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Over the past decades, significant progress has been made in the understanding

of non-small cell lung cancer (NSCLC) biology and tumor progression

mechanisms, resulting in the development of novel strategies for early

detection and wide-ranging care approaches. Since their introduction, over 20

years ago, targeted therapies with tyrosine kinase inhibitors (TKIs) have

revolutionized the treatment landscape for NSCLC. Nowadays, targeted

therapies remain the gold standard for many patients, but still they suffer from

many adverse effects, including unexpected toxicity and intrinsic acquired

resistance mutations, which lead to relapse. The adoption of immune

checkpoint inhibitors (ICIs) in 2015, has offered exceptional survival benefits for

patients without targetable alterations. Despite this notable progress, challenges

remain, as not all patients respond favorably to ICIs, and resistance to therapy can

develop over time. A crucial factor influencing clinical response to

immunotherapy is the tumor microenvironment (TME). The TME is pivotal in

orchestrating the interactions between neoplastic cells and the immune system,

influencing tumor growth and treatment outcomes. In this review, we discuss

how the understanding of this intricate relationship is crucial for the success of

immunotherapy and survey the current state of immunotherapy intervention,

with a focus on forthcoming and promising chimeric antigen receptor (CAR) T
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cell therapies in NSCLC. The TME sets major obstacles for CAR-T therapies,

creating conditions that suppress the immune response, inducing T cell

exhaustion. To enhance treatment efficacy, specific efforts associated with

CAR-T cell therapy in NSCLC, should definitely focus TME-related

immunosuppression and antigen escape mechanisms, by combining CAR-T

cells with immune checkpoint blockades.
KEYWORDS

non-small cell lung cancer (NSCLC), tumor microenvironment (TME), tyrosine kinase
inhibitors (TKIs), immune checkpoint inhibitors (ICIs), chimeric antigen receptor (CAR) T
cell therapy
Introduction

Lung cancer is a major cause of cancer-related deaths and the

second most diagnosed cancer globally (1). Non-small cell lung cancer

(NSCLC) accounts for 80 to 90% of all lung cancer diagnoses in the

United States (2), and in Europe (3), with lung adenocarcinoma

(LUAD) and lung squamous cell carcinoma (LUSC) being the two

most prevalent NSCLC subtypes (4). Numerous variables play a role

in the development of NSCLC. Smoking and secondhand smoke

exposure are key risk factors (5). Despite remaining uncertain,

marijuana and e-cigarette usage have been related to a possible risk

of NSCLC (6). Additionally, environmental and professional exposure

to asbestos, radon gas, air pollution, and certain pollutants are strong

risk factors associated with NSCLC development (7), in addition to

genetic predisposition (8).

Although surgery and chemotherapy (including neoadjuvant

and/or adjuvant therapy), as well as radiotherapy, have shown

improvements in prolonging overall survival (OS) in NSCLC

patients, they still present with severe toxic side effects (9). In the

past 20 years, targeted therapies have become the gold standard to

treat NSCLC patients with actionable oncogenic alterations,

including driver mutations and fusions/rearrangements (10).

These patients represent only 15–20% of all NSCLC patients and,

while targeted therapies are initially effective, resulting in prolonged

progression-free survival (PFS) and improved OS, their efficacy is

limited by the emergence of resistance mechanisms (11).

Therefore, developing new treatment approaches that impact on

PFS and OS is now the primary focus in NSCLC research. In this

context, targeting specific components of the tumormicroenvironment

(TME) in NSCLC is seen today as the Holy Grail to boost the

effectiveness of established drugs and design novel anticancer agents.

Drugs targeting cancer associated fibroblasts, extracellular components,

immune cells, endothelial cells and the surrounding tumor vasculature

have been recently approved by regulatory agencies (12, 13). A

dominant trait of NSCLC is the elevated presence of tumor-specific

(TSAs) and tumor-associated antigens (TAAs) on the surface of

malignant cells (14). Cancer immunotherapy has the goal to
02
overcome TME by eliciting (or re-igniting) an adaptive immune

response, especially the T-cell-mediated TSA- and TAA-directed

cytotoxicity against cancer cells (15). Immunotherapies include

therapeutic vaccines, autologous cellular therapies, and different types

of immune modulators, including checkpoint inhibitors, cytokines, T-

cell agonists and adjuvants (16). In patients without a driver mutation,

immunotherapy in the form of immune checkpoint inhibitors (ICIs) is

currently an integral part of NSCLC treatment (17). Programmed cell

death ligand-1 (PD-L1) expression is the main predictive biomarker of

response to ICIs directed to PD-L1 and to its binding partner, the

programmed cell death protein 1 (PD-1) (18). Normally, the five-year

OS rate exceeds 25% for patients having advanced NSCLC with a PD-

L1 score of 50% or higher (19, 20). This statistics is still superior to the

average OS of patients treated with conventional drugs, which rarely

exceed 15% (21, 22). Nevertheless, a more reliable marker of response is

missing and highly wanted to improve patient stratification (23)

considering that a significant fraction of patients fails to benefit from

those treatments. Among investigated biomarkers, the tumor

mutational burden (TMB) has recently emerged as a major predictor

of immunotherapy efficacy in NSCLC (17). However, to elicit effective

immune response novel immunotherapeutic approaches are needed in

the so-called “cold tumors”, which are generally characterized by a

decreased TMB, defective HLA class I antigen processing machinery

(APM), reduced T-cell presence, and low PD-L1 expression. Two of the

most advanced approaches involve adoptive cell transfer (ACT) with

autologous tumor-infiltrating lymphocytes (TILs) and chimeric

antigen receptor (CAR)-based therapies. In this scenario, there has

been a rise in the number of clinical trials exploring the safety and

efficacy of different antigen-based ACTs.
Targeted therapies

The discovery of targetable genetic alterations has radically

changed the approach to NSCLC treatment. With the

identification of specific cancer driver mutations, today clinicians

can provide individualized therapies that lead to extremely efficient
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responses in some patients’ subsets when treated for example with

the matched targeted tyrosine-kinase inhibitor (TKI) (24, 25).

Targeting of the epidermal growth factor receptor (EGFR) is a

paradigm of this type of therapy. Mutations in the EGFR gene are

prevalent in approximately ~15% of patients with NSCLC (~50% in

Asians), and they play a primary role in disrupting cellular functions

such as cell growth, survival, invasion, and angiogenesis. Mutations in

EGFR can lead to continuous activation and independence from

ligands, particularly in the ATP-binding region of the tyrosine kinase

domain. Notably, common EGFR mutations, including exon 19

deletions and the L858R mutation on exon 21, have been associated

with heightened sensitivity to EGFR TKIs (24, 26–29). First-generation

anti-EGFR TKIs, like gefitinib (NCT01203917) (30) and erlotinib

(NCT00446225) (31), have demonstrated superior response rates and

longer PFS (9.2–13.1months) than traditional cytotoxic therapies in

treatment-naive patients with EGFR mutations (24, 31–37). Second-

generation inhibitors, such as afatinib (NCT00949650; NCT01121393)

(38) and dacomitinib (NCT01774721) (39), target EGFR but also the

receptor tyrosine-protein kinase erbB-2 (HER2) and erb-4 (HER4),

resulting in improved progression-free survival compared to gefitinib

(24, 38–40). The most common acquired resistance to first-generation

TKIs arises due to the additional EGFR mutation T790M in exon 20

(24, 41, 42); other resistance mechanisms to targeted therapy include

HER2 amplification, mutations in the MET proto-oncogene receptor

tyrosine kinase (MET), the B-Raf proto-oncogene serine/threonine

kinase (BRAF), the ROS proto-oncogene 1 receptor tyrosine kinase

(ROS1), and the phosphatidylinositol-4,5-bisphosphate 3-kinase

catalytic subunit alpha (PIK3Cclinical A) genes (24, 43). Interestingly,

resistance to TKIs can also cause lung adenocarcinoma to evolve into

small-cell lung cancer (SCLC): roughly, 3% to 10% of EGFR-mutated

NSCLC could shift to SCLC clinical subtype (44). Third-generation

EGFR inhibitors selectively target the original activating mutations, in

addition to the T790M resistance mutation. Osimertinib, a

representative third-generation anti-EGFR TKI, while exhibiting

higher response rates and longer PFS than platinum-based

chemotherapeutic treatment (45), has also shown efficacy in NSCLC

patients with EGFR-T790M mutations after progression to treatment

with first-generation TKIs (24, 46, 47). FLAURA clinical trial

(NCT02296125) comparing osimertinib to erlotinib or gefitinib as a

first-line treatment in advanced NSCLC patients with EGFR mutations

revealed that osimertinib significantly improved PFS, establishing it as

the preferential first-line treatment option (24, 48, 49). Acquired

resistance to third-generation anti-EGFR TKIs can also occur through

the C797S mutation (24, 50). Triple mutants carrying the original

sensitizing mutation, plus acquired T790M and C797S mutations, show

strong resistance to TKIs from all three generations (24, 51). Promising

approaches for these triple mutants include allosteric inhibitors like

EAI045 in tumors with the L858R-sensitizing mutation and the

anaplastic lymphoma kinase (ALK) inhibitor brigatinib in tumors

with exon 19 deletion. These inhibitors can be combined with

cetuximab, an anti-EGFR monoclonal antibody, to target tumors

harboring the triple mutant (24, 52, 53).

ALK-positive tumors represent about 4% of lung cancers, and

generally appear in adenocarcinoma NSCLC of younger non-

smoker patients (54). Typically, the ALK gene is rearranged with
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the echinoderm microtubule-associated protein-like 4 (EML4)

gene, forming the EML4-ALK fusion protein (24, 55). Crizotinib,

which is an oral inhibitor that targets mutations in the kinase

domain of ALK (NCT00932893) (56), MET, and ROS1

(NCT00585195) (24, 57, 58), also shows effectiveness in treating

NSCLCs with ALK fusion by improving 62% PFS and response rate,

compared to traditional chemotherapy (24, 59–62). Second-

generation ALK inhibitors like ceritinib (63), brigatinib

(NCT02737501) (64), and alectinib (NCT02075840) (60) have

been shown to be effective in the second-line setting after

resistance to crizotinib, which is typically used as first-line

treatment for ALK-mutated patients (65). As a second-line

treatment, alectinib showed an objective response rate (ORR) of

45% and PFS of 8 to 12 months, and brigatinib showed an ORR of

45% to 54% with a PFS of 9.2 to 12.9 months (65). Also, clinical

studies have shown higher ORR and median PFS for alectinib than

crizotinib in previously untreated patients with ALK-positive

NSCLC, establishing alectinib as a viable first-line option (59, 65).

Resistance to ALK inhibitors can arise from various alterations in

the ALK gene, such as mutations and amplification, or through the

activation of alternative signaling pathways, like the EGFR and the

mitogen-activated protein kinase (MAPK) cascade (66). Among all

resistance mechanisms, secondary ALK mutations are the main

drivers of resistance to second-generation TKIs (67). The most

common ALK resistance mutation observed in patients treated with

second-generation TKIs is the G1202R. This mutation confers in

vitro resistance to all available ALK inhibitors except lorlatinib.

Lorlatinib, a potent third-generation ALK inhibitor, is effective

against most known ALK resistance mutations, and it has

demonstrated efficacy in patients previously treated with up to

three lines of ALK inhibitors, providing a potential treatment

option for overcoming resistance (NCT01970865) (68, 69).

As mentioned before, crizotinib is an oral inhibitor that targets

ALK, MET, and ROS1 tyrosine kinases. ROS1 gene can undergo

rearrangements and typically fuses with the CD74 gene, which

causes the receptor tyrosine kinase domain to become persistently

active (70). Ceritinib and lorlatinib (NCT01970865) (69) also

exhibit notable efficacy in ROS1-positive tumors (68, 71, 72).

Resistance to crizotinib in cases of ROS1 rearrangements can arise

through various mechanisms, including secondary mutations, most

notably the G2032R mutation. Additionally, resistance may occur

due to the activation of wild-type EGFR signaling or mutations in

the Kirsten rat sarcoma viral proto-oncogene (KRAS) and the KIT

proto-oncogene receptor tyrosine kinase (KIT) genes (73, 74).

Additional targetable gene alterations in NSCLC include BRAF

and HER2 mutations, as well as rearrangements in the RET proto-

oncogene (RET), and fusions involving the neurotrophic receptor

tyrosine kinase (NTRK) genes 1-3 (NTRK1, NTRK2, NTRK3) (24).

Roughly half of the NSCLC patients with a BRAF mutation carry the

V600E activating mutation in exon 15 (75, 76). This mutation

indicates sensitivity to BRAF inhibitors like vemurafenib

(NCT01524978) (77) and dabrafenib, alone or combined with

trametinib (NCT01336634) (78–82). Acquired resistance

mechanisms to BRAF inhibitors typically include secondary BRAF

alterations (e.g., splice variants), activating mutations in the mitogen-
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activated extracellular signal-regulated kinase (MEK) and the proto

oncogene serine/threonine protein kinase CRAF, neurofibromatosis

type 1 (NF1) gene loss, and sustained activation of theMAPK pathway

thought bypassing signaling via other tyrosine receptor kinases like

EGFR or MET (83, 84). Targeted therapies against HER2 and RET

alterations have shown moderate activity compared to other targeted

treatments, likely due to their dominant role as drivers of tumor

growth (85–89). Table 1 summarizes the major TKIs, their targets, and

associated resistance mechanisms.
Frontiers in Immunology 04
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Immune suppression within the TME

The genetic alterations that initiate and drive tumor growth not

only affect the behavior of cancer cells but also shape the TME

composition, by affecting both immune cells function and non-

cellular components of the extracellular matrix (90).

LUAD tumors exemplify the intricate signaling networks

employed by cancer cells to coerce non-malignant cells for their

advantage. These types of lung cancer which are characterized by a

high burden of clonal neoantigens that promote an “inflamed”

TME, with an abundance of activated effector T cells, increased

expression of proteins, such as the chemokine (C–X–C motif)

ligand-9 (CXCL-9) and -10 (CXCL-10), involved in antigen

presentation and T-cell migration (91). At the same time, an

inflamed TME also expresses negative regulators of T-cell activity,

like the lymphocyte-activation gene 3 (LAG-3), PD-L1, PD-1 and T

cell immunoglobulin and ITIM (TIGIT). The bright side is that

LUAD tumors with a high TMB and elevated PD-L1/PD-1

expression may respond well to ICI treatment (91). Also, an

important cellular alteration associated with a high TMB is the

loss of mismatch repair function followed by an increased

microsatellite instability, the last being associated with improved

responses to ICIs (92). Although tumors with microsatellite

instability had shown some promising responses to ICIs (93),

recent findings revealed that genome instability can fuel resistant

phenotypes of tumor cells to both targeted therapy and ICI (94).

Nevertheless, genetic alterations can negatively affect the TME in

other ways. For instance, the inactivation of the tumor suppressor

gene serine/threonine kinase 11 (STK11) in KRAS-mutated LUAD

shifts the TME toward tumor infiltration by immunosuppressive

neutrophils and the reduction of PD-L1 expression in cancer cells

and less TILs (95).

Research on TILs has provided valuable understanding about

the role of lymphocytes within the tumor stroma and their

contribution to the development of an immunogenic response

(96–98). In fact, a high density of T lymphocytes within the

tumor bulk, including CD4+ and CD8+ cells, typically correlates

with improved outcomes (97, 99). Specifically, CD8+ T cells andM1

macrophages have been associated with favorable prognosis and

prolonged OS (97). A recent study focused on the association

between the presence of CD8+/PD-L1+ TILs and the TMB,

indicating an immunosuppressive TME, in those patients that

were more likely to respond to anti-PD-1 therapy (100). To

investigate more deeply the underlying mechanisms, Caushi et al.

utilized single-cell transcriptomics to analyze specific TILs targeting

mutation-associated neoantigens (MANAs) in NSCLC tumors from

patients enrolled in a clinical trial with nivolumab alone or in

combination with ipilimumab (101–103). The study revealed that

MANA-specific CD8+ T cells were more abundant within the TME

compared to the normal lung tissue of the same patient. Moreover,

MANA-specific T cells from responsive patients exhibited an
TABLE 1 Summary of major tyrosine kinase inhibitors (TKIs) and related
therapeutic targets in non-small cell lung cancer, along with most
frequent mechanisms of acquired resistance.

TKI Molecular
target

Associated resistance
mechanisms

Gefitinib

EGFR

• Mutation T790M in exon 20 of
the EGFR gene

• HER2 amplification
• Mutations in the MET gene
• Mutations in the BRAF gene
• Mutations in the ROS1 gene
• Mutations in the PIK3C gene

Erlotinib

Afatinib

Dacotinib EGFR, HER2, HER4

Osimertinib wild-type EGFR
and EGFR-

T790M mutation

• Acquisition of the
C797S mutation

Crizotinib

AKL

• Alterations in the ALK gene:
mutations and amplification

• Activation of alternative signaling
pathways: EGFR and the
MAPK cascade

Ceritinib • Secondary ALK mutations: the
most common is the G1202R

Brigatinib

Alectinib

Lorlatinib

Crizotinib

ROS1

• Secondary mutations: most
notably the G2032R mutation

• Activation of wild-type EGFR
signaling

• Mutations in the KRAS gene
• Mutations in the KIT gene

Ceritinib

Lorlatinib

Vemurafenib

BRAF

• Secondary BRAF mutations
• Activating mutations in the MEK

gene
• Activating mutations in the CRAF

gene
• NF1 gene loss
• Sustained activation of MAPK

cascade: signaling bypass via EGFR
and MET

Dabrafenib

Trametinib
and

Dabrafenib
ALK: Anaplastic Lymphoma Kinase; BRAF: B-Raf Proto-Oncogene Serine/Threonine Kinase;
CRAF: Raf Proto-Oncogene Serine/Threonine-Protein Kinase; EGFR: Epidermal Growth
Factor Receptor; HER2: Human Epidermal Growth Factor Receptor 2; KIT: KIT Proto-
Oncogene Receptor Tyrosine Kinase; KRAS: Kirsten Rat Sarcoma Viral Proto-Oncogene;
MAPK: Mitogen-Activated Protein Kinase; MEK: MAPK/ERK Kinase; MET: MET Proto-
Oncogene, Receptor Tyrosine Kinase; NF1: Neurofibromatosis type 1 1; PIK3CA:
Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha; ROS1: ROS
Proto-Oncogene 1, Receptor Tyrosine Kinase.
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increased expression of genes associated with T cell memory,

including the interleukin 7 receptor (IL7R), T-cell factor/

lymphoid enhancer-binding factor 7 (TCF7), and the granzyme K

(GZMK). Conversely, MANA-specific T cells from non-responsive

patients predominantly expressed genes linked to T cell

dysfunction, such as TOX high mobility group box family

member 2 (TOX2), cytotoxic T-lymphocyte antigen 4 (CTLA4),

hepatitis A virus cellular receptor 2 (HAVCR2), and the

ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1)

gene (102).

While some patients that are responsive to immunotherapy

exhibit a tumor with a TME characterized by the presence of TILs,

macrophages, and dendritic cells (DCs), other patients have tumors

with a so-called “cold” TME, which is less permeated by TILs, or

show an “altered” TME, where TILs are primarily found at the

tumor’s edge (104). Comprehensive analyses integrating spatial

histology and genetic information have shown that tumors with

multiple immune cold regions are characterized by a higher risk of

relapse (105). Furthermore, low TIL counts were found associated

with reduced efficacy of ICI treatment and resistance to

immunotherapy (105). These findings emphasize the importance of

understanding the composition of the TME and spatial distribution

of its components in predicting therapy response and patients’

outcome. Dysfunctional CD8+ TILs, referred to as “burned-out”

(Ebo) TILs, have been identified in advanced NSCLC patients (106).

Ebo TILs showed heightened proliferation and activationmarkers but

reduced production of interferon-gamma (IFNg). Notably, Ebo TILs

expressing elevated PD-1, T-cell immunoglobulin, mucin-domain

containing-3 (TIM-3), and LAG-3 were associated with resistance to

anti-PD therapy in NSCLC patients (106). Furthermore, the presence

of inhibitory receptors on TILs, including PD-1, TIM-3, the cytotoxic

T-lymphocyte antigen 4 (CTLA-4), LAG-3, and B and T Lymphocyte

associated (BTLA) receptor, associate to a progressively impaired

capacity of T cells to respond to polyclonal activation (107).
Tertiary lymphoid structures in NSCLC

The so called ‘Tertiary Lymphoid Structures’ (TLS) are organized

aggregates of ectopic lymphoid tissues that form within the TME, and

consisting of germinal centers where cognate T cells and B cells

interact to develop the anti-tumor adaptive immune response. TLS

are essential to promote an antigen-specific immune response at sites

of chronic inflammation, after consecutive antibody somatic

hypermutation and affinity maturation happening (96, 108, 109).

Several studies have associated the presence of B cells in TLS with

more favorable outcomes in NSCLC (110–114). B cells have the

capacity to activate and proliferate into plasma cells, which can

generate tumor-specific antibodies that attack tumor cells and

trigger the complement system, enhancing both antibody-

dependent cytotoxicity (ADCC) and antibody-dependent cellular

phagocytosis (ADCP) (115, 116). In a recent study, it was

demonstrated that TLS maturation is associated with major

pathological response, which can be used as an independent

predictor of disease free survival (DFS) in resectable neoadjuvant

chemoimmunotherapy-treated NSCLC (117). The study collected
Frontiers in Immunology 05
formalin-fixed paraffin embedded tissues from patients with

resectable NSCLC, divided in three cohorts based on treatment:

naïve, neoadjuvant chemoimmunotherapy, and neoadjuvant

chemotherapy. Among the three cohorts, neoadjuvant

chemoimmunotherapy-treated NSCLCs showed the highest TLS

maturation and abundance; both the maturation and abundance of

TLS were significantly correlated with major pathological response in

both the neoadjuvant chemoimmunotherapy and the chemotherapy

group. Patients with high maturation and abundance of TLS

exhibited better DFS in all the three cohorts. TLS maturation was

also an independent predictor for DFS in the neoadjuvant

chemoimmunotherapy and treatment naïve group (117).
Novel strategies and targets in NSCLC

Natural killer (NK) cells are also very important in regulating

the interplay between cancer cells and the TME in NSCLC patients

treated with ICIs. NK cells, specifically the non-cytotoxic CD56-

bright-CD16-subset, express immunoactivation markers that

accumulate in the stroma of NSCLC tumors, including the NK-

specific triggering receptor (NKp44), the CD69, and the human

leucocyte antigen DR (HLA-DR) protein (118, 119). Importantly,

PD-1 is also expressed by NK cells (120). To optimize ICI

treatment, a randomized controlled trial in NSCLC patients with

positive expression of PD-L1 explored the combination of in vitro

expanded allogenic NK cells with anti-PD-1 therapy. This novel

approach yielded promising results, as it improved OS and PFS, as

compared to anti-PD-1 therapy alone (121).

ICI resistance in NSCLC patients associates with an increased

number of immunosuppressive cells, including regulatory T cells

(Treg), myeloid-derived suppressor cells (MDSC), tumor-

associated macrophages (TAM)-M2, and neutrophils (122–124).

Treg cells inhibit T cell responses and are associated with poor

clinical outcomes in lung cancer patients (125). Studies have shown

an increase in PD-1+ Treg cells in patients who do not respond to

anti-PD-1/PD-L1 ICI, suggesting that the balance of PD-1

expression between CD8+ T cells and Treg cells in the TME can

be used as a more accurate predictor of ICI therapy effectiveness

rather than the expression of PD-L1 itself or the TMB (126). Hence,

targeting Treg cells could potentially enhance the efficacy of ICI

treatment for lung cancer (127, 128). MDSCs can induce

immunosuppression through various mechanisms, including the

production of molecules that hinder T cell function and interfere

with T cell movement (129). MDSCs expressing specific receptors,

like CD39 and CD73, have been found in NSCLC tumor tissue,

being associated with disease progression (130, 131). Additionally, a

2020 study suggested an association between PD-L1 protein

expression on macrophage cells and improved OS in patients

treated with anti-PD-1 therapy (132).

Tumor associated neutrophils (TAN) in the TME may also

contribute to immune suppression and resistance to ICI treatment

in NSCLC, by mediating the suppression of Th1 and cytotoxic T

lymphocytes. In particular, in these NSCLC patients, arginase-1

(ARG1)-expressing neutrophils negatively correlates with the

proportion of CD8+ T cells, while ARG1-expressing granulocytic
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cells can lead to CD3z chain downregulation on T cells though L-

arginine depletion and ultimately inhibit T-cell proliferation and

cytokine secretion. In addition to the direct inhibition of effector T

cell functions, TANs have also been implicated in regulatory T cell

(Treg) recruitment (133–136) to improve T cell activation and ICI

therapy response TME is also influenced by the family of vascular

endothelial growth factor (VEGF) proteins and their receptors

(VEGFRs). VEGF signaling plays a key role in tumor-induced

angiogenesis and in promoting tumor growth in NSCLC patients

(137). VEGF also influences the immune response within the TME.

It can suppress the activity of antigen-presenting cells (APCs),

including DCs, NK cells, and T cells. At the same time, VEGF

enhances the suppressive effect of Tregs, TAMs, and MDSCs. This

combination creates an immunosuppressive microenvironment

that allows the tumor to evade the immune system’s surveillance.

During the past years, the hypothesis that targeting VEGF could

enhance the effectiveness of ICI has also been explored (137). For

example, in a phase 3 study (NCT02366143) bevacizumab, an anti-

VEGFA antibody, was combined with atezolizumab, an anti-PD-L1

antibody, plus chemotherapy in patients with metastatic lung

cancer who had not previously received chemotherapy. This

combination significantly improved OS and PFS, irrespective of

their PD-L1 expression levels or EGFR or ALK genetic alteration

status (138).

Lately, there has been a concerted effort to identify reliable TME-

based markers to predict the effectiveness of immunotherapy for lung

cancer. One notable tool is the “immunoscore” (IS), which assesses

the presence of T lymphocytes within the tumor tissue (139). This

digital test examines various T cell subpopulations in both the central

and peripheral regions of the tumor, generating a score that ranges

from IS 0 (low immune cell density) to IS 4 (high density in both

areas). The IS has shown promising results in several cancer types,

including NSCLC, where a higher IS score is associated with better

survival outcomes (140). CD8+TILs have emerged as a potent

biomarker for differentiating patients with more favorable PFS

following immunotherapy with ICI (141–144). Expression of CD8

can act either as a prognostic or a predictive factor of clinical

outcome: in NSCLC patients not treated by immunotherapy, high

CD8A expression is associated with longer OS, while in NSCLC

patients treated with anti PD1, high CD8 expression is associated

with longer PFS (145). Another approach to predict the effectiveness

of immunotherapy for lung cancer involves the generation of specific

gene signatures to characterize the TME, aka the “immune gene

signatures” (146, 147). These signatures consist of lists of genes that

indicate if enriched/depleted (i.e., coherently up- or down-regulated,

respectively, in a tumor sample), the presence of specific immune or

stromal cell populations or describe TME-cell activation states. High-

throughput technologies like microarray and RNA sequencing have

facilitated the development of computational algorithms capable of

predicting non-cancer cell infiltration in tumors (148–154). These

algorithms generate scores that define the grade of immune and

stromal cell infiltration, providing valuable insights into cancer

molecular and immune characteristics and its potential impact on

ICI response. As a matter of fact, the gene signature scores provide

specific TME-based markers that offer valuable information on
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different tumor samples (155), showing great promise in advancing

our understanding of immunotherapy response in lung cancer.

ICIs, such as monoclonal antibodies targeting CTLA-4 and

antibodies against PD-1 or PD-L1, have opened new avenues for

managing lung cancer (156–159). So far, the Food and Drug

Administration (FDA) has approved the following ICIs: the anti-PD-

1 antibodies nivolumab (NCT01642004) (160), pembrolizumab

(NCT01295827) (19), and cemiplimab (NCT03409614) (161), as well

as the anti-PD-L1 antibodies atezolizumab (NCT01903993) (162),

durvalumab (NCT02125461) (163), avelumab (NCT02576574) (164),

and sugemalimab (NCT03789604) (165, 166). Also, FDA has approved

ipilimumab, an anti CTLA-4 antibody (NCT02477826) (167).

Immunotherapy has revolutionized the treatment approach for

advanced NSCLC, due to the favorable safety profile of most ICIs

and improved survival outcomes, which make these drugs

particularly effective for patients who experience disease

progression after initial cytotoxic therapy (160, 168), and a

promising first-line treatment option (169).

In the first-line setting, pembrolizumab has become the

standard of care for metastatic NSCLC patients with tumor

expression of PD-L1 over 50%, a condition that may occur in

approximately 30% of NSCLC cases (170). Pembrolizumab has

significantly improved ORR, PFS, and OS compared to platinum-

based cytotoxic therapy (171, 172). On the other hand, nivolumab

did not show similar benefits in PFS or OS among patients with PD-

L1 expression levels above 5% (171). Notably, in patients treated

with nivolumab who had both high PD-L1 expression and high

TMB, the objective response rate was 75%, suggesting that a

predictive value for both TMB and PD-L1 expression in

determining the efficacy of ICI therapy exists (169).

Even further, combination of ICI with cytotoxic chemotherapy

has shown enhanced treatment outcomes in NSCLC (173).

Combination of pembrolizumab with carboplatin and pemetrexed

has demonstrated improved ORR and PFS compared to cytotoxic

therapy alone, making it a promising first-line treatment option for

advanced NSCLC patients (174). A detailed meta-analysis,

including all randomized controlled trials published before

February 2022, showed that the combination of ICIs with

chemotherapy is much more effective in enhancing PFS, ORR,

and OS in NSCLC patients (175).

Several novel immune checkpoints with promising therapeutic

potential have recently been identified, among them the LAG-3, T-

cell immunoglobulin and TIM-3, B7 Homolog 3 (B7-H3), and T cell

immunoglobulin and TIGIT domain (176). To target LAG-3,

researchers are exploring the use of a soluble dimeric

recombinant LAG-3 (eftilagimod alpha, or IMP321), which

st imulates DCs through the binding with the major

histocompatibility complex (MHC) class II receptor, leading to

sustained immune responses when combined with anti-PD-1

therapy in patients with previously untreated unresectable or

metastatic NSCLC [NCT03625323 (177)]. Another approach

involves bispecific antibodies (BsAbs) simultaneously targeting

LAG-3 and PD-1 [NCT04140500 (178); NCT03219268 (179)].

Besides, the anti-LAG-3 antibody relatlimab (BMS-986016) has
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1515748
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


De Lucia et al. 10.3389/fimmu.2025.1515748
shown promising results in the phase III trial RELATIVITY-047

(NCT03470922), where treatment-naïve patients with metastatic

melanoma who received nivolumab plus relatlimab demonstrated

significantly longer median PFS than those who received nivolumab

plus placebo (180). Considering these encouraging findings, further

investigations are underway to evaluate the dual blockade in other

solid tumors, including NSCLC (NCT04623775 (181).

TIM-3, known for its presence on CTL, NK, Treg, DC, and

macrophages (where it promotes M2 polarization), is a critical

immune checkpoint being investigated in various clinical trials for

solid tumors, including NSCLC (182). Monoclonal antibodies targeting

TIM-3 alone or combined with anti-PD-1 are being studied in trials

such as the studies NCT03652077 (183) and NCT02608268 (184).

Moreover, bispecific antibodies (BsAbs) that can simultaneously block

TIM-3 and PD-1 are also explored in ongoing trials involving NSCLC

patients [NCT03708328 (182, 185); NCT04931654 (186)].

The B7 homologous 3 (B7-H3), also known as CD276, is a

transmembrane protein commonly expressed by cancer cells that

act as an immune checkpoint, allowing cancer cells to evade

immune surveillance. Researchers believe that B7-H3 expression

might play a role in the resistance to anti-PD-1/PD-L1 therapy in

NSCLC (187, 188). There are currently three ongoing clinical trials

evaluating the use of an anti-B7-H3 antibody in combination with

either anti-PD-1 or anti-CTLA-4 for advanced solid tumors,

including NSCLC (NCT03729596; NCT02475213; NCT02381314)

(189–191). As detailed below, novel immunotherapies targeting B7-

H3 are considered very promising in enhancing the clinical

response and overcoming resistance in NSCLC patients, including

the use of chimeric antigen receptor (CAR)-T cells (192).

The immune receptor TIGIT is expressed by several immune

cells, including CD8+ T cells, CD4+ T cells, and NK cells, and it is a

candidate target of vibostolimab antibody in NSCLC (12, 193). The

phase I study NCT02964013 (194) was the first to investigate safety

and efficacy of vibostolimab as a monotherapy or in combination

with pembrolizumab for treating advanced solid tumors, including

NSCLC (12, 194). Another study, the phase II CITYSCAPE trial

(NCT03563716), combined another TIGIT inhibitor, tiragolumab,

with the anti-PD-L1 atezolizumab (195). The study showed that

tiragolumab plus atezolizumab is a promising immunotherapy

combination for the treatment of NSCLC. In particular,

tiragolumab plus atezolizumab showed a considerable

improvement in ORR and PFS compared with placebo plus

atezolizumab in patients with chemotherapy-naive, PD-L1-

positive, recurrent and metastatic NSCLC. Tiragolumab plus

atezolizumab was well tolerated, with a safety profile generally

similar to that of atezolizumab alone (195).

It is important to note that the safety profile of these ICIs in

combination may differ from when ICIs are coupled to

chemotherapy, particularly regarding immune-related adverse

events. Plus, despite initial encouraging results in certain patients,

many lung tumors exhibit intrinsic resistance to immunotherapies.

Hence, the next challenge will lie in identifying rational

combinations that can enhance treatment responses and delay the

onset of resistance (196).
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strategies for NSCLC

To elicit an effective immune response in so-called ‘immune

desert tumors’, which are devoid of lymphocyte infiltration, little

TMB, and low PD-L1 expression, the main challenge is to attract

effector T cells to the TME and present them with the tumor

antigens. Among those novel approaches, the two most promising

include the adoptive cell transfer (ACT), based on autologous T

cells derived from TILs, and CAR-T therapies (197). However,

identifying NSCLC-specific or unique cell surface antigens is

necessary for the exploitation of CAR-T approach. TAAs that are

frequently found to be overexpressed in NSCLC include the Mucin

1 (MUC-1), the carcinoembryonic antigen (CEA), the New York

esophageal squamous cell carcinoma 1 (NY-ESO), and the

melanoma-associated antigen 3 (MAGE-A3) (198–200). The

problem is that these antigens are also commonly expressed in

normal lung cells. As a consequence, these TAAs are potentially not

very much immunogenic and can be also used by the tumor to

develop immune tolerance, which results in reduced responsiveness

to ICIs (201).

On the other hand, TSAs are unique to cancer cells and result from

nonsynonymous somatic mutations. These TSAs represent ideal

targets for cellular immunotherapy (202, 203). NSCLC, like other

tumors with high TMB, have been shown to possess a significant

number of TSAs arising from various somatic mutations, including

driver genes like tumor protein 53 (TP53), Kristen Rat sarcoma viral

oncogene homolog (KRAS), cyclin-dependent kinase inhibitor 2A

(CDKN2A), AT-Rich Interaction Domain 1A (ARID1A),

Neurogenic locus notch homolog protein 1 (NOTCH1),

myelocytomatosis oncogene (MYC), SWI/SNF related, matrix

associated, actin dependent regulator of chromatin, subfamily A,

member 4 (SMARCA4), and retinoblastoma 1 (RB1) (204, 205).

TILs can recognize these neoantigens, and their density has been

linked to a more favorable prognosis, higher cytotoxic T lymphocyte

(CTL) content, and increased benefit from ICI (206, 207). Despite the

inherent challenges, recent technological advancements, such as the

MANAExpansion of Specific T cells platform, has already been used to

detect and monitor peripheral and intratumoral MANA-specific T cell

responses in NSCLC patients with acquired resistance to checkpoint

blockade (208). Notably, CTLs that are specifically directed against

peptides derived from oncogenic driver mutations, such as TP53

R248L and BRAF N581I (208, 209), have been detected, offering

potential avenues for new targeted immunotherapies in lung cancer.

Cancer vaccines may augment the body’s T cell and B cell

response against TAA or TSA. There are different mechanisms to

stimulate the immune system and generate an effective anti-tumor

response (210). One common approach involves the use of DCs

collected from a patient’s blood, loaded with TSAs derived from the

tumor, and then administered back to the patient. These DCs migrate

to lymphoid organs, where they interact with host immune cells,

including T- and B- cells, leading to their activation and enhancing of

the immune response against tumor cells (211). A different strategy
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entails using whole-cell preparations obtained from cancer cells that

have undergone either inactivation or genetic modification. The

inactivated cancer cells are recognized by the host immune system,

triggering an immediate nonspecific inflammatory response (212).

Induced pluripotent stem cells (iPSCs) derived from primary

fibroblasts exhibit genetic and transcriptomic similarities with

cancer tissues, encompassing numerous cancer-associated genes as

well as over 100 TAAs and TSAs, which are protein markers

detectable by the immune system (213, 214). Recently, research in

mice has explored the use of iPSCs as a source of tumor- and patient-

specific antigens to direct the immune system to target cancer (213).

Kooreman further developed the idea of an iPSC-based anticancer

vaccine by combining irradiated autologous mice iPSCs with the Toll-

like receptor 9 (TLR9) agonist, CpG oligodeoxynucleotide. Using

autologous iPSCs helped reduce immune reactions caused by MHC

mismatches, while the addition of the CpG adjuvant enhanced the

activation of antigen-presenting cells like dendritic cells (213, 215). In

a humanized mouse model of lung cancer, vaccination with iPSCs and

CpG led to an increase in splenic APCs, cytotoxic T cells, circulating

effector/memory CD4+ and CD8+ T cells, and tumor-infiltrating CD8

+ T cells, while reducing regulatory T cells (Tregs). This immune

response contributed to effective tumor growth suppression, with

tumor antigen-specific T cells playing a pivotal role. This was

demonstrated by the protective effect seen after transferring spleen

T cells from vaccinated mice to unvaccinated ones. The immunity

triggered by iPSCs was thought to stem from shared gene expression

patterns between iPSCs and lung adenocarcinoma stem cells (213,

216). With an alternative approach, viral or bacterial -based cancer

vaccines are used to directly activate the immune response against

TSAs and TAAs: the antigens are either expressed by a virus or

bacteria, delivered to infect the host cells, which process the antigen

and present it to activate the T cell response (217).

Numerous clinical trials are currently investigating different vaccines

targeting specific NSCLC antigens like MAGE-A3, CEA, mesothelin,

KRAS proto-oncogene (KRAS), New York esophageal squamous cell

carcinoma 1 (NY-ESO-1), and telomerase (TERT), as well as

immunomodulatory enzymes such as indoleamine 2,3-dioxygenase

(IDO) and arginase-1, in lung cancer patients (199, 218). Some of

these cancer vaccines are combined with ICIs in phase I/II studies

(NCT04908111, NCT02879760, NCT03562871, NCT05202561,

NCT04117087, NCT01935154; NCT03689192, NCT03970746,

NCT02187848) (219–227).

Importantly, the success of COVID-19 messenger RNA (mRNA)

vaccines has shown how effective this type of vaccine can be, how fast

it can reach a clinical stage and the ease of production at global scale

(228). This approach involves the use of synthetic mRNA sequences,

either alone or in combination with other molecules, which encode

proteins found in cancer cells. The expression of these proteins

triggers immune reactions targeting tumor antigens, such as the

production of antibodies and cytotoxic T cells (229). Early studies,

like the NCT00004604 trial conducted at the beginning of 2000s to

evaluate mostly safety and dose-limiting toxicities of mRNA-based
Frontiers in Immunology 08
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response and disease progression (230). At present, an upgraded form

of these vaccines is being introduced, showing improved efficacy and

tolerability. For example, the mRNA-based vaccine CV9201, tested in

the NCT00923312 phase I/IIa trial, showed promising results for

advanced NSCLC patients (231). Also, the CV9202 mRNA-based

vaccine was used in combination with radiation therapy in stage-IV

NSCLC patients in the NCT01915524 study showing increased

antigen-specific immune responses, and stable disease achieved in

46.2% of patients (232). On balance, while mRNA vaccines offer

substantial benefits over conventional options thanks to their high

efficacy, minimized toxicity, accelerated manufacturing, and reliable

administration, there are some potential limitations that could

overshadow their widespread use (233). For example, these

constraints include lack of stability and reduced translation rates

upon delivery into target cells, mostly due to inadequate methylation

of the mRNA, or small impurities in the preparation process (234).

Intrinsic immunogenicity of the construct can also impair the

stability of the mRNA vaccine, and ultimately cause decreased

translation. Increasing the capping efficiency and preventing de-

capping through the incorporation of modified nucleosides or

pseudouridine can actually avoid recognition by the innate

immune system and prevent mRNA destruction (233). Inefficiency

of in vivo delivery in target tissues, including the lungs, is another

major issue that limits the potential of mRNA vaccines and requires

further optimization of the vectors (viral, non-viral, cell-based, lipid

vesicles). A robust targeting of mRNA has been achieved in

pulmonary tissues, for example, by the use of nanoparticles (235).

Furthermore, the specificity of the mRNA-encoded polypeptide,

although tailored to generate only the specific antigen of interest,

may not only limit the efficacy of inducing a robust immune response

in the cancer tissue but can also result in serious side effects, typically

including uncontrolled inflammation and anaphylaxis (236).

The YL202/BNT326 is a novel antibody-drug conjugate ADC

designed by BioNTech to target HER3, combining an anti-HER3

monoclonal antibody with a topoisomerase I inhibitor, YL0010014,

linked via a tripeptide linker. The results of the phase I trial

conducted on advanced or metastatic non-small cell lung cancer

(NSCLC) patients bearing EGFR-activating mutations, as well as

HR-positive, HER2-negative breast cancer (BC) that had previously

received third-generation tyrosine kinase inhibitors (TKIs) or

CDK4/6 inhibitors and at least one line of chemotherapy were

recently presented at the American Society of Clinical Oncology

(ASCO) 2024 Annual Meeting held in Chicago. Six different doses

of YL202/BNT326 were tested, using a dose-escalation approach,

followed by additional dosing in selected cohorts. Safety and

tolerability were the primary endpoints, with secondary endpoints

including pharmacokinetics and efficacy. In terms of efficacy, 46

patients were evaluable for tumor response. At doses levels 3 to 5,

the overall response rate (ORR) was 41.0%, and the disease control

rate (DCR) was 94.9%. In breast cancer patients, the ORR reached

54.5%, with an impressive DCR of 100% (237).
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ATMPs for lung cancer: from ACTs to
CAR-Ts
Another version of antigen-specific immunotherapy is the adoptive

T cell transfer (ACT) of lymphocytes that exhibit antitumor activity.

The concept of ACT involves ex vivo activation of the patient’s own

immune cells, before transferring them back to the patient to recognize

and eliminate cancer cells (197). ACT therapies encompass different

methods, including adoptive transfer of TILs or genetically engineered T

cells with retargeted specificity, such as affinity-enhanced ab-T-cell-
receptor (TCR) and CAR (197). Compared to vaccine-based strategies,

ACT provides patients with pre-activated effector cells, eliminating the

need for T cell priming in patients who have compromised immune

systems or have developed immune tolerance to tumor antigens (238).

In current strategies for targeting advanced NSCLC, ACT is employed

with engineered T cells directed against specific TAA, like NY-ESO-1/

LAGE-1, often in combination with ICI (NCT03709706) (239). ACT

approaches using TCR show some challenges, however, since they may

be susceptible to tumor escape due to immunoediting processes,

through which tumor clones develop mechanisms to evade antigen

presentation, such as loss of antigenicity and/or loss of immunogenicity.

Loss of antigenicity can occur either through the acquisition of defects in

the antigen processing and presentation, or through the loss of

immunogenic tumor antigens: both mechanisms lead to a lack of

immunogenic peptides presented in the context of a peptide/MHC

complex (240). Malignant cells also can earn additional

immunosuppressive properties, such as expression of PD-L1 or

secretion of suppressive cytokines (240). To address this issue in

particular, CAR-T cells have been developed as an alternative

technology to redirect T cell specificity by recognizing intact cell

surface proteins, and so bypassing MHC-mediated antigen

presentation (241). CARs are engineered receptors formed by three

parts: an extracellular antigen recognition domain, usually a single-chain

fragment variant (scFv), a transmembrane domain, and an intracellular

T cell activation domain (242). All surface-expressed target molecules

represent a potential CAR-triggering epitope, so that the genetic

modification of T cells with CARs combines the specificity of

antibody-like recognition with the cytotoxic activation of T cells (243).

First, construction of a CAR relies on the identification of a

suitable antibody that can effectively target a cell surface molecule of

interest (244). Carbohydrates and glycolipid antigens on cancer

cells are also suitable targets, since they can be recognized by CARs

engineered with the antigen-recognition domain derived from

monoclonal antibodies (245). The simplest level of CAR structure

contains an extracellular domain, connected through a hinge to the

transmembrane domain, and an intracellular signaling domain

(246). The CAR ectodomain is designed to specifically recognize

an antigen on the cancer-cell membrane. Upon engagement, the

receptor triggers downstream signaling, resulting in CAR-T cell

activation. This leads to a complex network of events comprising

transcription factor expression, cell proliferation, survival, and

cytokine release which culminates in the execution of a cytotoxic

program against the target cell (246).

A hinge sequence is used to connect the ectodomain to the

transmembrane (TM) region of the CAR. The hinge region’s length is
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a crucial parameter in CAR design, since it can modify the flexibility of

the scFv and its ability to interact with hidden or distant epitopes on the

antigen. On the other end, the specific makeup of the hinge-scFv moiety

can be detrimental to CAR efficacy by inducing an unwanted tonic

signal of the CAR triggered also in the absence of the antigen, resulting

in T cell exhaustion (246). The transmembrane domain serves as an

anchor of the CAR to the T cell membrane. Although this domain can

also be relevant for CAR-T cell function influencing CAR expression

level, stability, signaling, and dimerization with endogenous signaling

molecules (247–250). Most transmembrane domains are derived from

natural proteins including CD3z, CD4, CD8a, or CD28. Endodomain,

which transmits the binding signal from the tumor antigen into the T

cell, has received most of its attention over the years, resulting in

multiple CAR generations. In fact, since the initial development of

CARs in 1989, CAR-T constructs can be divided into five generations

according to the structure of the endodomain (250, 251). The first-

generation CAR design is formed only by Fcg (the g-chain from FceRI)
or CD3z (z- z-chain of the TcR complex) intracellular domain. The

durability and persistence of these first generation CARs was not robust

because they produced limited amounts of interleukin-2 (IL-2),

rendering those CAR T cell dependent on exogenous administration

of IL-2 (251). Hence, costimulatory domains were added to the CAR

constructs to create the second-generation CARs, which achieved to

fully activate T cell proliferation and induce persistent cytotoxicity.

Specifically, the insertion in the endodomain of CD28 or 4-1BB was

enough to block apoptotic signaling via adequate IL-2 synthesis and

complete stimulation of T cells (252). The costimulatory domains CD28

and 4-1BB differ in their functional and metabolic profiles. CARs with

CD28 domains differentiate into effector memory T cells and primarily

use aerobic glycolysis, while CARs possessing the 4-1BB domain

differentiate into central memory T cells and display increased

mitochondrial biogenesis and oxidative metabolism (250, 252–254).

Thanks to these coreceptors, which yield enhanced persistence,

decreased differentiation and exhaustion, prolific expansion, increased

cytotoxicity, second generation of CAR constructs have proven to be

more effective, compared to first generation CARs, which only included

the CD3z sequence (252, 253). To further increase the cytokine

production and cytotoxicity against tumor cells, a third generation of

CARs was designed by adding an extra intracellular signaling sequence

in the costimulatory domain such as CD134 or CD137 (251, 252).

However, different studies led to ambiguous performance results of

third-generation CAR-T use, indicating that clinical outcomes were not

always improved compared to the second generation. Moreover, third-

generation CAR-T cells have been reported to worsen T cell exhaustion

or activation-induced cell death (AICD) (255, 256). A fourth-generation

CARs followed based on the second-generation constructs but with the

addition of an ILs expression cassette, resulting in the so-called T cells

redirected for universal cytokine-mediated killing (TRUCKs), which

exhibited remarkable efficacy against different solid tumor types (257).

Specifically, IL-12 enhances the response of innate and adaptive

immune cells, IFN-g secretion and the expression of granzyme B and

perforin by T cells and NK cells, and suppresses tumor-induced T-

regulatory (T-reg) cell proliferation (258, 259). Finally, a fifth-generation

CAR-T cells were created to avoid host immune rejection or graft-vs.-

host disease against transplanted CAR-T cells (260, 261). These

advanced CARs are based on the second-generation of constructs, but
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1515748
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


De Lucia et al. 10.3389/fimmu.2025.1515748
they contain a truncated cytoplasmic IL-2 receptor b-chain domain with

a binding site for the transcription factor STAT3: the antigen-specific

activation of this receptor simultaneously triggers TCR (through the

CD3z domains), costimulatory (CD28 domain), and cytokine (JAK–

STAT3/5) signaling (262).

So far, various NSCLC-associated antigens have been selected as

potential candidates for CAR-T cell therapy (263). For instance, CAR-

T cells directed against CEA and MUC1, two TSA that are highly

expressed in lung cancer, are being evaluated for safety and efficacy in

the NCT02349724 (264), NCT04348643 (265), NCT03525782 (266),

NCT02587689 (267), NCT05239143 (268) clinical trials (9, 269, 270).

Alternatively, the infiltration of CAR-T cells into the tumor is being

improved by expressing the C-X-C chemokine receptor type 5

(CXCR5). Also known as CD185, it is the only known receptor for

the chemokine ligand 13 (CXCL13), which is abundant in the TME of

many NSCLC tumors (271). CAR-T cells engineered to express

CXCR5 are now being studied in the trial NCT05060796 (272) for

enhanced lymphocytes’ infiltration in the tumor and activation against

CXCL13-expressing tumor cell (9, 273–275). Overexpression of EGFR,

resulting from EGFR gene amplification and/or mutations, has been

detected in a variety of human cancers, including over 60% of NSCLC.

This overexpression is linked to tumor recurrence, the formation of

new blood vessels, and metastasis (276). The extracellular domain of

EGFR present on the surface of tumor cells forms a highly

immunogenic and tumor-specific epitope, making it a promising

target for CAR-T therapy in NSCLC. Recombinant anti-EGFR CAR-

T cells have been developed with specific cytolytic activity against

EGFR-positive tumor cells (277). Co-incubation of EGFR-positive

tumor cells with anti-EGFR CAR-T cells resulted in the release of

high levels of cytokines such as IL-2, IL-4, IL-10, TNF-a, and interferon
(IFN)-g, within 24 hours (276, 278). In vivo experiments have shown

that these CAR-T cells can proliferate against NSCLC and are found in

high proportions among CD8+ cytotoxic T-lymphocyte populations

(278). Clinical trials are underway to assess the efficacy and safety of

anti-EGFR CAR-T cells in treating advanced NSCLC patients with

EGFR-positive tumors (279). For example, a phase I clinical trial at Sun

Yat-sen University evaluated anti-EGFR CAR-T cells, modified for the

expression of CXCR5, in EGFR-positive patients with advanced

NSCLC: among 11 patients being assessed receiving different doses,

two showed a partial response, and five remained stable for eight

months (280). Another phase I clinical study (NCT03182816)

investigated anti EGFR CAR-T cell therapy in NSCLC patients. This

trial revealed that EGFR-CAR T cell therapy was feasible and safe in

treatment of EGFR-positive advanced relapsed/refractory NSCLC

patients, with a progression-free survival of 7.13 months (281).

Mesothelin (MSLN) is another promising CAR target, and

assessment of safety and feasibility of anti-MSLN CAR-T cell

therapy in the clinical trial NCT02414269 (282, 283) conducted at

the Memorial Sloan Kettering Cancer Center is under way. The

study focuses on anti-MSLN CAR combined with inducible caspase

9-M28z (iCasp9M28z) suicide system expression and shows

promise as a targeted therapy (282). However, the phase I/II trial

NCT01583686 led by the US National Cancer Institute (NCI) and

assessing anti-MSLN CAR-T cell therapy for patients with MSLN-

positive metastatic lung cancer was discontinued due to slow and

insufficient patient accrual (284). Nevertheless, there is ongoing
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interest in the potential of intravenous administration of mRNA-

engineered T cells to express anti-MSLN CAR temporarily (285).

Researchers have also developed ROR1-specific CAR-T cells

using lentiviral vectors encoding ROR1, scFv/4-1BB/CD3z, and
truncated EGFR molecules. This engineered CAR-T cell approach

effectively eliminated ROR1-positive tumor cells in 3D tumors

established from A549 (a non–small cell lung cancer) cell lines on

a biological scaffold and an intact basement membrane (286). To

evaluate the safety and anti-tumor effects of autologous anti-ROR1

CAR-T cells, a phase I clinical study (NCT02706392) conducted by

the Fred Hutchinson Cancer Research Center involved patients with

advanced, ROR1-positive, stage IV NSCLC (287). Furthermore,

exciting findings from Wallstabe et al. demonstrated the

effectiveness of anti-ROR1 CAR-T cells in eliminating both NSCLC

and TNBC cells, as shown in organoid tumor models (286) This

evidence highlights the potential of anti-ROR1 CAR-T cell therapy as

a promising and innovative strategy for treating NSCLC, providing

new hope for patients in need of additional treatment options.

Although CAR-T immunotherapy for solid tumors like NSCLC

is still in its infancy and has faced limited achievements, it still holds

great potential to manage cancers at an advanced stage (288).

Importantly, some aspects contribute more than others to hinder

CAR-T therapy efficacy in solid tumors:
1. On-target/off-tumor toxicity: CAR-T cells may

inadvertently target healthy cells expressing the same

antigen as cancer cells, leading to unintended side effects

and toxicities (289).

2. Neurological toxicity: some patients may experience

neurologic complications due to the activation of CAR-T

cells in the central nervous system (289).

3. Cytokine release syndrome (CRS): CAR-T cells can trigger an

excessive release of cytokines, causing systemic inflammation

and potentially life-threatening complications. CRS is

characterized by releasing various inflammatory cytokines

upon T cell activation and antigen recognition. This immune

response can surge pro-inflammatory molecules like TNF-a,
C-reactive protein, IL-2, IL-6, IL-8, and IFN-g. Consequently,
patients may experience fever, fatigue, loss of appetite,

hypotension, and, in severe cases, multi-organ dysfunction

or even sudden death due to the cytokine storm (289, 290).

Early detection and effective management of CRS are vital to

safeguard patient well-being during CAR-T cell therapy.

Substantial evidence supports using IL-6 pathway inhibitors

like tocilizumab or siltuximab as effective treatments for CRS

(291, 292). Additionally, infliximab, a TNF-a inhibitor, is a

viable option for managing cytokine-related complications

(290). By carefully monitoring and promptly intervening,

healthcare professionals can minimize the impact of CRS and

enhance the overall safety and success of CAR-T cell therapy

for patients.

4. The lack of reliable TSA: identifying antigens unique to

cancer cells is challenging in solid tumors, reducing the

specificity of CAR-T cell therapy.

5. Immunosuppressive TME: solid tumors often create an

immune-suppressive environment, hindering the efficacy
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of CAR-T cells (293). The tumor-associated stroma may

form a stumbling block against the entry of T cells, which

are already increasingly dimmed by dysregulation of

adhesion molecules, aberrant tumor-related vasculature,

and mismatching of chemokines and their receptors.

Furthermore, TME is characterized by restricted nutrient

availability, acidosis, and local hypoxia.

6. Low levels of lymphocytes infiltration within tumor tissue:

CAR-T cells may struggle to penetrate and accumulate

within the tumor, limiting their ability to target cancer

cells effectively.

7. Tumor antigen escape: cancer cells can downregulate or lose

the target antigen, evading recognition and destruction by

CAR-T cells. A strategy to enhance the function of CAR-T

can be reached by targeting TAAs while treating with anti-

PD-1 blocking antibodies in combination (294). The co-

application of prostate stem cell antigen (PSCA)-targeted

and mucin 1 (MUC1)-targeted CAR-T cells effectively

eradicated cancer cells in individuals diagnosed with

PSCA and MUC1 positive non-small cell lung cancer (294).
Addressing these barriers is crucial to unlock CAR-cell therapy to its

full potential and improve patient outcomes. Research efforts are

ongoing to overcome these challenges and advance the application of

CAR-T cell therapy in the context of solid malignancies. Enhancing

CAR-T cell infiltration into the TME is a critical challenge in solid

tumors, including NSCLC. Specific strategies include structurally

altering CAR-T cells combined with targeted therapy, radiotherapy,

or chemotherapy (295). Chemotherapy has the ability to alter TME and

enhance the effectiveness of CAR-T cell therapy. In particular,

neoadjuvant therapies, have shown the ability to enhance the

effectiveness of GD2 CAR-T cells by decreasing MDSCs in the tumor

(295). In a phase I clinical trial, combined therapy involving CAR-T cells

along with paclitaxel and cyclophosphamide revealed clinical

improvements in 21 of the 28 patients who had previously

experienced unsuccessful paclitaxel therapy (296). Murty et al. in 2020

demonstrated in a glioblastoma model that radiotherapy enabled the

swift movement of CAR-T cells from the vascular system into the TME,

as well as their amplification within the TME, leading to enhanced and

prolonged immune responses (297). In order to increase the CAR-T

infiltration into the TME, researchers are actively exploring novel

approaches. In particular, dual-receptor CAR-T cells have been

designed to improve specificity while enhancing T-cell activation and

persistence in the TME. These constructs are engineered to recognize

two different TAAs simultaneously. By targetingmultiple antigens, dual-

receptor CAR-T cells can mitigate antigen escape and improve

infiltration through stronger, more sustained signaling (298). A

second strategy focuses on optimizing the delivery methods for CAR-

T cells, directly injecting CAR-T cells into or near the tumor site.

Intratumoral delivery reduces systemic exposure, potentially

minimizing off-tumor toxicity and enhancing CAR-T cell

concentrations at the target site. This strategy has shown promise in

preclinical models of glioblastoma and pancreatic cancer and is

currently under investigation in lung cancer (299, 300). To further

enhance T-cell migration, researchers are modifying CAR-T cells to

express chemokine receptors to exploit the chemokine profile of the
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TME as chemoattractant. For example, expressing CXCR2 allows CAR-

T cells to home more effectively to tumors secreting chemokines like

CXCL1 and CXCL8. Similar modifications, such as introducing CXCR5

to target CXCL13-rich NSCLC tumors, have shown significant

improvements in infiltration and therapeutic outcomes (273, 301,

302). Additionally, combining CAR-T cell therapy with immune

checkpoint inhibitors, such as anti-PD-1 or anti-CTLA-4 antibodies,

has shown promise in preclinical and early-phase clinical trials for

NSCLC. This combination approach can help overcome immune

suppression and enhance T-cell function (303, 304). The application

and testing of novel strategies through forthcoming clinical trials will be

key to assess their real benefits for the broadest population of

NSCLC patients.
Discussion

NSCLC, the predominant form of lung cancer, is a major

contributor to cancer-related deaths (4). Over time, however, there

have been substantial advancements in the treatment of NSCLC,

particularly due to the emergence of targeted therapies that have

revolutionized the field toward individualized medical care.

Undoubtedly, TKIs have brought about a revolutionary shift in the

treatment of individuals with specific genetic mutations (305). Within

the realm of targeted therapy, EGFR stands as a quintessential model:

activating mutations found in the EGFR gene are widespread among a

significant portion of individuals afflicted with NSCLC, and can be

effectively targeted by TKIs such as erlotinib, gefitinib, and

osimertinib, which have markedly improved PSF and OS of many

patients (306). Similarly, ALK rearrangements respond well to

alectinib and lorlatinib, while MET, BRAF, and ROS1 mutations are

targeted by crizotinib, vemurafenib, and dabrafenib (307).

Regrettably, the group of individuals that respondwell to TKIs accounts

for just 15–20% of all NSCLC patients, and although targeted treatments

show promise at first, leading to longer PFS and improved OS, life

expectancy is hindered by the development of pharmacological resistance

mechanisms formost patients (11). Consequently, themain goal inNSCLC

investigations is the design and testing of innovative therapies that impact

PFS and OS, taking into account the major role played by the TME in

sustaining therapeutic resistance and tumor progression (12).

Understanding the tumor TME is key, as it has a substantial impact on

how effective these treatments are. Importantly, the presence of neoantigens,

TAAs, TSAs, and TILs can define an “inflamed” TME in NSCLC,

underscoring its significance in amplifying the immune system’s ability to

target tumors by enhancing the effectiveness of neoantigen-based

immunotherapies (271). Additionally, the presence of TLS within the

TME - organized aggregates of immune cells resembling germinal centers

- can further enhance, refine and sustain local and systemic immune

responses. TLS have been associated with better prognoses and may play a

crucial role in the success of immunotherapies (308).

Immunotherapy has become a cornerstone in NSCLC treatment,

with ICIs leading the charge, specifically in those patients without any

driver mutations (17). ICIs such as nivolumab and pembrolizumab,

which target PD-1, and ipilimumab, targeting CTLA-4, have

dramatically improved survival rates for patients with advanced

NSCLC (309). The success of these therapies has spurred the
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development of new ICIs targeting other checkpoint molecules like

LAG-3, TIM-3, and TIGIT (310). These novel ICIs aim to overcome

resistance mechanisms and further potentiate the immune response

against cancer, highlighting the dynamic and expanding landscape of

immunotherapy in NSCLC. Yet, a considerable number of patients do

not benefit from immunotherapies. In particular, the failure of standard

immunotherapy is a frequent issue in the context of a ‘cold’ TMEwith a

lack of neoantigens, diminished T cell numbers, and minimal PD-L1/

PD-1 expression (23).

The exploration of novel immunotherapeutic approaches is

ongoing, with TSA-directed strategies at the forefront. Vaccines

targeting TSAs derived from NSCLC common drivers, such as

MAGE-A3, CEA, KRAS, NY-ESO-1, and TERT, show great promise

in several early trials (311). These new strategies are designed to boost

the immune response of the body to target cancer cells in a precise

manner and to defeat the immune escape mechanisms triggered by

tumors. ACT-based therapies are gaining momentum in the panorama

of clinical experimentation. ACT involves infusing patients with T cells

able to recognize and attack cancer cells. ACT includes TCR andCAR-T

cell therapy, which features genetically modified T cells to express

receptors specific to intracellular or membrane associated tumor
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antigens, respectively. These therapies represent a significant leap

forward in the quest for effective and durable cancer treatments (312).

CAR-T cell therapy, in particular, has garnered attention for its potential

in treating NSCLC. Over successive generations, CAR-T cells have been

refined to enhance their efficacy and safety, with modifications aimed at

improving persistence, reducing toxicity, and boosting antitumor

activity (313). While early results are promising, challenges remain,

particularly in managing on-target, off-tumor effects and ensuring

sustained responses. Nevertheless, the potential of CAR-T cell therapy

to significantly impact NSCLC treatment is undeniable specially in vivo

transient expression of mRNA in mRNA-engineered T cells, which is a

highly promising approach (314). This method eliminates the need to

isolate patient cells, by simplifying the production process and allowing

for a purely off-the-shelf solution. Another promising format relies on

TRUCKs, allowing cytokines and other immunological molecules to be

delivered locally at the tumor site to restrain TME immunosuppressive

cues and elicit immune responses previously kept in check. Indeed,

ACTs are also suited to be combined with ICIs to boost their own

activity in difficult contests, promote epitope spreading across APCs and

engage preexisting adaptive and innate immunity against tumor cells. In

conclusion, understanding the complexities of the TME and leveraging
FIGURE 1

Therapeutic approaches and clinical trials for non-small cell lung cancer (NSCLC). Current treatment of NSCLC range mainly in three areas: tyrosine kinase
inhibitors (TKIs), which remain the gold standard for many patients; immune checkpoint inhibitors (ICIs), which have offered exceptional survival benefits to
selected patients; adoptive cell therapy, representing the latest frontier in immunotherapy. Adoptive cell therapy divides then into three sub-areas of therapeutic
interventions: cancer vaccines, T cell receptor (TCR) based therapy, and the most innovative antigen receptor chimeric (CAR) T cell therapies, which has shown
great promise in NSCLC. Created in BioRender. Mazza, M. (2025) https://BioRender.com/o50k263.
frontiersin.org
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novel treatment strategies that exploit the ability of immune cells to

recognize TAAs/TSAs is crucial to improve patient outcomes. Boosted

by this primary goal, the treatment landscape for NSCLC is rapidly

advancing toward the integration of targeted therapies and innovative

immunotherapeutic approaches, while new clinical trials are

increasingly looking into how ACT and CAR-T cell therapy can

influence NSCLC by targeting diverse surface antigens. In order to

guide the reader through the complex scenario of NSCLC therapy

options, we provide a brief yet informative summary indicating the

reference trials that allowed drug registration in Figure 1. As research

continues to unravel the intricacies of NSCLC and its
Frontiers in Immunology 13
microenvironment, the promise of achieving more effective and

durable responses and a cure becomes increasingly attainable. In this

review, we adeptly merge the literature and highlight the critical hurdles

that must be tackled in order to impact effectively on patients’ health,

with a specific emphasis on the complexities associated with non-small

cell lung cancer, by implementing novel and smarter immunotherapy

approaches into clinical practice. In Figure 2 we have summarized the

relationships occurring between the tumor microenvironment (TME)

and the associated mechanisms of resistance, indicating the approaches

currently under clinical testing to overcome resistance in

NSCLC patients.
FIGURE 2

Summarizing flowchart of the relationship between the tumor microenvironment (TME) and associated resistance mechanisms, affecting
immunotherapy of non-small cell lung cancer (NSCLC). Tregs, Regulatory T cells; MDSC, Myeloid-derived suppressor cells; TAMs, Tumor-associated
macrophages (TAM)-M2; TILs, Tumor-infiltrating lymphocytes; NK, natural killer; MHC, Major histocompatibility complex; PD-L1, Programmed cell
death ligand-1; LAG-3, Lymphocyte-activation gene 3; TIM-3, T-cell immunoglobulin, mucin-domain containing-3; IL-10 interleukin-10; ACT,
adoptive T cell transfer; CAR-T, Chimeric antigen receptor (CAR)-T cells; VEGF, vascular endothelial growth factor; TRUCKs, T cells redirected for
universal cytokine-mediated killing. Created in BioRender. Mazza, M. (2025) https://BioRender.com/m08u912.
frontiersin.org
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