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Background: In recent years, the clinical application of targeted therapies and

immunotherapy has significantly improved survival outcomes for patients with

lung adenocarcinomas(LUAD). However, due to fewer mutations, lung

squamous cell carcinomas(LUSC) shows limited efficacy with targeted and

immunotherapy, resulting in a notably lower 5-year survival rate compared to

lung adenocarcinoma. The m7G modification plays an important role in

tumorigenesis, progression, immune evasion, and therapeutic response. This

study aims to develop a novel scoring system based on m7G modification and

immune status to clinically predict the prognosis of patients with LUSC and to

provide new therapeutic targets.

Methods: In this study, we utilized RNA-seq data from the TCGA-LUSC database

as the training set and GSE50081 from the GEO database as the validation set.

Immunotherapy data were obtained from the IMMPORT database, and m7G data

from previous research. Using bioinformatics, we developed a prognostic model

for LUSC based on m7G pathway-related immune gene characteristics. We

analyzed the correlation between the prognostic model and clinical

pathological features of LUSC, as well as the model’s independent prognostic

capability. Subsequently, patients were divided into high-risk and low-risk

groups, and we examined the differences in enriched pathways, immune cell

infiltration correlations, and drug sensitivity between the two groups.

Results: The m7G immune-related genes FGA, CSF3R, and ORM1 increase the

survival risk in patients with lung squamous cell carcinoma, whereas NTS exerts a

protective effect. The prognostic riskmodel for lung squamous cell carcinoma (LUSC)

based on m7G immune-related gene expression demonstrates that the overall

survival of the high-risk group is significantly poorer than that of the low-risk group.
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Conclusion: The risk model developed based on m7G immune-related genes can

help predict the clinical prognosis of LUSC patients and guide treatment decisions.
KEYWORDS

m7G, lung squamous cell carcinomas (LUSC), immune-related genes, prognostic,
risk model
1 Introduction

N(7)-methylguanosine (m7G) is one of the crucial post-

transcriptional modifications of messenger RNA (mRNA) found

in both prokaryotes and eukaryotes, It binds to the 5h end of mRNA

in a co-transcriptional manner during transcription initiation. m7G

can be regulated throughout the mRNA life cycle to protect against

exonuclease-mediated degradation (1–3). Growing evidence

suggests that RNA modifications play a crucial role in lung cancer

progression (4, 5). Epigenetic alterations in RNA and histones have

been extensively studied in tumor progression, leading to the

development of a variety of therapeutic modalities, including

histone deacetylase inhibitors and drugs targeting hypoxia-related

pathways (6). RNA modifications, including N6-methyladenosine

(m6A), 5-methylcytidine (m5C), N1-methyladenosine (m1A), and

m7G, have been found to play important roles in cellular

differentiation, protein production, and biological regulation (7).

Lung cancer development and progression depend not only on

genetic variation but also on epigenetic dysregulation (8, 9). As an

important component of epigenetic modifications, RNA

modifications are involved in the regulation of numerous

physiological processes and the occurrence of diseases (10).

Dynamic regulation and disruption of these RNA modifications

are also associated with the lung cancer development, maintenance

and progression of lung cancer (11, 12).

In addition, RNA dynamic modifications may affect the

functional response and maturation of tumor immune cells (13).

It has been gradually recognized that tumorigenesis and

development are not only related to the intrinsic genetic

background of cancer cells, but also depend on the interaction

between the tumor and various systems in the body, particularly the

immune system (14, 15). m7G-related genes are thought to interact

with immune pathways, potentially affecting the tumor

microenvironment and the immune system’s ability to respond to

malignancies (16), Especially with the development of monoclonal

antibody drugs and immunotherapy, tumor immunity has become

a hot spot in tumor research (17). To date, the relationship between

the screening of immune-related molecules, their expression in

LUSC and their impact on the prognosis of LUSC has not been

thoroughly studied.

However, the relationship between m7G methylation and

immune-related cells and factors has been less studied. A

comprehensive analysis of this relationship could help to better

understand the relationship between m7G-related isoforms and the
02
immune system and reveal potential mechanisms that affect the

prognosis of LUSC, providing new insights for treatment.

Therefore, in this study, we identified m7G-related genes through

the analysis of genes involved in the m7G pathway using consensus

clustering and differential expression analysis. Subsequently, we

intersected these genes with known immune-related genes to

construct a prognostic risk model for lung squamous cell

carcinoma (LUSC). This model may enhance the accuracy of

prognostic assessment and provide novel therapeutic targets for

LUSC patients.
2 Materials and methods

2.1 Data source

RNA-seq (database updated to July 8, 2019) data for TCGA-

LUSC were downloaded from the TCGA (https://portal.gdc.

cancer.gov) database, including gene names, sample numbers, and

expression data, and clinical data including patient IDs, survival

time, survival status, age, sex, tumor grade, and TNM staging. RNA

sequencing data and associated clinical characteristics of 550 LUSC

patients were extracted from The Cancer Genome Atlas (TCGA)

database, including 49 normal tissues and 501 LUSC tissues, were

used for normal and cancer differential expression analysis. We

utilized 501 patient samples for modeling analysis. Additionally, the

GSE50081 dataset (55 patients with squamous cell carcinoma of the

lung with survival information) dataset from the GEO (https://

www.ncbi.nlm.nih.gov/geo/) database was downloaded for

differential validation. 2013 immune-related genes were

downloaded from the IMMPORT database in this study.)M7G-

related genes: were obtained from the published review of Zhouhua

Li (2022) (18), The workflow of the study is displayed in Figure 1.
2.2 Differential gene expression analysis of
lung squamous carcinoma disease

2.2.1 The limma software package was used to
analyze mRNA data comprising 49 control
samples and 501 disease samples

Significant mRNA differences were identified using the criteria

of P_value<0.05 and |Log2FC|>0.5 to screen for disease-

associated genes.
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2.2.2 Weighted co-expression analysis of mRNAs
from LUSC was conducted using the R
package “WGCNA”

Significant modules in the LUSC transcriptome data were

identified using a threshold of b=5 (i.e., power value, combined

with the R^2 value of the network and the degree of connectivity of

the network), and from these modules, those showing the highest

absolute values of correlation coefficients with the clinical traits

were filtered and selected as the key modules for the

subsequent analyses.
2.3 Differential module m7G immune gene
screening and target gene
function enrichment

Consensus clustering analysis was performed using the R

package “ConsensusClusterPlus R” based on the expression of

m7G-related genes to classify LUSC samples into different

molecular subtypes (19). To investigate the clinical value of m7G-

based subtypes, clinicopathologic features including age, gender,

and staging were analyzed between subtypes. In addition,

differences in OS between subtypes were explored using the R

package. Genes associated with the m7G subtype were analyzed

using the limma software package, with differences screened for P

<0.05 and |Log2FC|>0.5. Finally, Key m7G immune-related genes

were obtained using the intersection of disease and normal

differential genes, modular genes, and m7G-related genes with

2013 immune genes in the Immport database (20). KEGG and

GO enrichment analyses were performed using the clusterProfiler

package in R, aiming to identify functions and associated pathways
Frontiers in Immunology 03
prevalent among a significant number of genes within a target gene

set. Statistical methods were employed to accumulate

hypergeometric distributions, employed the analysis whether a set

of genes over- represented at a specific functional node (over-

presentation). The specific formula for its calculation is as follows:

p X>qð Þ = 1 − o
q

x¼1

n

x

 !
N − n

M − x

 !

N

M

 !
2.4 Construction and validation of a risk
model for M7G-associated immunity genes

The expression data of M7G-related immune genes (FPKM)

were obtained in the previous step, and the TCGA-LUSC dataset

was divided into a training set and a validation set in a ratio of 7:3,

with 346 samples in the training set and 147 samples in the

validation set. Univariate Cox and Lasso Cox regression analyses

were performed, and prognostic risk models were constructed using

the “cph” function of the R software “survival” package.

The formula for calculating the risk score is:

RiskScore  ¼o(bi� Xi)

Where indicates the coefficient of each gene in the multifactorial

Cox regression analysis, and X indicates gene expression. Using and

the median risk score value as the boundary, the patients were

divided into high-risk and low-risk groups. Kaplan-Meier survival
FIGURE 1

The workflow of the study: Based on data from the TCGA database, we identified differentially expressed m7G immune-related genes in LUSC and
developed a prognostic model for these differential genes through LASSO-Cox regression analysis. This model has undergone various validations,
proving to be stable and reliable. Based on this model, we further conducted Disease Ontology (DO) enrichment analysis, Gene Set Enrichment
Analysis (GSEA), immune-related analysis, and drug sensitivity analysis to determine the potential functions of the prognostic markers.
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analysis was employed used to compare the prognosis of high-risk

and low-risk groups, and ROC curves were plotted and AUC values

were calculated to evaluate the predictive efficacy of the model.

To validate the accuracy of the risk model, the external

GSE50081 dataset was used to merge the risk score with a LUSC

dataset file that included clinicopathological factors such as T-stage,

N-stage, age, clinical stage, and risk score to assess the correlation of

the risk model with clinical features.
2.5 Characterization of m7G immune-
related gene risk model and construction
of column line diagrams

Univariate Cox regression analysis was used to identify clinical

factors affecting prognosis. These factors were then included in

multifactorial Cox regression analysis to screen for independent risk

factors impacting the prognosis of LUSC. The independent

prognostic model of clinical factors was constructed using the

“cph” function from the R “rms” package. A nomogram

visualizing this predictive model was constructed to predict the

probable 1-, 3-, and 5-year survival rates of patients with LUSC was

constructed. The predictive accuracy of the nomograms was

evaluated using calibration curves, also implemented via the

“rms” package in R.
2.6 Immune cell infiltration, immunoassay
site analysis and drug sensitivity analysis

Immune cell infiltration analysis was performed using a variety of

bioinformatics methods, including GSEA enrichment analysis,

ESTIMATE, immune checkpoint analysis, drug sensitivity analysis,

and single sample gene set enrichment analysis (ssGSEA) (21, 22),

The ESTIMATE algorithm was used to infer the proportion of

stromal cells and immune cells in a tumor sample based on gene

expression. Subsequently, the ssGSEA algorithm was applied to

evaluate immune cells populations, immune function, and the

activity of immune pathways in each sample. By grouping samples

based on immune activity, we could study the differences in immune

function between high- and low risk-groups. Additionally, drug

sensitivity was assessed in each group using the “pRRophtic”

software package (23). The half-maximal inhibitory concentrations

(IC50) of the drugs in the high-and low-split groups were compared

by the Wilcoxon rank test (P<0.05).
2.7 Clinical samples

This study included 79 patients (18 females and 61 males) with

primary LUSC who underwent surgical treatment at the First

Affiliated Hospital of Kunming Medical University from 2009 to

2015. The age ranged from 40 to 76 years. None of the patients had

undergone other treatment before surgical. All patients were free

from infectious diseases. The samples were tumor tissue from LUSC
Frontiers in Immunology 04
patients. Since this study is a retrospective study, we conducted

follow-ups with patients via telephone. All patients included in the

study agreed to participate in this research. The Ethics Committee of

First Affiliated Hospital of KunmingMedical University approved the

study protocol (Ethics Batch No. 2024 L 183). Clinical procedures

were in accordance with the Declaration of Helsinki.
2.8 Immunohistochemistry (IHC)

The 4mm paraffin tissue sections were toasted at 70°C for 2h; the

xylene was dewaxed; and the gradient alcohol was hydrated. Citrate

solution (pH 6.0) was used to repair the antigen. Endogenous

peroxidase was blocked by hydrogen peroxide (0.3%) at room

temperature, and non-specific antigen was blocked by sheep serum

(2.5%). Sections were incubated with rabbit CSF3R、FGA、ORM1

and NTS antibody at 30°C for 80 minutes. Sections were stained with

solution A in DAB chromogenic solution, hematoxylin was used to

stain the nuclei, and neutral gum was used to seal the sections. A

score of > 4 was considered positive. The following antibodies were

used in this study: CSF3R (Cusabio, China); NTS (821026,

Proteintech, China); ORM1 (16439-1-AP, ZEN-BIOSCIENCE,

China); FGA (20645-1-AP, Proteintech, China).
2.9 Statistical analysis

Data were statistically analyzed using R3.6.0. The Shapiro-Wilk

(S-W) test showed that the measures did not conform to normal

distribution, so the Wilcoxon rank sum test was used for

comparisons between multiple groups. Kaplan-Meier curves were

used to evaluate survival differences between groups. One-way Cox

analysis was used to screen prognostic factors, and multifactor Cox

analysis was used to establish a regression model, in which the

likelihood ratio test was used for hypothesis testing of the regression

coefficients and backward selection was used for variable

screening. The test level a = 0.05 (two-tailed). A chi-squared test

was used to analyze the correlation between m7g immune-

related gene expression in LUSC tissues and clinicopathological

parameters. Non-parametric test was used to analyze the correlation

between m7g-immune gene expression in LUSC tissues and

patient age. OS rates were analyzed with log-rank test (Kaplan-

Meier survival analysis). P < 0.05 was considered statistically

significant (* P < 0.05).
3 Results

3.1 Lung squamous carcinoma disease
differential gene expression results

3.1.1 Differential gene expression analysis
To identify LUSC-related genes, we used the limma package to

analyze transcriptome data from 49 control and 501 LUSC cases.

Differential criteria included P <0.05 and |Log2FC|>0.5. From a
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statistical standpoint, a total of 3,061 exhibited significant differential

express ion in LUSC compared to the normal tissue, which 1,466

genes being up-regulated and 1,595 genes being down-regulated and

The volcano plot (Figure 2A) visualized these differential expressions.

Additionally, individual sample gene expression profiles (Figure 2B)

revealed a predominance of up-regulated genes in tumor tissues and

down-regulated genes in normal tissues.

3.1.2 Weighted Gene Co-expression Network
Analysis (WGCNA)

Our practical WGCNA analysis to find disease-related genes

(Supplementary Figure S1A), as shown in (Supplementary Figure

S1B), we chose the optimal threshold as 5. By constructing the co-

expression network from (Supplementary Figure S1C), we can see

that a total of 8 modules were grouped together except for the gray

modules, and we found that MEblue, MEturquoise showed the

highest correlation with clinical traits at a significant level (p<0.05).

Supplementary Figure S1D shows that MEblue and ME-turquoise

showed the highest correlation with clinical traits at a significant

level (p<0.05). This module will be selected for subsequent analysis,

the MEblue module contains 5062 modular genes and the

MEturquoise module contains 6705 modular genes.
3.2 Differential module M7G immune gene
screening and target gene
function enrichment

Based on the 29 m7G methylation-regulated genes,

ConsensusClusterPlus R package was used for consistent

clustering analysis. The cumulative distribution function (CDF)

curve decreased most slowly when K = 2 (Supplementary Figure

S2A), so we determined that the LUSC samples were clustered into

two subclasses, and the heatmap of the clustering matrix at K = 2

was clearly divided into two blocks, cluster 1 contained 251 patients

cluster 1 contains 251 patients, and cluster 2 contains 242 patients.

The clustering results were evaluated using t-SNE dimensionality

reduction analysis (Supplementary Figure S2B), which showed that
Frontiers in Immunology 05
cluster 1 and cluster 2 were clearly separated (Figure 3A), predicting

reliable consistent clustering results.

Next, we applied Kaplan-Meier analysis to analyze the

prognostic value of this clustering. The results revealed a

significant difference in overall survival between the Cluster 1 and

Cluster 2 subclasses (P < 0.05), with Cluster 2 exhibiting better

survival outcomes than Cluster 1 (Figure 3B). Subsequently, we

compared the clinical features and gene expression profiles of the

different subclasses. As shown in (Figure 3C), there were significant

differences in N-stage, gender, and stage between the subtypes,

whereas changes in other clinicopathological features were not

statistically significant between the clusters. We found that m7G

methylation-regulated genes were potentially correlated with

lymphatic metastasis, gender, and tumor stage in LUSC.

We utilized the limma package for differential analysis of M7G

isoform-related genes, applying differential screening conditions of

P <0.05 and |Log2FC|>0.5. In total, 380 genes found to be

statistically significantly differentially expressed between cluster 1

and cluster 2, with 129 genes up-regulated and 251 genes were

down-regulated (Figure 4A). These differences are illustrated in the

heatmap of M7G-related genes (Figure 4B).

We used a Ven diagram (Figure 5A) to illustrate the intersection

of LUSC and normal differential genes, modular genes, and M7G-

related genes with the 2013 immunization genes from the Immport

database. The results identified 20 intersecting genes, which were

subsequently analyzed. The expression of the 20 genes in the disease

and normal groups is shown in Figure 5B, in which ARTN, BMP7,

CXCL14, LTB4R, GAL, ACKR3, WNT5A, NTS, GAST, NPPC, and

POMC were significantly up-regulated in tumor tissues as

compared to normal tissues.

Our GSVA enrichment analysis of 20 differential modular M7G

Immune-related genes based on KEGG gene set, A total of 284 GO

entries were generated. Figure 5C highlights the top23 GO

pathways, including biological process (BP), cellular component

(CC), and molecular function (MF) categories. Notable entries

include receptor-ligand activity, signaling receptor activation

activity, cell chemotaxis, G-protein-coupled receptor binding,

leukocyte migration, collagen-containing extracellular matrix,
FIGURE 2

Screening for disease-differentiated genes in LUSC. (A) The volcano plot comparing lung squamous cell carcinoma (LUSC) samples with normal lung
tissue highlights 3,061 differentially expressed genes. (B) Heatmap showing the differentially expressed genes between lung squamous cell
carcinoma (LUSC) and normal lung tissue.
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hormone activity, neuropeptide signaling pathway, leukocyte

chemotaxis, connective tissue development, second-messenger-

mediated signaling, cell adhesion positive regulation, cytokine-

mediated signaling pathway, positive regulation of MAPK

cascade, cyclic-nucleotide-mediated signaling, etc.
Frontiers in Immunology 06
KEGG enrichment results demonstrated enrichment in seven

KEGG pathways (Figure 5D), including cytokine-cytokine receptor

interactions, viral proteins interacting with cytokines and cytokine

receptors, interactions in the stimulation of neural tissue, bactericidal

effects, fluid shear stress, and atherosclerosis pathways.
FIGURE 4

Identification of m7G-associated LUSC genes. (A) A total of 380 differentially expressed genes were found in two LUSC m7G clusters, including 129
upregulated genes and 251 downregulated genes. (B) Expression of m7G-associated genes in two LUSC m7G clusters.
FIGURE 3

Clinical trait analysis of m7G-associated LUSC subtypes. (A) Results of two LUSC m7G clusters: Cluster 1 and Cluster 2 are clearly separated, and the
results are reliable. (B) Kaplan-Meier overall survival curve for two LUSC m7G clusters: overall survival differs between Cluster 1 and Cluster 2 (P < 0.05),
with Cluster 2 showing better survival than Cluster 1. (C) Clinical features of the two LUSC m7G clusters: N stage, gender, and overall stage differ among
different subtypes.
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3.3 Construction and validation of
immune-related genes risk models

We employed the 20 genes previously identified and utilized

the expression data (FPKM) to divide the TCGA-LUSC

comprising 493 samples after excluding those with incomplete

survival information, into training and validation sets in a 7:3

ratio. The training set consisted of 346 cases, while the validation

set comprised 147 cases. Univariate analysis results in the training

set are depicted in Figure 6A, revealing that four out of 20 genes

exhibited a P<0.05. Specifically, FGA, CSF3R, and ORM1 were

identified as risk genes, whereas NTS was identified as a

protective gene.

Subsequently, the four selected genes underwent further

screening using the LASSO regression analysis in the training set.
Frontiers in Immunology 07
Figures 6B, C illustrates that FGA, CSF3R, NTS, and ORM1 were

retained in the model due to their lowest cross-validation error.

Patients were then assigned risk scores based on the expression

levels of these four model genes and their corresponding coefficients

obtained from lasso regression. Using the median risk score as a

threshold (Figure 6D), patients were stratified into high-risk and

low-risk groups. As shown in (Figure 6E): LUSC patients in the

high-risk group of the training set had worse survival.

The risk score was calculated by the formula:

RiskScore  =  FGA� 0:29604 + CSF3R� 0:10820  + NTS

� ( − 0:04118) +  ORM1� 0:15818

Risk curves based on risk scores, and Figure 6F demonstrated

significantly higher survival rates in the low-risk group compared to

the high-risk group. The area under the curve (AUC) for predicting
FIGURE 5

Screening and enrichment analysis of m7G-Related Immune Genes in Lung Squamous Cell Carcinoma (LUSC). (A) Venn diagram of differential gene
screening from four LUSC m7G-associated immune clusters: 20 overlapping genes were identified. (B) Expression of 20 m7G-related immune genes
in tumor and normal groups. (C) The 20 m7G-related immune genes in LUSC were enriched in 284 GO terms, with the top 23 GO pathways shown.
(D) The 20 m7G-related immune genes in LUSC were enriched in seven KEGG pathways. ****P<0.0001.
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1-, 3-, and 5-year survival rates were all greater than 0.60,

respectively with 0.61, 0.65, and 0.62.

Upon constructing the risk model, internal validation was

performed using the validation set from TCGA. Risk curves,

scatter plots (Figure 6G), heat maps depicting gene expression in

high and low-risk groups, and Kaplan-Meier survival curves

(Figure 6H) confirmed distinct survival outcomes between the

two risk groups. Similarly, ROC curves for the internal validation

set (Figure 6I) indicated AUCs > 0.60 for predicting 1- and 3-year

survival rates.

Furthermore, external validation of the risk model was conducted

on 55 LUSC with intact overall survival (OS) information from the

GEO external GSE50081 dataset. Consistent results were obtained, as

depicted in Figures 6J–L, affirming the robust prognostic capability of

the newly developed risk model for LUSC patients.

Additionally, we explored associations between risk scores and

clinicopathologic characteristics. Patients were categorized by age

into (>60 vs. ≤60), and differences in risk scores across clinical

subgroups were analyzed. Figure 7A shows significantly differences

in risk scores among subgroups based on Ostatus (Overall Survival

Status), N-stage, and gender. We also investigated stratified survival
Frontiers in Immunology 08
analyses of risk models of m7G immune-associated genes in

combination with various clinical features (Figure 7B). The

analysis revealed significant differences across most clinical traits,

except for clinical stage T1, Stage III-IV, ≤60, Female, and Non-

Smoking, where no significant differences were observed between

the high and low risk groups. Notably, ≤60-year-old patients had

significantly lower risk scores compared to patients aged > 60 years,

suggesting a better prognosis in the younger group.
3.4 Comparison of the construction and
prognostic characteristics of nomograms

To develop a practical clinical assessment tool to improve the

accuracy of predicting OS in individuals with LUSC, we

constructed a nomogram containing age, gender, T-stage, tumor

stage, and risk score, and conducted a univariate Cox

proportional hazards analysis to identify independent prognostic

factors (Figure 8A).

Multivariate Cox regression analysis (Figure 8B) identified T stage,

age, and riskScore as independent prognostic factors (P < 0.05).
FIGURE 6

Construction of a risk model of m7g immune-related genes in LUSC. (A) Four prognosis-related genes identified by univariate Cox regression
analysis: 20 genes were initially screened out and four genes were associated with survival (P< 0.05). (B) LASSO coefficient distribution of four m7G
immune-related genes in LUSC. (C) The tuning parameter (l) in the LASSO model was selected using the minimum criterion. (D) LUSC patients in
the TCGA-LUSC training set were divided into high-risk and low-risk groups based on risk scores. (E) Survival analysis of the TCGA-LUSC training
set: the high-risk group had worse survival compared to the low-risk group. (F) ROC curve for the TCGA-LUSC training set: the AUC values for 1-,
3-, and 5-year survival were all greater than 0.60. (G) Risk curves, scatter plots, high- and low-risk group models, and gene expression heatmap for
the TCGA-LUSC internal validation set. (H) Survival analysis for the TCGA-LUSC internal validation set: the high-risk group had lower survival rates.
(I) ROC curve for the TCGA-LUSC internal validation set. (J) The GEO External dataset GSE50081 risk curves, scatter plots, set Heatmap and
modeled gene expression for high- and low-risk subgroups. (K) Survival analysis of the GEO external validation dataset GSE50081: the high-risk
group had worse survival compared to the low-risk group. (L) ROC curve for the GEO external validation dataset GSE50081: the AUC values for 1-,
3-, and 5-year survival were all greater than 0.60.
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Subsequently, we constructed an independent prognostic model

using the clinical factors riskScore, T stage, Age. The nomogram

(Figure 8C) visualizes this predictive model and estimates the 1-, 3-,

and 5-year probabilities for patients with LUSC. The calibration plot

(Figure 8D) confirms that the predicted 1-, 3-, and 5-year survival rates

are consistent with the actual observed results. These findings suggest

that T stage, clinical stage, age, and RiskScore are important factors in
Frontiers in Immunology 09
clinical evaluationof LUSCpatient prognosis.Toensure comparability

between models, we calculated the area under the ROC curve for the

independent prognostic predictor (risk score, T-stage, and age) in the

entire TCGA cohort. The results showed that the inclusion of these

three independent prognostic factors constituted the model with the

highest AUC value, which was superior to the model based on a single

factor. Specifically, the riskScore+T-stage+Age model achieved the
FIGURE 7

Risk scores of different risk groups. (A) Based on age, the patients were divided into: >60 and ≤60 subgroups. Risk scores were significantly different
in Ostatus, N stage, and gender groups, but not in other groups. (B) Survival analysis based on clinical factors was performed on the risk groups.
Except for T1, stage IIIs-IV, ≤60, females, and non-smokers, other clinical features were statistically significant. *P<0.05, **P<0.01, ns indicates P >
0.05 (representing no statistically significant difference).
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highest AUC values for predicting 1- and 3-years survival rates

(Figures 8E–G), indicating that this combination provided the most

accurate prognostic model.

Therefore, our findings underscore the superior effective of the

nomogram incorporating risk score, T-stage, and age in estimating

the prognosis for patients with LUSC.
3.5 Expression of M7G immune-related
genes in lung squamous carcinoma
specimens and their
prognostic implications

To investigate the expression of M7G immune-related genes in

clinical lung squamous cell carcinoma (LUSC) specimens and their

correlation with patient prognosis, we collected 79 postoperative

paraffin-embedded samples from LUSC patients who underwent

surgery at the First Affiliated Hospital of Kunming Medical

University. Follow-ups with patients were conducted via

telephone. Immunohistochemistry (Figure 9A) was employed to

detect the expression levels of FGA, CSF3R, ORM1, and NTS.

Our results showed no significant correlation between the

expression of these genes and the patients’ gender, age, smoking

status, N stage, T stage, or overall clinical stage. However, a positive

correlation was observed between the expression of FGA and

CSF3R (P=0.002) and ORM1 (P<0.001), while FGA expression

was negatively correlated with NTS (P=0.002, Table 1). CSF3R

expression was positively correlated with FGA(P=0.002) and ORM1

(P=<0.001, Table 2), had no significant correlation with NTS

(P=0.098, Table 3). Furthermore, ORM1 expression was

negatively correlated with NTS (P=0.013, Table 4).

Survival analysis (Figure 9B) revealed that high expression

levels of CSF3R, ORM1, and FGA were associated with poorer

prognosis in LUSC patients, whereas high expression of NTS was

associated with better prognosis. Based on the expression levels of

FGA, CSF3R, NTS, and ORM1, patients were stratified into high-

risk and low-risk groups. The high-risk group was significantly

associated with poorer prognosis.
3.6 Research on immune
microenvironment and anti-cancer therapy

We performed GSVA analysis on samples from the high-risk

and low-risk groups. as shown in Figure 10A, the high-risk group

exhibited activation in 23 pathways, including coagulation, E2F

targets, G2M checkpoint, IL6/JAK/STAT3 signaling, DNA repair,

myogenesis, estrogen response, peroxisome, angiogenesis, TGFb
signaling, and MYC target V1. pathways, including the low-risk

group showed activated in 9 pathways, including protein secretion,

PI3K/AKT/mTOR signaling, interferon alpha response, mitotic

spindle, and unfolded protein response.

Tumor microenvironment (TME) cells are a crucial component

of tumor tissues, and an increasing body of evidence highlights their

Clinical significance in predicting prognosis and treatment

outcome. We inferred the proportion of stromal and immune
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cells in tumor samples based on gene expression, assigning each

sample 3 scores: stromal score, immune score and ESTIMATE

composite score. Additionally, we calculated the immune cell in the

samples using the ssGSEA algorithm. The results indicated that the

stromal score, immune score and ESTIMATE composite score were

significantly lower in the high-risk group compared to the low-risk

group (Figure 10B). The ssGSEA algorithm results (Figure 10C)

showed that the scores of 26 immune cells, including activated B

cells, activated CD4+ T cells, activated CD8+ T cells, CD56 natural

killer cells, and mast cells, were significantly lower in the high risk

groups. Patients in the low-risk group had higher immune scores

than those in the high-risk group, reflecting differences immune

function between the two groups.

We also performed a differential analysis of the expression of 9

Immune Checkpoints between the high- and low-risk groups, with

significant differences observed in loci such as CD27, CD80,

CTLA4, PDCD1 (Figure 10D). Furthermore, we investigated

common drug sensitivity, demonstrating significant differences in

response to chemotherapeutic drugs agents, such as Lapatiniband

Gefitinib (P < 0.05), as shown in Figure 10E.
4 Discussion

Lung cancer is one of the leading causes of cancer-related deaths

worldwide (24). It is broadly categorized into two main subtypes:

small cell lung cancer (SCLC) and non-small cell lung cancer

(NSCLC), with NSCLC constituting approximately 85% of cases.

Among NSCLC subtypes, lung adenocarcinoma (LUAD) and lung

squamous cell carcinoma (LUSC) are the most common, with

LUSC accounting for 40% of all cases (25). Despite advancements

in surgery, radiotherapy, targeted therapy, and immunotherapy, the

5-year survival rate of lung cancer patients remains discouragingly

low (3). Compared to Lung adenocarcinoma (LUAD), LUSC

presents a poor clinical prognosis and lacks targeted drugs. The

role of m7G in tumor has garnered increasing attention, yet there

are currently no report on the involvement of m7G immune-related

genes in lung squamous cell carcinoma (LUSC) and their impact on

the prognosis and immunotherapy. Therefore, our aim is to screen

m7G immune-related genes and construct a risk model to assess the

prognosis of patients with LUSC.

We intersected LUSC and normal lung tissue differential genes,

modular genes and M7G-related genes with 2013 immune genes in

the immport database, and the results showed that a total of 20genes

were extracted. Among them, ARTN, BMP7, CXCL14, LTB4R,

GAL, ACKR3, WNT5A, NTS, GAST, NPPC, and POMC were

highly expressed in tumor tissues.

Artemin (ARTN) is a member of glial cell line-derived

neurotrophic factor (GDNF) family of ligands, ARTN triggers

oncogenicity and metastasis by the activation of the AKT

signaling pathway (26). Similar to other malignancies, the

progression of LUSC is modulated by microenvironmental cues,

including hypoxia (27).Hypoxia, one of the hallmarks of cancer, is

caused by an insufficient oxygen supply, mostly due to a chaotic,

deficient tumor microcirculation (28). It has been demonstrated

that BMP7 has metastasis role in regulating lung cancer cell motility
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and invasion without influencing cell growth, proliferation, or

apoptosis (29), Overexpression of BMP7 also promotes

immunotherapy resistance (30).

Recently, CXCL14 has emerged as a potential diagnostic and

prognostic biomarker for lung cancer patients (31).Whereas LTB4R

is associated with immune cell infiltration (32), Galectins(GAL)
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play an active role in many types of cancer by regulating cell growth,

conferring cell death resistance, or inducing local and systemic

immunosuppression, allowing tumor cells to escape the host

immune response (33), and it is now well established that ACKR3

plays a role in breast, lung, and brain cancers (34), ACKR3 is

overexpressed in numerous cancer types and has been involved in
FIGURE 8

Clinical value of risk characteristics in TCGA-LUSC. (A) Univariate Cox regression analysis shows that T stage, overall Stage, age, and risk score
factors are independent prognostic factors. (B) Multivariate Cox regression analysis of risk scores and clinical factors. T stage, age, and risk score are
independent prognostic factors. (C) A nomogram combining age, T stage, and risk score predicts 1-, 3-, and 5-year survival probability. (D)
Calibration curves test the agreement between actual and predicted results at 1, 3, and 5 years. (E–G) ROC curve analysis of independent prognostic
models at 1, 3, and 5 years.
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FIGURE 9

Validation of clinical samples. (A) Immunohistochemistry was employed to detect the expression levels of FGA, CSF3R, ORM1, and NTS. (B) Survival
analysis of m7G immune-related gene expression, risk stratification, and their correlation with the prognosis of lung squamous cell carcinoma
patients. The small letters indicates the scale bar that represents 150 mm.
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the modulation of tumor cell proliferation and migration, tumor

angiogenesis, or resistance to drugs, thus contributing to cancer

progression and metastasis occurrence. A recent study showed that

elevated expression of Wnt5a was associated with poor prognosis in

non-small cell lung cancer (NSCLC) patients (35); Upregulation of

the neuropeptide neurotrophin (NTS) is associated with poor

prognosis in lung adenocarcinoma(LUAD) (36),There are

relatively few studies on the prognosis of NTS and LUSC, and the

correlation is not yet clear, our study shows that high NTS

expression in LUSC is associated with better prognosis. and

Dysregulation of GAST has also been associated with the

development of various types of cancers (37),Additionally, POMC

expression may be associated with tumor malignancy (38).

Subsequently, we utilized the expression data of these genes to

divide the 293 samples in the TCGA- LUSC dataset into training and
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validation sets in a 7:3 ratio, with 206 cases in the training set and 87

cases in the validation set. Model genes were screened in the training

set using univariate Cox regression followed by LASSO algorithm,

identifying four feature genes at the minimum cross-validation error:

FGA, CSF3R, and ORM1 as risk genes, and NTS as a protective gene.

Consequently, we employed these four genes (FGA, CSF3R, ORM1

and NTS) to construct a novel prognostic model.

Comprehensive studies have shown that serum levels of FGA

are upregulated in a variety of malignant tumors, including

endometrial, hepatocellular, gastric, and colorectal tumors, which

is consistent with our findings (39–42). CSF3R significantly

correlates with a large number of genes that are associated with

poor colorectal cancer prognosis (43). (ORM1) has been shown

to be upregulated in the serum of breast cancer patients (44);

and elevated urinary ORM1 has been suggested as a useful
TABLE 1 Correlation between the clinicopathological characteristics and expression of FGA in LUSC.

Characteristics Negative (n=59) Positive (n=20) Total (n=79) P value

Age, M(IQR) 67.0 (61.5,71.0) 66.5 (57.0,70.0) 67.0 (60.5,70.5) 0.848

Gender, n(%) 0.373

Female 12 (20.3%) 6 (30.0%) 18 (22.8%)

Male 47 (79.7%) 14 (70.0%) 61 (77.2%)

Smoking, n(%) 0.767

Quit smoking ≤15 years 44 (74.6%) 16 (80.0%) 60 (75.9%)

Quit smoking > 15 years 15 (25.4%) 4 (20.0%) 19 (24.1%)

N, n(%) 0.232

0 40 (67.8%) 17 (85.0%) 57 (72.2%)

1-3 19 (32.2%) 3 (15.0%) 22 (27.8%)

T, n(%) 0.434

1 15 (25.4%) 5 (25.0%) 20 (25.3%)

2 34 (57.6%) 14 (70.0%) 48 (60.8%)

3 + 4 10 (16.9%) 1 (5.0%) 11 (13.9%)

Stage, n(%) 0.076

I 32 (54.2%) 16 (80.0%) 48 (60.8%)

II+III 27 (45.8%) 4 (20.0%) 31 (39.2%)

CSF3R, n(%) 0.002*

Negative 45 (76.3%) 7 (35.0%) 52 (65.8%)

Positive 14 (23.7%) 13 (65.0%) 27 (34.2%)

NTS, n(%) 0.002*

Negative 24 (40.7%) 17 (85.0%) 41 (51.9%)

Positive 35 (59.3%) 3 (15.0%) 38 (48.1%)

ORM1, n(%) <0.001***

Negative 43 (72.9%) 5 (25.0%) 48 (60.8%)

Positive 16 (27.1%) 15 (75.0%) 31 (39.2%)
*P<0.05, ***P<0.001.
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biomarker for bladder cancer (45), ORM1 also plays a key role in

hepatocellular carcinoma development and may be a potential

target for future development of therapeutic agents against HCC

(46). Neurotensin receptor-1 (NTS1) is a G-protein coupled

receptor that is being studied in various cancers, where

neurotensin (NT) where oncogenic effects in tumors growth and

metastatic spread (47, 48).The expression of NTS and its receptor

holds potential as a predictive and prognostic marker for colorectal

cancer in the postoperative selection of adjuvant therapy (49, 50),

Our study Our study suggests that NTS could serve as a predictive

and prognostic marker for LUSC.

Patients were subsequently scored based on the expression of

the modeled genes using LASSO regression analysis, and divided

into high-risk and low-risk groups based on the median risk score.

We observed a significant difference in the survival between high-
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risk and low-risk groups, with patients in the high-risk group

exhibiting a lower survival rate.

To validate the accuracy of the risk model, we conducted a

validation analysis on the validation set. The results indicated that

patients in the high-risk group exhibited lower survival rates in the

validation set. The Area Under the Curve (AUC) for both the

training set and the validation set at 3 years and 5 years exceeded

0.6, indicating that the reliability of the risk model.

We performed a correlation analysis between risk scores and

various clinical traits. The analysis revealed significant differences

risk scores across different Ostatus, N stage, and gender subgroups,

whereas others clinical traits did not show significant differences

(P<0.05). Additionally, we investigated the stratified survival

analysis of m7G immune-related gene risk model across clinical

traits. The results showed significant differences in survival
TABLE 2 Correlation between the clinicopathological characteristics and expression of CSF3R in LUSC.

Characteristics Negative (n=52) Positive (n=27) Total (n=79) P value

Age, M(IQR) 67.0 (59.5,70.5) 67.0 (61.5,70.5) 67.0 (60.5,70.5) 0.967

Gender, n(%) 0.058

Female 8 (15.4%) 10 (37.0%) 18 (22.8%)

Male 44 (84.6%) 17 (63.0%) 61 (77.2%)

Smoking 0.576

Quit smoking ≤15 years 41 (78.8%) 19 (70.4%) 60 (75.9%)

Quit smoking > 15 years 11 (21.2%) 8 (29.6%) 19 (24.1%)

N, n(%) 0.992

0 37 (71.2%) 20 (74.1%) 57 (72.2%)

1-3 15 (28.8%) 7 (25.9%) 22 (27.8%)

T, n(%) 0.837

1 12 (23.1%) 8 (29.6%) 20 (25.3)

2 32 (61.5%) 16 (59.3%) 48 (60.8)

3 + 4 8 (15.4%) 3 (11.1%) 11 (13.9)

Stage, n(%) 0.595

I 30 (57.7%) 18 (66.7%) 48 (60.8%)

II+III 22 (42.3%) 9 (33.3%) 31 (39.2%)

NTS, n(%) 0.098

Negative 23 (44.2%) 18 (66.7%) 41 (51.9%)

Positive 29 (55.8%) 9 (33.3%) 38 (48.1%)

ORM1, n(%) <0.001***

Negative 40 (76.9%) 8 (29.6%) 48 (60.8%)

Positive 12 (23.1%) 19 (70.4%) 31 (39.2%)

FGA, n(%) 0.002*

Negative 45 (86.5%) 14 (51.9%) 59 (74.7%)

Positive 7 (13.5%) 13 (48.1%) 20 (25.3%)
*P<0.05, ***P<0.001.
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outcomes for other clinical features except for patients with clinical

stage T1, stage III-IV, patients aged ≤ 60 years, females, and non-

smokers. Notably, patients aged of ≤ 60 years old had significantly

lower risk scores compared to those patients aged >60 years,

indicating a better prognosis for the younger cohort.

We examined the expression levels of FGA, CSF3R, NTS, and

ORM1 in clinical samples of LUSC. Our findings revealed no

significant correlation between the expression of these genes and

patients’ gender, age, smoking status, N stage, T stage, or overall

clinical stage. Survival analysis indicates that CSF3R, ORM1, and

FGA are associated with a poorer prognosis in LUSC patients,

whereas NTS is associated with a better prognosis. Based on the

expression levels of FGA, CSF3R, NTS, and ORM1, patients were

stratified into high-risk and low-risk groups. The high-risk group
Frontiers in Immunology 15
was associated with a poorer prognosis. The results from clinical

samples affirm the robust prognostic capability of the newly

developed risk model for LUSC patients.

We utilized clinical factors to construct nomograms that

demonstrated the highest AUC values at 1 and 3 years, indicating

superior prognostic modeling capacity. Followed this, GSEA were

performed. The results indicated that activated in 23 signaling

pathways in the high-risk group, including coagulation, E2F targets,

G2M checkpoints, IL6/JAK/STAT3 signaling, DNA repair,

myogenesis, estrogen response, peroxisomes, angiogenesis, TGF-b
signaling, MYC target V1, etc. in the low-risk group, nine pathways

were activated, including protein secretion, PI3K/AKT/mTOR

signaling, response to interferon alpha, and mitotic spindle.

Pathways with a high risk of involvement are associated with
TABLE 3 Correlation between the clinicopathological characteristics and expression of ORM1 in LUSC.

Characteristics Negative (n=48) Positive (n=31) Total (n=79) P value

Age, M(IQR) 67.5 (64.5,72.0) 65.0 (58.5,68.0) 67.0 (60.5,70.5) 0.114

Gender, n() >0.999

Female 11 (22.9%) 7 (22.6%) 18 (22.8%)

Male 37 (77.1%) 24 (77.4%) 61 (77.2%)

Smoking 0.606

Quit smoking ≤15 years 35 (72.9%) 25 (80.6%) 60 (75.9%)

Quit smoking > 15 years 13 (27.1%) 6 (19.4%) 19 (24.1%)

N, n(%) >0.999

0 35 (72.9%) 22 (71.0%) 57 (72.2%)

1-3 13 (27.1%) 9 (29.0%) 22 (27.8%)

T, n(%) 0.801

1 11 (22.9%) 9 (29.0%) 20 (25.3%)

2 30 (62.5%) 18 (58.1%) 48 (60.8%)

3 + 4 7 (14.6%) 4 (12.9%) 11 (13.9%)

Stage, n(%) 0.754

I 28 (58.3%) 20 (64.5%) 48 (60.8%)

II+III 20 (41.7%) 11 (35.5%) 31 (39.2%)

CSF3R, n(%) <0.001***

Negative 40 (83.3%) 12 (38.7%) 52 (65.8%)

Positive 8 (16.7%) 19 (61.3%) 27 (34.2%)

NTS, n(%) 0.013*

Negative 19 (39.6%) 22 (71.0%) 41 (51.9%)

Positive 29 (60.4%) 9 (29.0%) 38 (48.1%)

FGA, n(%) <0.001***

Negative 43 (89.6%) 16 (51.6%) 59 (74.7%)

Positive 5 (10.4%) 15 (48.4%) 20 (25.3%)
*P<0.05, ***P<0.001.
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poorer LUSC prognosis. Moreover, the higher expression of most

immune checkpoint-related genes suggests that patients in high-risk

groups may benefit from immunotherapy. We also screened

chemotherapeutic agents and small molecules that are sensitive to

different risk groups. Notably, the high-risk group exhibited greater

sensitivity to commonly used chemotherapeutic agents, such as

Lapatinib and Gefitinib. To the best of our knowledge, this

represents the first bioinformatics analysis aimed at elucidating the

prognostic significance of m7G immune-related gene markers in

malignant tumors. However, several limitations warrant considered

when interpreting our results. First, our study is based on a

retrospective analysis of three public datasets, and our validation in

clinical specimens is limited to a single hospital. Therefore, further

large-scale and prospective studies are needed for validation.

Secondly, unlike m6A modification, the biological processes
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involving m7G modification remain less comprehensively

understood. Therefore, the m7G immune-related genes associated

with m7G identified in our study may not encompass the entirety of

m7Gmodification processes. Thirdly, additional detailed mechanistic

studies are necessary to elucidate the specific roles of m7G immune-

related genes in the development and progression of LUSC. Fourth,

this study has some limitations. Specifically, when analyzing

sequencing data related to lung squamous cell carcinoma from the

TCGA database, only 49 normal lung tissue samples were available.

The relatively small sample size may affect the reliability and accuracy

of the models we constructed.

In conclusion, we have comprehensively summarized the

alterations and prognostic roles of m7G-immune related

regulatory genes in LUSC for the first time. We subsequently

developed a prognostic model based on the m7G gene signature
TABLE 4 Correlation between the clinicopathological characteristics and expression of NTS in LUSC.

Characteristics Negative (n=41) Positive (n=38) Total (n=79) P value

Age, M(IQR) 68.0 (62.0,72.0) 66.0 (56.0,68.0) 67.0 (60.5,70.5) 0.058

Gender, n(%) >0.999

Female 9 (22.0%) 9 (23.7%) 18 (22.8%)

Male 32 (78.0%) 29 (76.3%) 61 (77.2%)

Smoking, n(%) >0.999

Quit smoking ≤15 years 31 (75.6%) 29 (76.3%) 60 (75.9%)

Quit smoking > 15 years 10 (24.4%) 9 (23.7%) 19 (24.1%)

N, n(%) 0.335

0 32 (78.0%) 25 (65.8%) 57 (72.2%)

1-3 9 (22.0%) 13 (34.2%) 22 (27.8%)

T, n(%) 0.878

1 11 (26.8%) 9 (23.7%) 20 (25.3%)

2 25 (61.0%) 23 (60.5%) 48 (60.8%)

3 + 4 5 (12.2%) 6 (15.8%) 11 (13.9%)

Stage, n(%) 0.233

I 28 (68.3%) 20 (52.6%) 48 (60.8%)

II+III 13 (31.7%) 18 (47.4%) 31 (39.2%)

CSF3R, n(%) 0.098

Negative 23 (56.1%) 29 (76.3%) 52 (65.8%)

Positive 18 (43.9%) 9 (23.7%) 27 (34.2%)

ORM1, n(%) 0.013*

Negative 19 (46.3%) 29 (76.3%) 48 (60.8%)

Positive 22 (53.7%) 9 (23.7%) 31 (39.2%)

FGA, n(%) 0.002*

Negative 24 (58.5%) 35 (92.1%) 59 (74.7%)

Positive 17 (41.5%) 3 (7.9%) 20 (25.3%)
*P<0.05.
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involving four genes. This model demonstrated robust accuracy in

predicting the survival of patients with LUSC and holds potential

for guiding personalized treatment decisions. Furthermore, our

findings suggest that immune cell infiltration and alterations in

the TME may contribute as underlying mechanisms by which the

model predicts prognosis in LUSC patients.
Frontiers in Immunology 17
5 Research highlights

The risk model developed based on m7G immune-related

genes has good predictive power, which is helpful in predicting

the clinical prognosis of patients with LUSC and guiding

treatment decisions.
FIGURE 10

Enrichment analysis of different risk subgroups. (A) GSVA pathway enrichment analysis of different risk subgroups. (B) ESTIMATE scores of different
risk subgroups. (C)Violin plot of immune cell scores in high- and low-risk groups based on the ssGSEA algorithm. (D) Differences in immune
checkpoints between high- and low-risk groups. (E) Drug sensitivity analysis for high- and low-risk groups. *P<0.05, **P<0.01, ***P<0.001,
****P<0.0001, ns indicates P > 0.05 (representing no statistically significant difference).
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