogenic activity while reducing vascular inflammation,

inhibiting the extravasation of leukocytes through reductions in

VCAM-1 expression. When VCAM-1 is expressed on the

endothelial surface, it can interact with the a1 b4 integrins on

circulating leukocytes, thereby activating intracellular signaling that

disrupts endothelial cell-cell connections and promotes actin

remodeling, enabling these leukocytes to extravasate from

systemic circulation into the damaged site (34).

PI3K catalytic subunit gamma (PIK3CG) is a class I catalytic

PI3K subunit that, like other subunits in this class (p110-a, p110-b,
and p110-d), is capable of binding to the regulatory p85 subunit in

the PI3K complex. PIK3CG is involved in the control of cellular

activities through the phosphorylation of proteins and lipids (35).

PIK3CG can be regulated directly by Ras and G b - g and Ras in the

G protein-coupled receptor (GPCR) pathway, controlling a diverse

array of immune- and inflammation-related activities. PIK3CG has

also been established as a candidate target for managing certain

cancers, including Kaposi’s sarcoma, medulloblastoma, and ALL

(36). CLBC cell invasivity, migration, and stem cell maintenance are

impaired upon the inhibition of PIK3CG activity (37). Jun et al.

have also demonstrated that targeting PIK3CG with PTX can

significantly influence CLBC treatment, reducing the risk of

recurrent disease by 40% (38). Chung et al. further determined

that PIK3CG is an essential regulator of prostate cancer activity

related to KRAS activation and p53 deficiency. It may be a viable

target in patients with advanced metastatic disease (39). Zhang et al.

noted that PIK3CG is targeted directly by RBPJk-dependent Notch
signaling, and the inhibition of PIK3CG in CLBC cell lines can limit

the formation of tumor balls and the migration of tumor cells such

that it is a promising candidate target for CLBC subtypes.

The transcription factor basic leucine zipper and W2 domains 2

(BZW2), sometimes referred to as eIF5 mimic protein (5MP) 2, is a

cytosolic member of the alkaline region leucine zipper (bZIP)

superfamily that binds to cadherin and is linked to nervous

system development and cellular differentiation. BZW2 is linked

with various forms of cancer. For example, Wang et al.

demonstrated that TEAD4 upregulation in nasopharyngeal
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carcinoma, upregulated TEAD4 promotes oncogenic signaling via

the AKT pathway through the activation of BZW2 transcriptional

activity, driving cancer progression (40). Gao et al. (41) determined

that higher levels of BZW2 expression were evident in muscle-

invasive bladder cancer tissues relative to normal tissues. The

knockout of BZW2 in bladder cancer cells blocked cell cycle

progression and apoptosis induction. In fibrosarcoma, BZW2 can

promote tumor growth, and it is also expressed at high levels in

colorectal and liver cancers (42–48). The dysregulation of BZW2

may thus be a hallmark of certain forms of cancer (49). The

oncogenic properties of BZW2 are associated with the translation

of ATF4, another transcription factor, delaying the restart and thus

promoting the survival of stress-exposed tumor cells. Li et al.

conducted a systematic analysis of BZW2 in several HCC-related

datasets. They documented a close link between this transcription

factor and HCC patient prognostic outcomes, with BZW2

regulating eIF factors via c-Myc signaling (50).

Myc is associated with many important biological pathways.

These include: (1) Metabolic pathways, where Myc is a key

regulatory factor involved in metabolic reprogramming; (2)

Pathways associated with the cell cycle and proliferation, where

Myc promotes cell proliferation and modulates cell cycle dynamics.

High levels of Myc expression induce replication pressure and

genomic instability, sensitizing cells to apoptosis. Cell proliferation

requires a doubling of energy and cell biomass, and replicating cells

are thus particularly sensitive to deficiencies in oxidative

phosphorylation (OXPHOS), and OXPHOS-deficient replicating

cells are especially vulnerable to high levels of Myc, as MYC helps

them evade metabolic checkpoints and accelerate cell cycle

progression; (3) Pathways related to mitochondrial diseases, as

upregulation of Myc and/or its typical transcriptional features have

been observed in several cellular and mouse models of mitochondrial

diseases. Changes in gene expression and metabolite levels associated

with the mitochondrial integrated stress response (mt ISR) overlap

significantly with Myc overexpression; (4) Pathways associated with

the tumor microenvironment, in which Myc interacts with the tumor

microenvironment through signaling pathways and molecular

networks to modulate processes such as proliferation, replication

pressure, and DNA repair in tumor cells, driving tumor development

and drug resistance; (5) Transcriptional regulatory pathways, in

which Myc acts as a global transcriptional amplifier, binding and

increasing the expression of active promoters and controlling the

expression of at least 15% of human genes, including genes related to

cell cycle progression, metabolism, ribosome biogenesis,

and translation.

The transcriptional repressor BTB domain and CNC homolog 2

(BACH2) belong to the BACH family of alkaline leucine zipper

transcription factors that are found in the nucleus and cytosol and

exhibit the ability to bind DNA in a sequence-specific manner (51).

NK cells are key mediators of immune surveillance, protecting

against cancer and infection. BACH2 is a vital mediator of adaptive

immunity, but how it functions in NK cells and other innate cell

populations is poorly characterized. Imianowski et al. found that

BACH2 may be a negative regulator of NK cell differentiation,

maturation, and function (52). BACH2 can limit NK cell

maturation under conditions of weak stimulation, maintaining
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numbers of undifferentiated NK cells such that knocking out

BACH2 in NK cells can lead to cytotoxic NK cell accumulation

within tissues, more effectively protecting against lung cancer

metastasis. These results support the role of BACH2 as a global

negative regulator of cytotoxic activity and NK cell-mediated

tumor surveillance.

BCL6 is a transcriptional repressor involved in germinal center

(GC) B cell responses, preventing premature GC B cell activation

and differentiation and allowing cells to tolerate better the breakage

of the DNA that occurs during Ig gene remodeling. The essential

role BCL6 plays in B cell development can be coopted by malignant

cells such that it serves as an oncogene in GC-derived lymphomas,

with high mutation rates and translocation in DLBCL (53). BCL6

functions by binding to target DNA sequences and recruiting co-

repressor complexes to suppress transcription. Specifically, its N-

terminal BTB domain is responsible for recruiting the BCOR,

NCOR, and SMRT co-repressor proteins to the extended groove

motif of the BTB dimer interface. At the same time, its core RD2

region can inhibit gene transcription through interactions with

MTA2, HDAC2, NuRD, and CBP (54). BCL6 is reportedly

upregulated in glioblastoma and gastric, ovarian, and non-small

cell lung cancers, and its expression is associated with malignant

features, including proliferation, invasivity, migratory activity,

survival, and therapeutic resistance (55).

IL-15 is a 14-15 kDa cytokine essential for NK, NKT, and

memory CD8+ T cell dynamics. While IL-15 is secreted at very low

levels, it can be readily delivered in trans through the unique IL-15r

alpha receptor on the surfaces of cells that produce IL-15 such that

it can interact with a target cell receptor consisting of IL-2Rb and

common gamma chains. IL-15 and IL-15Ra binding in solution

results in the formation of the highly potent IL-15 super antagonist

(IL-15 SA) complex, which can robustly activate cells responsive to

IL-15, particularly NK cells, promoting a range of antitumor and

antiviral effects (56). IL-15 is vital for NK and CD8+ T cell

expansion and functionality (57, 58). IL-15 inhibits HIV-specific

CD8+ T cell apoptosis and increases these cells’ activation,

expansion, cytotoxicity, and IFN-g production (59). Chehimi

et al. showed that IL-15 therapy improved the cytotoxic functions

of HIV patient-derived NK cells while significantly reducing

apoptotic PBMC death (60). In vitro, NK cells can suppress HIV

replication, much like CD8+T cells, through a mechanism

potentially linked to CC chemokine secretion (61). Further

studies of the potential therapeutic capability of IL-15 to

remediate NK and CD8+ T cell responses in the context of HIV

infection are thus warranted.

Filamin A (FLNA) possesses an N-terminal actin-binding

domain (ABD) composed of two calponin homologous CH1 and

CH2 domains, two rod-like domains, and 24 Ig repeat sequences

that confer actin-binding activity (62). FLNA can crosslink actin

filaments, linking them to membrane glycoproteins and serving as a

scaffold for signaling intermediates that are involved in cytoskeletal

remodeling necessary for interactions with transmembrane

receptors, integrins, and second messengers, ultimately shaping

cellular shape, migratory activity, motility, and signal

transduction (62). Periventricular nodular ectopia (PVNH) is the

most commonly associated disease, and it is characterized by
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impaired neuronal migration such that ectopic neurons

accumulate at ventricle edges (63, 64). CCL5 is a C-C motif

chemokine family member closely associated with inflammatory

and immune regulation. It can induce peripheral monocyte,

memory T helper cell, and eosinophil responses, triggering

activation and histamine release (65). CCL5 expression is

observed in T cells, platelets, macrophages, renal tubular epithelial

cells, synovial fibroblasts, and tumor cells (66). CCL5 signals

through its cognate receptor CCR5 to promote tumor growth,

tumor progression, tumor cell migration and metastasis (67).

In scientific research, especially in the field of biomarker

research, the establishment of control groups is crucial to ensure

the validity and reliability of the research results. The reasons for

including a control group in the selection and identification

processes of Raman biomarkers primarily include: (1) The

provision of a benchmark, where the control group serves as a

reference standard to assist in the confirmation of whether the

observed changes represent a true association with the disease

under investigation. Without this comparison, it would be

difficult to determine whether the observed changes are caused by

the disease itself or other factors; (2) Exclusion of bias, as factors

other than the disease, such as age, sex, and lifestyle habits, may

affect the expression of biomarkers. The control group helps to

control these variables, ensuring the accuracy and reproducibility of

the results; (3) Statistical efficacy, as statistical analysis relies on the

presence of a control group to evaluate whether the observed

differences are statistically significant, rather than accidental

events. The most significantly enriched pathways for the DEGs

between CLL and DLBCL patients were found to be associated with

the immune response, cytoskeleton, cytokine activity, and cytokine-

cytokine receptor interactions. The genes most significantly

associated with these pathways included VCAM-1, ANKMY2,

PIK3CG, BZW2, BACH2, BCL6, IL-15, FLNA, and CCL5.

After visualization of the PPI network using the STRING

database and Cytoscape plugin, we identified 10 key differentially

expressed genes, including IL15, CCL4, FLNA, CCL5, IL7, VCAM1,

SYK, ACTN1, CCL20, and IL1R1. Most of these genes were found

to be downregulated, indicating that their expression was

significantly higher in CLL samples. A PPI network (consisting of

10 nodes and 20 edges) was constructed for the upregulated

differentially expressed genes. The top 10 key genes identified in

this network were ANKMY2, PIK3CG, BZW2, BACH2, BCL6,

ZHX2, SYK, CD72, CD180, and SLA. The protein encoded by

PIK3CG is one of the catalytic subunits of phosphatidylinositol 3-

kinase (PI3K), and the PI3K signaling pathway plays a crucial role

in various biological processes such as cell growth, proliferation,

survival, metabolism, and migration. In both DLBCL and CLL,

upregulation of PIK3CG may lead to abnormal activation of the

PI3K signaling pathway, promoting cancer cell proliferation and

survival and inhibiting cell apoptosis, and thus promoting disease

progression. For example, overactivation of PI3K signaling may

influence downstream target proteins such as Akt, affecting cell

metabolism and survival signals, and enabling cancer cells to evade

normal cell death mechanisms and continue to proliferate and form

tumors. The PPI network constructed for the downregulated DEGs

(including 100 nodes and 332 edges) identified the top 10 key genes
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as IL15, VCAM1, FLNA, CCL5, CCL4, IL7, CCL20, IL1R1, ACTN1,

and APP. Among them, IL15 is a multifunctional cytokine that

plays an important role in the immune system. In CLL,

overexpression of IL15 may promote disease progression through

multiple pathways. In terms of promoting the proliferation of

cancer cells, IL15 binds to receptors on the cell surface, leading to

the activation of a series of intracellular signaling pathways and

resulting in the proliferation of leukemia cells. For example, it may

activate the JAK/STAT signaling pathway, regulate the expression

of cell cycle-related proteins, and drive cells into the proliferation

cycle. In terms of apoptosis inhibition, IL15 may also prevent

apoptosis in leukemia cells by upregulating the expression of anti-

apoptotic proteins or inhibiting the activity of pro-apoptotic

proteins, allowing cancer cells to continue to survive and

accumulate in the body. It can also affect the tumor immune

microenvironment, as IL15 may regulate the functions and

activities of immune cells, inhibiting the body’s antitumor

immune response. For example, it may affect the differentiation,

proliferation, and killing activity of immune cells such as T and NK

cells, making it difficult for the immune system to effectively clear

leukemia cells.

In an article entitled “Immunophenotypic and genomic

landscape of Richter transformation diffuse large B-cell

lymphoma,” Nadeu et al. explored the genetic map of Richter’s

Transformation, suggesting that diffuse large B-cell lymphoma

(DLBCL) represents a more aggressive form of CLL and

providing insights into the pathogenesis and treatment of DLBCL.

Nadeu et al. mentioned ATM in their most recent article published

in 2024, in which BCL2, BIRC3, BTK, CXCR4, EGR2, FBXW7,

KRAS, MYD88, NFKBIE, PLCG2, POT1, SF3B1 and a series of

genes were analyzed for mutations. Although no significant

differences were found in the expression of all these genes, many

were found to be differentially expressed in the present study.

Nadeu et al. also described multiple genes associated with B-cell

pre lymphocytic leukemia (B-PLL) in their article “Epigenic features

support the diagnosis of B-cell prolymphatic leukemia and identify

2 clinicobiological subtypes”, mainly including MYC, SF3B1, TP53,

CCND1, CCND2, and CCND3. Among them, mutations in SF3B1

are associated with poor prognosis in CLL. The genes mentioned

above also overlap with the DEGs in this article, indicating the

credibility of our research results (68–70).

Many of the DEGs identified here were related to lipid

metabolism, including CCL22, BMP2, CCL20, CCL5, and

ACKR3. Among them, the role of CCL20 in lipid metabolism

may be related to its function in immune cell chemotaxis and the

inflammatory response. CCL20 is associated with lipid droplet

accumulation-mediated macrophage survival and regulatory T

cell (Treg) recruitment, indicating its potential role in lipid

metabolism in the tumor microenvironment. The role of CCL5 in

lipid metabolism may be related to its function in immune cell

chemotaxis and the inflammatory response. Several studies have

found that the expression of CCL5 is associated with the degree of T

cell infiltration within tumors, indicating its potential role in lipid

metabolism in the tumor microenvironment. ACKR3, the atypical

chemokine receptor 3, although its primary function is that of a

scavenger receptor for chemokines, plays a role in the negative
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regulation of cell proliferation and the positive regulation of the

ERK1/2 cascade, indirectly affecting lipid metabolism.

The Richter transformation is the process by which chronic

lymphocytic leukemia (CLL) transforms into more aggressive

lymphomas such as diffuse large B-cell lymphoma (DLBCL). In

Iyer’s articles, multiple genes and their roles in CLL and the

Richter transformation are mentioned. The genes include TCL1,

SF3B1, TP53, CDKN2A/CDKN2B, MYC, and NOTCH1.

Abnormalities in the TCL1 gene are common in CLL patients and

its overexpression is associated with the clonal expansion of B cells.

SF3B1 mutations are commonly seen driver mutations in CLL, and

the gene is involved in RNA splicing processes. Its mutation is related

to the progression and transformation of CLL. Mutations in the TP53

gene are associated with high-risk subtypes of CLL, and TP53

mutations are typically associated with the Richter transformation,

leading to disease progression. The deletion of the CDKN2A/

CDKN2B genes is associated with the progression of CLL and the

Richter transformation. Their absence may lead to abnormal cell

cycle regulation, thereby promoting tumor development. Mutations

and deletions of these genes play important roles in the occurrence,

development, and response to treatment of CLL and the Richter

transformation. Understanding the functions and interactions of

these genes is thus crucial for developing new therapeutic strategies

(71, 72).

The present study identified key genes and pathways associated

with these two diseases through bioinformatics analysis followed by

experimental verification. These analyses revealed many

upregulated and downregulated DEGs, and determined through

functional enrichment analysis that these genes are closely related to

inflammation and the immune response. In addition, the author

also analyzed serum samples from patients using Raman

spectroscopy and found significant differences in spectral

characteristics between the control, CLL, and DLBCL groups.

These spectral data were combined with the DEG data to

successfully distinguish between these two diseases using the

supervised orthogonal partial least squares discriminant analysis

(OPLS-DA) model. The author combined spectral analysis with

DEG data to identify specific gene sets, providing an important

foundation for the diagnosis and treatment of DLBCL and CLL.

This combination helps to further the understanding of the

molecular mechanisms of these two diseases and may provide

support for the development of personalized treatment plans.

Experimental methods such as RT-PCR and ELISA allow

assessment of the effects of genes and proteins such as PIK3CG and

IL15 on cell proliferation, apoptosis, and migration. PIK3CG was

found to promote the proliferation of B cells. Studies have shown that

the proliferative effect of PIK3CG on B cells may be mediated by

activation of the downstream AKT signaling pathway. Although its

activation usually promotes cell survival, in some cases, excessive

activation of PIK3CG may lead to increased cell apoptosis. This

phenomenon may be related to the imbalance of intracellular

signals, especially under the influence of microenvironment, which

may lead to the enhancement of apoptotic signals. PIK3CG may

interact with other PI3K subtypes (such as PIK3CD), which may affect

cell proliferation and apoptosis. For example, excessive activation of

PIK3CD in CLL cells may further enhance cell survival signaling
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through interaction with PIK3CG. Interleukin-15 (IL-15) is a

pleiotropic cytokine that plays a critical role in the immune system.

It has complex effects on the proliferation and apoptosis of DLBCL

and CLL cells, and these effects are achieved through multiple

signaling pathways; for instance, IL-15 binds to receptor complexes

on the cell membrane, recruiting and activating Janus kinase (JAK)

family members such as JAK1 and JAK3. Activated JAK kinase

phosphorylates signal transducer and activator of transcription

(STAT), leading to its dimerization and translocation to the nucleus,

where it regulates the transcription of related genes. In DLBCL and

CLL cells, this pathway can regulate the expression of genes related to

cell proliferation and apoptosis, such as the cell cycle proteins and Bcl-

2 family proteins mentioned above. IL-15 stimulation can also activate

PI3K, which converts phosphatidylinositol-4,5-diphosphate (PIP2) to

phosphatidylinositol-3,4,5-triphosphate (PIP3), thereby recruiting and

activating protein kinase B (Akt). Akt regulates cell metabolism,

proliferation, and survival by phosphorylating various downstream

substrates, such as glycogen synthase kinase-3 b (GSK-3b) and

forkhead box protein O (FoxO). In tumor cells, activation of this

pathway typically promotes cell proliferation and inhibits apoptosis.

The mitogen-activated protein kinase (MAPK) signaling pathway is

also one of the important pathways through which IL-15 exerts its

effects. The signal activated by IL-15 can activate Raf kinase through

Ras protein, which in turn activates MEK and ERK. Activated ERK

can enter the nucleus where it regulates the activity of transcription

factors and influences the expression of genes related to cell

proliferation, differentiation, and apoptosis. In DLBCL and CLL

cells, the activation status of the MAPK signaling pathway may

affect the cell’s response to IL-15, determining whether it

proliferates or undergoes apoptosis. These studies all indicate that

both PIK3CG and IL15 have complex effects on the proliferation and

apoptosis of tumor cells, which are achieved through multiple

signaling pathways (73–76).

Relative to the CLL and DLBCL groups, Raman spectroscopy

analyses performed herein revealed signficiantly higher peak

intensities for the peak positions corresponding to proteins (621,

643, 848, 853, 869, 935, 1003, 1031, 1221, 1230, 1260, 1344, 1443,

1446, 1548, 1579, 1603, 1647 cm-1), b-carotene (957, 1155, 1162 cm-

1), carbohydrates (842 cm-1), collagen (1345 cm-1), and lipids (957,

1078, 1119, 1285, 1299, 1437, 1443, 1446 cm-1) in the control group.

Thus, leukaemia patients may be more prone to hypoalbuminemia,

vitamin imbalances, dysregulated glycolipid metabolism, and

immunological deficiencies. Serological results for these patients

noted significantly lower TG, HDL, GGT, ALP, and ALT levels in

samples from CLL patients relative to DLBCL patients (P<0.05),

suggesting that the metabolic disorders facing DLBCL patients may

be more severe such that they face a worse prognosis. The results of

this study have the potential to inform the development of Raman

spectroscopy-based analyses for the noninvasive screening and

detection of biomarkers related to CLL and DLBCL, emphasizing

the potential relevance of large volumes of biochemical data to the

typing and prognostic assessment of CLL and DLBCL patients.

However, the sample size was relatively small and the results may be

imperfect. Given the relative rarity of CLL and DLBCL, future

studies should undertake more detailed prospective analyses

examining the feasibility of classifying CLL and DLBCL more
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effectively and establishing relevant biomarkers to aid in this

process. The present study did not perform in-depth analyses of

patient medical history, treatment history, or history of smoking/

alcohol intake, which may have impacted the study results.

Further large-scale investigations using standardized methods

for data collection will thus be vital to improve the accuracy of

the analyses. Further age-based stratified analyses are warranted,

with an increase in the overall sample size to control for

confounding factors.

The potential application of Raman spectroscopy combined with

multi-omics techniques in the diagnosis of hematological malignancies:

(1) High sensitivity and specificity: Raman spectroscopy can provide

molecular-level fingerprint information, distinguishing molecules with

different chemical compositions and structures by detecting the

vibration modes of chemical bonds in biological samples. In the

diagnosis of hematological malignancies, it can detect subtle

differences in molecular composition and structure between cancer

cells and normal cells, such as changes in biological macromolecules

such as nucleic acids, proteins, and lipids, providing a basis for early

diagnosis. (2) Non-destructive testing: Raman spectroscopy does not

require complex preprocessing of the sample and does not alter the

integrity of the sample. It can measure biological samples (such as

blood and bone marrow) directly, reducing the likelihood of errors and

interference during sample processing, and also facilitating real-time

and dynamic monitoring of patients. (3) Comprehensive metabolite

analysis: Metabolomics can comprehensively and systematically

analyze small-molecule metabolites in organisms, revealing the

changes in metabolites during the onset and progression of diseases.

In hematological malignancies, there are significant differences in the

metabolic pathways of cancer cells compared to normal cells.

Metabolomics can identify these specific metabolic markers,

providing important clues for the diagnosis and classification of

diseases. (4) In-depth understanding of disease mechanisms: By

analyzing changes in metabolites, one can gain a deeper

understanding of the pathogenesis of hematological malignancies.

For example, abnormal activation or inhibition of certain metabolic

pathways may be closely related to the onset and progression of

tumors, which can assist in the discovery of new therapeutic targets

and directions for drug development. (5) Complementary information:

The information of molecular structure provided by Raman

spectroscopy complements the metabolite composition information

provided by metabolomics. Raman spectroscopy can rapidly identify

samples with potential diagnostic value, while metabolomics can

further analyze these samples in depth, to determine specific

metabolic markers and changes in metabolic pathways, and improve

the accuracy and reliability of diagnosis. (6) Multi-dimensional

diagnostic model: The integration of Raman spectroscopy data with

metabolomics data can construct a multidimensional diagnostic model.

This model can consider multiple factors such as molecular structure

and metabolic changes, and thus comprehensively reflect the

characteristics of hematological malignancies, which helps to

improve the sensitivity and specificity of diagnosis and achieve early

and accurate diagnosis.

Raman spectroscopy combined with multi-omics techniques has

broad application prospects in the diagnosis of hematological

malignancies, and the identification of IL15 and PIK3CG as
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potential therapeutic targets also provides new ideas and directions

for the treatment of these diseases. Future research should explore

the potential applications of these technologies and targets,

and contribute to improving the diagnosis and treatment of

hematological malignancies. (1) Key role in hematological

malignancies: IL15 plays an important regulatory role in the

immune system and often exhibits abnormal expression in

hematological malignancies such as CLL and DLBCL.

Overexpression of IL15 may promote tumor development through

various pathways, stimulating cancer cell proliferation, inhibiting cell

apoptosis, and affecting the immune microenvironment. Therefore,

interventions targeting IL15 would be expected to block tumor

growth and spread. (2) Targeted therapy strategy: Monoclonal

antibodies, small-molecule inhibitors, and other drugs targeting

IL15 or its receptors can be developed to block the binding of IL15

to its receptors or inhibit its downstream signaling pathways, thereby

interfering with the proliferation and survival of tumor cells. In

addition, gene-editing techniques such as CRISPR/Cas9 can be used

to knock out or downregulate the expression of the IL15 gene,

achieving the goal of treating tumors. (3) Challenges and prospects:

Although IL15 has potential as a therapeutic target, it still faces some

challenges in practical applications. For example, IL15 has a wide

range of physiological functions in the immune system, and targeting

IL15 may adversely affect normal immune function, leading to

immune-related adverse reactions. Therefore, future research needs

to further optimize the design of targeted drugs and improve their

specificity and safety for the effective treatment of hematological

malignancies. (4) The importance of the PI3K signaling pathway: The

protein encoded by PIK3CG is one of the catalytic subunits of PI3K,

and the PI3K signaling pathway plays a crucial role in various

biological processes such as cell growth, proliferation, survival,

metabolism, and migration. In hematological malignancies, the

PI3K signaling pathway is often abnormally activated, and

upregulation of PIK3CG may be one of the important reasons for

this abnormal activation. Therefore, targeting PIK3CG would be

expected to prevent the excessive activation of the PI3K pathway,

thereby suppressing the growth and spread of tumor cells. (5)

Foundation for research and drug development: Currently, some

inhibitors targeting the PI3K signaling pathway have shown positive

results in clinical trials, providing a reference for the study of PIK3CG

as a therapeutic target. In the future, specific inhibitors targeting

PIK3CG could be further developed to improve the efficacy and

safety of these drugs. At the same time, the combination with other

treatment methods, such as chemotherapy, radiotherapy, and

immunotherapy, may achieve better therapeutic effects. (6)

Potential problems and solutions: The PI3K signaling pathway also

plays an important physiological function in normal cells, so

targeting PIK3CG may have toxic effects on normal cells. Future

research requires a deeper understanding of the differential

expression and functional characteristics of PIK3CG in tumor and

normal cells, and the development of more selective targeted drugs to

reduce damage to normal cells. In addition, further exploration is

needed to investigate the interaction between PIK3CG and other

signaling pathways, as well as the resistancemechanism of tumor cells

to PIK3CG targeted therapy, to provide a basis for optimizing

treatment plans.
Frontiers in Immunology 19
No significant differences were observed between groups for

certain biochemical indicators. Even with this limitation, Raman

spectroscopy could unveil significant differences when analyzing

patient serum samples. This suggests that this approach offers

greater sensitivity to more conventional peripheral blood analyses,

providing an effective screening tool. Another limitation of this study

is that patient medical history, medications, smoking status, and

drinking status were not considered and may have impacted the

results of these analyses. It is thus essential to improve the overall

sample size and standardize the data collection approach to achieve

greater sampling accuracy. Even so, the metabolomics and statistical

analyses employed herein effectively compare differences among

samples in a research context and may even have implications for

clinical practice, providing a valuable foundation for future research.
Conclusions

In this study, Raman spectroscopy and bioinformatics

approaches were used to differentiate between DLBCL and CLL

based on the differential expression of key genes, and the results of

these analyses have important implications for the diagnosis and

treatment of these two malignancies. Specifically, the DEGs

identified herein can potentially serve as diagnostic biomarkers

for DLBCL and CLL, and they may further enable the

differentiation among DLBCL subtypes to support more effective

patient clinical classification. They may additionally offer unique

insights into the molecular processes underlying the development of

these two types of cancers, as genes that are overexpressed in

DLBCL but not CLL may function primarily in the development

of the former NHL subtype. The results of these analyses can also

help guide the development of personalized targeted treatments, as

small molecule inhibitors or antibodies targeting proteins vital to

DLBCL cell survival and proliferation may aid in the treatment of

this form of cancer. These DEGS can also be leveraged to guide the

prognostic assessment of patients with these cancers, aiding

clinicians in the selection of the most appropriate treatment plan.

Lastly, the bioinformatics analyses performed herein will help

unveil the mechanisms through which drugs function in these

cancers, potentially facilitating the selection of combination drug

regimens. Through comparisons of gene expression patterns

between these diseases, genes capable of impacting drug efficacy

may be identified, allowing for the optimization of the use of drugs

that already exist or the selection of novel drug combinations.

In summary, the bioinformatics analyses of genes differentially

expressed between DLBCL and CLL conducted herein can both

improve the accuracy of efforts to diagnose these two diseases while

also supporting new disease treatment strategies that will contribute

to better patient quality of life and treatment outcomes.
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