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Interferon-Induced Protein with Tetratricopeptide Repeats 3 (IFIT3) plays a dual

role in innate immunity and tumor immunity, functioning as both a viral defense

molecule and a regulator of tumor progression. This review explores the

mechanisms through which IFIT3 modulates immune responses, including

interferon signaling, RIG-I-like receptors, and the NF-kB pathway. IFIT3

facilitates immune evasion and promotes inflammation-mediated tumor

growth by regulating immune checkpoints and the tumor microenvironment,

its emerging role as a target for cancer immunotherapy opens new avenues for

therapeutic strategies. Finally, this paper underscores IFIT3’s potential clinical

applications in the modulation of tumor immunity, highlighting the need for

further research on IFIT3-targeted therapies.
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1 Introduction

Cancer remains one of the foremost causes of death globally (1). Despite significant

advancements in treatment, the complex biology of tumors and their immune escape

mechanisms continue to present substantial challenges in cancer therapy. Studies have

shown that tumorigenesis and progression depend on the intrinsic properties of tumor cells

and are also profoundly influenced by the host immune system. In particular, there is a

tight and complex network of interactions between cancer and innate immunity (2). Innate

immunity is the first line of host defense against pathogen invasion (3, 4). Among

interferon-inducible proteins, IFIT3 has garnered significant attention in recent years

due to its dual role in innate immunity and tumor regulation (5). As a key member of the

interferon-inducible protein family, IFIT3 is especially critical in the regulation of viral

infections and tumor development. Recent studies have demonstrated that IFIT3 plays a

crucial role in antiviral immunity, tumor microenvironment regulation, immune evasion,
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and inflammatory responses. Given its diverse biological functions,

IFIT3 has emerged as a promising target in cancer immunotherapy

(6, 7). This paper will explore the molecular mechanisms of IFIT3

across various cancers, as well as its emerging role in tumor

immunity, providing a theoretical basis for future research and

clinical applications.

Beyond its crucial role in cancer progression, IFIT3 is intricately

involved in key immune pathways, making it a critical player in

both antiviral defense and tumor-immune dynamics.
2 IFIT3: structure and functional roles
in innate immunity

2.1 Structure and Function of IFIT3

IFIT3 belongs to the IFIT family of proteins in the cytoplasm and

has been extensively studied for its antiviral properties. The IFIT

family consists of fourmembers, IFIT1, IFIT2, IFIT3, and IFIT5, which

are clustered on human chromosome 10q23.31 (8). These proteins

have no known enzymatic activity, but all of them contain unique

structural patterns known as tetratricopeptide repeats (TPRs). TPRs

are structural components of IFIT proteins. These TPRs consist of 3 to

16 repeated and modified tandem sequences containing 34 amino

acids each. These TPRs are organized into helix-turn-helix

configurations that promote their participation in protein-protein

interactions leading to several protein complexes that play important

roles in various biological processes in the cell (6). All four IFIT
Frontiers in Immunology 02
proteins have conserved structures in the N-terminal region

containing the first three TPR structural domains. However,

sequence conservation among IFIT proteins progressively declines

towards the C-terminus, leading to increased structural diversity (9).

IFIT proteins are involved in a variety of biological processes, such as

cell proliferation, migration, virus-induced translation initiation,

replication, and double-stranded RNA signaling. The transcription

of IFIT genes can be rapidly induced by interferon (IFN) therapy and

viral infection (6). The C-terminus of IFIT3 binds to themitochondrial

antiviral signaling complex and connects to NF-kB-binding kinase,

which leads to the phosphorylation of IRF3 and triggers the early

production of IFN-b in response to intracellular RNA viruses (9).
2.2 Role of IFIT3 in innate immunity

IFIT3, an integral member of the IFIT family, occupies a pivotal

position in the innate immune system. It is integrated into multiple

key signaling pathways, including the JAK-STAT, IFN (interferon),

and Toll-like receptor (TLR)-mediated recognition pathways, the IFN

(interferon) signaling pathway, and the Toll-like receptor (TLR)-

mediated recognition pathway, and thus deeply participates in and

strengthens the host defense mechanism. Through these pathways,

IFIT3 enhances immune sensitivity and facilitates precise pathogen

recognition. It participates in host defense mechanisms and plays an

important role in pathogen recognition and clearance (5).

For a visual representation of these signaling pathways and IFIT3’s

role within them, see (Figure 1). The figure illustrates how IFIT3
FIGURE 1

The regulatory mechanism of IFIT3 in innate immune signaling pathways. IFIT3 plays a crucial role in key immune pathways, including IFNAR, RIG-I-
like receptors (RLRs), Toll-like receptors (TLRs), and cGAS-STING. IFIT3 regulates antiviral immune responses by interacting with essential signaling
molecules, enhancing antigen presentation by dendritic cells, facilitating T-cell activation, and amplifying antiviral cytokine production. Additionally,
IFIT3 promotes macrophage polarization and antiviral capacity, ultimately contributing to immune system regulation.
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interacts with different immune pathways, reinforcing its central role

in immune response activation through interferon signaling, innate

immune receptor pathways, and inflammatory modulation.

2.2.1 IFIT3 in the type I interferon
signaling pathway

The IFN signaling pathway is a critical component of the innate

immune system, playing a pivotal role in protecting against viral

infections and regulating immune responses (10). IFN-a/b and

IFN-l initiate the expression of downstream effector genes such as

IFIT3 via the JAK-STAT signaling pathway. During viral infection,

IFN-a/b binds to its receptor (IFNAR) on the cell surface, activating
JAK1 and TYK2 kinases. This triggers the phosphorylation and

dimerization of STAT1 and STAT2. The phosphorylated STAT1/

STAT2 complex then associates with IRF9, forming the ISGF3

complex, which translocates to the nucleus to drive the expression

of interferon-stimulated genes (ISGs), including IFIT3 (11–13).

Recent studies suggest that IFIT3 may further modulate the

ISGF3 complex by influencing STAT1 phosphorylation dynamics,

reinforcing the interferon response. IFIT3 is considered an early

responder to viral infections (14).

Moreover, IFIT3 functions not only as a target of interferon

induction but also as a regulator of interferon signaling. It has been

shown that IFIT3 enhances the sustained expression of type I

interferons by interacting with transcription factors, including

IRF3 and IRF7, thereby amplifying the antiviral immune response

(15). Through this positive feedback loop, IFIT3 enhances the

interferon response, strengthening the host’s early antiviral

defense mechanisms.
2.2.2 IFIT3 enhances RIG-I-like
receptors signaling

The RIG-I-like receptors (RLRs)—including RIG-I and MDA5

—are key elements of the innate immune system responsible for

recognizing viral RNA and triggering downstream antiviral

signaling pathways (16). IFIT3 enhances the responsiveness of

these receptors to viral RNA by interacting directly with RLRs.

For example, IFIT3 binding induces structural rearrangements in

RIG-I, enhancing viral RNA recognition and expediting the

activation of downstream interferon signaling cascades (17).

Recent studies suggest that IFIT3 stabilizes MAVS interactions

with TBK1, prolonging antiviral signaling and enhancing IFN-

b production.

Upon recognizing viral double-stranded RNA (dsRNA), RLRs

oligomerize and form active complexes, which subsequently interact

with the mitochondrial antiviral signaling protein (MAVS). MAVS

functions as a hub, activating TANK-binding kinase 1 (TBK1) and

IkB kinase (IKK), which in turn initiate the nuclear translocation of

IRF3/7 along with transcription factors such as NF-kB. These factors
regulate the expression of type I interferons and pro-inflammatory

cytokines, reinforcing the antiviral state of infected and neighboring

cells. IFIT3, an ISG, plays a critical role in amplifying this response by

interacting with key proteins in the antiviral immune network (18,
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19), Additionally, IFIT3 has been implicated in fine-tuning NF-kB
activity, potentially modulating the balance between antiviral

immunity and inflammatory responses.

2.2.3 IFIT3 in toll-like receptor signaling pathway
Toll-like receptors (TLRs) are essential in pathogen recognition

and innate immune activation (20). They detect pathogen-

associated molecular patterns (PAMPs), such as viral RNA or

bacterial lipopolysaccharides (LPS), and initiate downstream

signaling through adaptor proteins like MyD88 or TRIF. This, in

turn, activates transcription factors such as NF-kB and IRF3,

leading to the induction of inflammatory cytokines and

interferons, respectively (21). IFIT3, a key effector molecule in the

interferon signaling pathway, not only amplifies IFN-mediated

antiviral responses but also modulates TLR signaling by

interacting with key adaptor proteins such as MyD88 and TRIF.

When double-stranded RNA (dsRNA) binds to TLR3, it

triggers the production of interferons, initiating a cascade that

includes the phosphorylation of STAT1, amplifying the

expression of ISGs, including IFIT3 (14). Notably, activation of

both TLR3 and TLR4 significantly upregulates IFIT3 expression,

enhancing the antiviral response (14, 22). This demonstrates

IFIT3’s broad role in reinforcing the cellular defense mechanisms

against viral infections.

2.2.4 IFIT3 and the cGAS-STING
signaling pathway

The cGAS-STING pathway plays a vital role in defending

against DNA viruses and certain RNA viruses. In this pathway,

cyclic GMP-AMP synthase (cGAS) detects viral DNA within the

cytoplasm and catalyzes the production of cyclic GMP-AMP

(cGAMP), which activates the stimulator of interferon genes

(STING). STING, in turn, triggers the phosphorylation of TBK1

and IRF3, leading to the robust expression of type I interferons (23,

24). IFIT3, an important effector in the type I interferon signaling

pathway, enhances antiviral immunity by curbing viral replication

and transmission.

Research has shown that IFIT3 is significantly elevated in

monocytes from systemic lupus erythematosus (SLE) patients,

where it is positively correlated with cGAS-STING pathway

activity, highlighting its role in amplifying antiviral responses (25).

2.2.5 Cross-regulation of IFIT3 and NF-kB
signaling pathways

NF-kB is a family of transcription factors central to regulating

inflammation, immune responses, and cell survival. It controls the

expression of various inflammatory cytokines (e.g., IL-1, TNF-a,
IL-6), chemokines, and immunoregulatory molecules (26, 27).

IFIT3 has been shown to enhance immune responses through dual

mechanisms. First, it promotes the expression of cytokines

mediated by NF-kB, including TNF-a, IL-6, and IL-1b (28).

IFIT3 participates in the activation of the NF-kB pathway,

which subsequently contributes to STAT1 activation, thereby
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enhancing immune responses and promoting pro-inflammatory

cytokine release (29). However, evidence suggests that IFIT3 is not

the sole regulator of this process. A study showed that while IFIT3

knock-down reduces cytokine secretion, IFIT3 knock-out does

not completely abolish pro-inflammatory cytokine release,

indicating the involvement of additional pathways in this

response (30).

In addition, the critical role of IFIT3 in the NF-kB signaling

pathway is also notable in its complex interaction mechanism with

pattern recognition receptors (PRRs). Specifically, RIG-I-like

receptors (RLRs) and Toll-like receptors (TLRs), as key upstream

regulatory elements of NF-kB activation, significantly enhance the

transduction efficiency of the NF-kB signaling pathway through

their interaction with IFIT3 (5). A study in HIV and HCV mono-

infected patients revealed that IFIT3 expression was significantly

upregulated in CD8 T cells from these patients, accompanied by a

simultaneous upregulation of “cytokine-cytokine receptor

interactions” and “NF-kappa B signaling pathway”. This was

accompanied by a simultaneous upregulation of “cytokine-

cytokine receptor interactions” and “NF-kappa B signaling

pathway”, a chain reaction that in turn contributed to a sustained

state of immune activation (31).
2.3 Regulation of immune cells by IFIT3

Dendritic cells (DCs), as a class of highly specialized antigen-

presenting cells (APCs), occupy an important position in the

regulation of adaptive immune responses, and they play an

indispensable role in both the maintenance of physiological

homeostasis and the modulation of immune responses in

pathological states (32, 33). In a recent study, it was shown that

type I interferon (IFN-I) is essential for the immune response

induced in dendritic cells, and its regulated markers (IRF7,

SIGLEC1), as well as induced biomarkers (IFI27, IFIT3, etc.),

were validated in vitro and in vivo, which work together to build

a robust immune defense system (34). Furthermore, interferon

regulatory factor 4 (IRF4), a key transcription factor with

hematopoietic cell specificity, significantly influences the

maturation and differentiation process of immune cells.

Strikingly, IRF4 can induce the expression of a specific subset of

interferon-stimulated genes (ISGs) directly in epithelial cells and B-

cell lines, which includes the IFIT3 gene with antiviral activity, in

the absence of dependence on the type I interferon (IFN-I) signaling

pathway (35). Macrophages are immune cells that receive signals

from pathogens and activate the innate immune response by

reprogramming gene expression (36). Overexpression of a

splicing regulator called SRSF7 (formerly known as 9G8) in

macrophages has been reported to result in increased IFIT3

abundance in macrophages and enhanced resistance to VSV

(vesicular stomatitis virus) viral replication (37). In addition,

IFIT3 was found to be included among 36 candidate genes

associated with ARDS severity and also involved in M1
Frontiers in Immunology 04
polarization of macrophages in one study (38). It can be seen that

IFIT3, as a key antiviral protein, exhibits antiviral efficacy through

its regulatory role in immune cells. IFIT3 not only inhibits the

replication and transmission of viruses; but also participates in the

regulation of immune cells, thereby synergistically enhancing the

overall antiviral immune response of the body.
3 Emerging mechanisms of IFIT3 in
tumor immunity

3.1 IFIT3 and immune
checkpoint regulation

A key mechanism by which IFIT3 modulates tumor immunity

is through its interaction with immune checkpoint molecules,

particularly programmed death ligand 1 (PD-L1). Strong evidence

indicates that IFIT3 plays a pivotal role in regulating PD-L1

expression in cancers such as non-small cell lung cancer

(NSCLC) and head and neck cancer (HNC). By upregulating PD-

L1, IFIT3 facilitates tumor immune evasion by suppressing

cytotoxic T-cell function, thereby impairing anti-tumor immune

responses (39–41). This regulation is likely mediated through the

NF-kB signaling pathway, as studies have demonstrated that NF-kB
activation enhances PD-L1 expression (42). Thus, targeting IFIT3

or its downstream effectors may serve as a therapeutic strategy to

restore anti-tumor immunity and enhance the efficacy of immune

checkpoint inhibitors, making IFIT3 a promising target for

cancer immunotherapy.
3.2 Regulation of the tumor
microenvironment by IFIT3

The tumor microenvironment (TME), which consists of cancer

cells, immune cells, stromal cells, and cytokines, plays a central role in

both tumor growth and immune evasion (43). IFIT3 acts as a

significant regulator of the TME, influencing immune cell infiltration

and the inflammatory environment within tumors. Research has

shown that IFIT3 promotes the recruitment of tumor environment

cells, particularly regulatory T cells (Tregs), which dampen anti-tumor

immune responses (44, 45), Moreover, IFIT3 influences the

polarization of tumor-associated macrophages (TAMs), promoting

an M2 phenotype, which further enhances a tumor environment

TME (9). Both are associated with immunosuppression in the tumor

microenvironment (46, 47). These actions help foster a tumor-

supportive environment by inhibiting dendritic cell maturation and

reducing antigen presentation. Thus, targeting IFIT3 within the TME

may offer novel strategies to reprogram the immune landscape toward

tumor clearance.

In addition to regulating immune cell infiltration and polarization,

IFIT3 is also involved in mediating the inflammatory responses within

the TME, which play a key role in tumor progression.
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3.3 IFIT3 and inflammation-mediated
tumor progression

Chronic inflammation is a well-recognized factor contributing to

cancer development and progression during tumorigenesis (48).

Notably, in pancreatic ductal adenocarcinoma (PDAC), high IFIT3

expression is closely linked to elevated inflammatory markers and

poor clinical outcomes. IFIT3 specifically promotes pancreatic cancer

cell metastasis by inhibiting IFIT2’s pro-apoptotic effects and

upregulating vascular endothelial growth factor (VEGF) and

interleukin-6 (IL-6) secretion (49, 50). VEGF enhances tumor

vascularization, while IL-6 fosters an inflammatory environment

conducive to tumor growth. Furthermore, IFIT3 regulates

intratumoral inflammatory responses by modulating key

inflammatory pathways, including NF-kB and interferon regulatory

factors (IRF). In particular, IFIT3 enhances NF-kB activity, which

subsequently promotes the secretion of inflammatory mediators such

as IL-6, TNF-a, and COX-2, driving tumor cell proliferation,

resistance to apoptosis, and angiogenesis (50, 51). In addition,

IFIT3 modulates pro-inflammatory macrophages, amplifying the
Frontiers in Immunology 05
expression of pro-inflammatory cytokines and exacerbating

inflammation, which fosters a microenvironment favorable to

tumor growth (52). This dual regulatory role of IFIT3 in both

inflammation and tumor progression underscores its complex

functions in tumor immunomodulation.

Given IFIT3’s central role in both immune evasion and

inflammation-mediated tumor progression, it emerges as an

attractive candidate for targeted cancer immunotherapy approaches.
3.4 IFIT3 as a potential target for
cancer immunotherapy

Studies on the involvement of IFIT3 in immune escape, tumor

microenvironment regulation, and inflammation are gradually

revealing its potential as a target for cancer immunotherapy

(Figure 2). This figure illustrates how IFIT3 influences tumor

progression through NF-kB activation, PD-L1 regulation,

inflammatory cytokine secretion, and immune cell modulation,

ultimately shaping an immunosuppressive microenvironment.
FIGURE 2

The role of IFIT3 in tumor immunity and the tumor microenvironment (TME). IFIT3 regulates tumor progression and immune evasion through
multiple mechanisms. IFIT3 expression is influenced by various cancer treatments, including chemotherapy, radiotherapy, immunotherapy, and
personalized therapy. Through NF-kB activation, IFIT3 upregulates PD-L1 expression, suppressing T-cell, B-cell, and NK-cell functions, thereby
promoting immune evasion. In the TME, IFIT3 modulates immune cell infiltration, enhances regulatory T cell (Treg) expansion, and skews tumor-
associated macrophages (TAMs) toward an M2 phenotype, fostering an immunosuppressive environment. Additionally, IFIT3 promotes inflammation
via NF-kB and IRF signaling, increasing pro-inflammatory cytokines (IL-6, TNF-a, and COX-2), leading to enhanced tumor angiogenesis, apoptosis
resistance, and immune escape. These findings suggest IFIT3 is a potential target for cancer immunotherapy by reshaping the immune landscape of
the TME.
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Strategies aimed at inhibiting IFIT3 function or blocking its

interaction with key immunoregulatory pathways, such as NF-kB
and PD-L1, may enhance anti-tumor immune responses (39, 41). It

has been reported in the literature that Radiotherapy, RT, is

associated with a strong up-regulation of interferon-responsive

genes, including IFIT3, in macrophages and dendritic cells. An

in-depth study also found differences in the expression of immune

checkpoints in tumors treated with RT versus those not treated with

RT (53). In summary, combining IFIT3-targeted therapies with

existing immunotherapies (e.g., immune checkpoint inhibitors or

radiotherapy in combination with immunotherapy) may provide a

synergistic approach to overcoming tumor immune resistance.

Future studies should focus on validating these therapeutic

strategies and evaluating their efficacy in clinical trials.
4 Role of IFIT3 in cancer progression:
tumor-specific mechanisms

The IFIT3 gene exhibits significant expression variations across a

wide range of cancer types, playing a crucial biological role. It has a

profound impact on tumor initiation, progression, and patient

prognosis by modulating immune response-related signaling

pathways, regulating chemokine expression levels, and deeply

participating in key cellular processes such as apoptosis and autophagy.

A summary of the tumor-specific mechanisms involving IFIT3

is provided in (Table 1), highlighting its role in different

cancer types.
4.1 Oral squamous cell carcinoma

Oral squamous cell carcinoma (OSCC) accounts for more than

90% of all oral cancer cases, with a five-year survival rate of less than

50%, ranking 16th in global cancer mortality (81, 82). Notably, a

previous study has reported that the expression levels of IFIT3 are

significantly upregulated in OSCC (54). IFIT3 overexpression has

been identified as a major contributor to epithelial-mesenchymal

transition (EMT) in OSCC, where it promotes tumor invasiveness.

Inhibition of this pathway has shown potential therapeutic benefits,

making IFIT3 a viable target for future drug development (55). A

significant positive correlation between LOXL2 expression and the

overexpression of IFIT1 and IFIT3 was observed in human OSCC

tissues. This suggests that LOXL2 may regulate the expression of

IFIT3, which has important implications for tumor progression. Later

in the paragraph, LOXL2’s role in modulating the tumor

microenvironment is discussed in more detail. Additional studies

revealed that Lysyl oxidase-like 2 (LOXL2) expression in OSCC

tissues was significantly correlated with tumor clinical stage, and

lymph nodemetastasis patient overall survival. Human OSCC TW2.6

(TW2.6/LOXL2) cells overexpressing LOXL2 exhibit enhanced

migration, invasion, epithelial-mesenchymal transition (EMT), and

cancer stem cell (CSC) phenotypes. Notably, in LOXL2-

overexpressing cells, LOXL2 increased the levels of interferon-
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inducible proteins IFIT1 and IFIT3, which are key downstream

components involved in the migration, invasion, EMT, and CSC

phenotypes of TW2.6 cells (56).

IFIT3 overexpression has been identified as a major contributor

to epithelial-mesenchymal transition (EMT) in OSCC, where it

promotes tumor invasiveness. Inhibition of this pathway has shown

potential therapeutic benefits, making IFIT3 a viable target for

future drug development. In summary, IFIT3 overexpression plays

a crucial role in OSCC progression.
4.2 Pancreatic ductal adenocarcinoma

Pancreatic ductal adenocarcinoma (PDAC) is one of the most

lethal malignant tumors worldwide (83). with recent research

revealing the significantly high expression of IFIT3 in aggressive

PDAC cells. This abnormally high expression not only strengthens

the anti-apoptotic ability of PDAC cells but also significantly

increases their resistance to chemotherapeutic drugs, directly

correlating with shorter patient survival (57). IFIT3 plays a key role

in the regulation of mitochondria-mediated apoptosis during

chemotherapy. Knockdown of IFIT3 expression effectively

weakened PDAC cells’ resistance to a range of chemotherapeutic

agents, including gemcitabine, paclitaxel, and FOLFIRINOX, whereas

overexpression of IFIT3 significantly promoted the development of

resistance. Immunoprecipitation studies revealed a direct interaction

between IFIT3 and mitochondrial voltage-dependent anion channel

protein 2 (VDAC2), a key regulator of the mitochondria-associated

apoptosis pathway. IFIT3 forms a protective barrier against

chemotherapy-induced apoptotic signals in PDAC cells by

stabilizing the binding of VDAC2 to O-GlcNAc transferase (49).

Additionally, studies showed that N-myc and STAT interactor (NMI)

promoted IFIT3 expression and accelerated tumor growth and

migration by activating the STAT3-IFIT3 signaling pathway. NMI-

mediated upregulation of IFIT3 plays a central role in PDAC cell

resistance to chemotherapeutic drugs such as gemcitabine, providing

a potential target for novel therapeutic strategies (58).
4.3 Hepatocellular carcinoma

Hepatocellular carcinoma (HCC) is one of the most prevalent

malignant tumors, accounting for approximately 90% of liver

cancer cases and representing a leading cause of cancer-related

deaths globally (84, 85). Research into the molecular mechanisms

underlying HCC has shown that the expression of CXCL11 in

cancer-associated fibroblasts (CAFs) is significantly upregulated

compared to other molecules, a trend that is also evident in both

cirrhotic and HCC tissues when compared to normal liver tissues.

Moreover, analysis of non-metastatic and metastatic HCC tissue

samples has revealed markedly elevated mRNA levels of IFIT1 and

IFIT3 in comparison to paraneoplastic tissues (59).

CircUBAP2, a circular RNA, is highly upregulated in the

majority of HCC tissues and is associated with poor patient
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prognosis. HCC patients exhibiting high levels of circUBAP2

expression tend to have greater vascular invasion and worse

differentiation (86). CircUBAP2 has been identified as a key

regulatory molecule that modulates the expression of IFIT1 and

IFIT3. Acting as a competitive endogenous RNA (ceRNA), it

sponges miR-4756, thereby preventing the inhibition of IFIT1

and IFIT3 expression. This regulatory axis is critical in HCC, as

circUBAP2 influences both immune responses and tumor

progression (59).

Additionally, studies have demonstrated that silencing IFIT1

and IFIT3 significantly downregulates IL-17 and IL-1b expression,

impairing the migration and invasiveness of HCC cells (59).

Notably, the ubiquitin-binding enzyme UBE2O, which is strongly

correlated with HCC prognosis, plays an essential role in the
Frontiers in Immunology 07
ubiquitination of IFIT3. Findings indicate that HCC cells with

high levels of UBE2O expression and low levels of IFIT3

expression exhibit strong resistance to interferon a treatment,

whereas those with low UBE2O expression and high IFIT3

expression display heightened sensitivity to interferon a (60).
4.4 Colorectal cancer

Colorectal cancer (CRC), the third most prevalent type of

cancer globally, accounts for approximately 1.9 million new cases

annually, constituting one-tenth of all new cancer diagnoses (87).

Recent studies have uncovered the pivotal role of ETS variant

transcription factor 7 (ETV7) in CRC pathogenesis. ETV7
TABLE 1 Role of IFIT3 in cancer progression: tumor-specific mechanisms.

Cancer Type IFIT3 Expression Mechanism of Action References

Oral squamous cell
carcinoma (OSCC)

upregulation Promotion of EMT) elevates p-EGFR and p-AKT levels in OSCC cells/LOXL2
→IFIT3→EMT/CSC→cell invasion, migration

(54–56)

Pancreatic ductal
adenocarcinoma
(PDAC)

upregulation NMI promotes IFIT3 expression and tumor growth by activating the STAT3-
IFIT3 signaling pathway.
IFIT3 interacts with VDAC2 → enhanced chemotherapy resistance

(49, 57, 58)

Hepatocellular
carcinoma (HCC)

upregulation Silencing of IFIT3 significantly down-regulated the expression levels of IL-17
and IL-1b and inhibited the migration and invasiveness of HCC cells/Cells with
low UBE2O expression and high IFIT3 expression were highly sensitive to
interferon a treatment

(59, 60)

Colorectal cancer (CRC) upregulation ETV7 upregulation → IFIT3 upregulation → promotion of CRC cell
proliferation, migration, and inhibition of apoptosis

(61, 62)

Head and neck cancer (HNC) upregulation IFIT3 targets PD-L1 expression through activation of the PI3K/AKT signaling
pathway, which in turn regulates EMT and CSC activity

(39)

Non-small cell lung
cancer (NSCLC)

Upregulation downregulation IFIT3 overexpression enhances phosphorylation of EGFR and AKT
Inhibits p53 and EMT pathway

(40, 44, 63)

prostate cancer upregulation Down-regulation of b6 integrin promotes IFIT3 expression in cancer cells, which
in turn regulates STAT1 distribution and promotes prostate cancer progression
and intercellular communication

(64)

Esophageal squamous cell
carcinoma(ESCC)

upregulation IFIT1/IFIT3+ T cells mediate immunosuppression by recruiting FoxP3+ Tregs in
metastatic lymph nodes

(45, 65)

Breast cancer (BC) upregulation High IFIT3 expression is associated with prognosis and immune infiltration in
breast cancer patients

(66–68)

bladder cancer(BLCA) upregulation IFIT3 showed a strong correlation with neutrophil and dendritic cell infiltration
levels in the tumor microenvironment.

(69)

melanoma upregulation Enhancing anti-PD-1 efficacy by modulating the tumor microenvironment (70, 71)

thyroid cancer upregulation Combined bioinformatic synthesis results in IFIT3 expression is associated with
poor prognosis in thyroid cancer

(72)

leukemia Upregulation downregulation Impact on the tumor microenvironment (TME), high expression of IFIT3 is
associated with poor prognosis in acute myeloid leukemia (AML)/IFIT1/IFIT3
inhibits Bcl-2 through pyroptosis
In acute promyelocytic leukemia (APL), the PML-RAR fusion protein inhibits
the RIG-G (i.e. IFIT3) expression and inhibits disease progression

(73–76)

myeloma (medicine) Upregulation IFIT3 indirectly inhibits MYC, targets the MYC-IRF4 axis, and activates the
immune/interferon pathway

(74, 77)

ovary cancer downregulation Negative regulation of cell proliferation, cellular immunity (78, 79)

Nasopharyngeal
Carcinoma NPC

Upregulation IFIT3 plays a role in the early diagnosis of nasopharyngeal cancer (80)
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expression is significantly upregulated in CRC tissues and cells,

promoting abnormal proliferation, migration, and cell cycle

acceleration while inhibiting the normal apoptotic processes of

CRC cells. Notably, ETV7 expression levels in CRC patients were

positively correlated with IFIT3, with ETV7 enhancing IFIT3

transcriptional activity, mRNA levels, and protein expression in

CRC cells (61).
4.5 Head and neck cancer

Head and neck squamous cell carcinoma (HNSCC), the most

prevalent malignant tumor of the upper respiratory and digestive

tracts, accounts for the vast majority of head and neck cancer

(HNC) cases and ranks as the seventh most common cancer

worldwide. It is characterized by high aggressiveness, significant

metastasis propensity, and a high recurrence rate (88). Recent

bioinformatics analyses, cellular experiments, and animal models

have revealed the critical role of IFIT3 in HNSCC. IFIT3 is highly

expressed in HNSCC tissues, and its abnormal overexpression is

directly correlated with poor prognosis in patients with clinical

stage IV or pathological grade 3, as reflected by significantly reduced

survival rates. Additional studies have investigated the mechanisms

through which IFIT3 promotes malignant progression in HNSCC.

IFIT3 specifically targets programmed death ligand 1 (PD-L1)

expression by activating the PI3K/AKT signaling pathway,

thereby regulating the epithelial-mesenchymal transition (EMT)

and cancer stem cell (CSC) activity. These molecular cascade

reactions represent a key mechanism through which IFIT3 drives

tumor progression and metastasis in HNSCC (39).
4.6 Non-small cell lung cancer

Lung cancer has one of the highest incidence and mortality rates

globally. In 2023, the American Cancer Society estimated more than

1.8 million new cases and 1.6 million deaths worldwide (89) Non-

small cell lung cancer (NSCLC) constitutes the majority of lung

cancer cases (85% of patients) (90).

The epidermal growth factor receptor (EGFR) signaling

pathway plays a crucial role in lung cancer development, with

EGFR mutations and overexpression being key features of NSCLC.

This signaling influences several biological processes, including cell

proliferation, differentiation, and survival (91). Some studies have

shown that the knockdown of IFIT1 or IFIT3 inhibits NSCLC cell

proliferation and invasion and promotes apoptosis, suggesting that

IFIT3 acts as an oncogene in NSCLC progression. Furthermore,

IFIT3 overexpression significantly enhances the phosphorylation of

EGFR and AKT, regulating multiple effector molecules in the EGFR

pathway, and thus plays a multilevel role in cell proliferation and

survival (40). A recent study on lung adenocarcinoma (LUAD)

identified cyclic RNA Circ_BBS9 as a tumor suppressor.

Overexpression of circ_BBS9 inhibited LUAD cell proliferation

and promoted ferroptosis. IFIT3, which directly interacts with

circ_BBS9, is involved in immune infiltration and the formation

of the immune microenvironment. It may serve as a diagnostic
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biomarker by regulating ferroptosis and the immune

microenvironment through competitive binding to miR-7150 (44).

Interestingly, a study found thatRig-G (an alias of IFIT3) expression

was often downregulated in lung cancer, and its low levels were strongly

associated with poor prognosis (63). Further exploration revealed that

Rig-G overexpression effectively inhibited tumor growth andmigration

in lung cancer cells and animal models, highlighting its potential as a

tumor suppressor capable of significantly slowing lung cancer

progression and metastasis. In A549 lung cancer cells, Rig-G

overexpression significantly suppressed p53 downstream genes.

Upregulation of Rig-G promoted the expression of E-cadherin and

p21, enhancing cell adhesion and growth inhibition; while suppressing

the expression of vimentin, a key EMT marker. Interestingly, however,

the intervention of the p53 inhibitor Pifithrin-a (PFTa) significantly
attenuated the inhibitory effect of Rig-G on p53 and EMT pathways in

lung cancer cells. Overall, Rig-G exerts its tumor suppressor effects in

lung cancer through p53-dependent pathways (63).
4.7 Prostate cancer

Prostate cancer (PrCa) is one of the leading causes of cancer

morbidity and mortality in men worldwide (92). It is estimated that

288,300 new cases of prostate cancer (PrCa) will be diagnosed in the

U.S. in 2023, accounting for 29% of new cancer cases in men. It is

the most common cancer among men in the United States, and the

current lifetime risk of prostate cancer in men is 1 in 8 (93). In

prostate cancer (PrCa) study, downregulation of the b6 integrin

subunit was found to significantly promote IFIT3 expression in

PrCa cells and their released small extracellular vesicles (sEVs),

suggesting that IFIT3 may be negatively regulated by b6 integrin.

Meanwhile, there was a complex interaction between IFIT3 and

STAT1, and although both were highly expressed in PrCa cells,

IFIT3 was the only factor secreted into sEVs. Further, the reduction

of IFIT3 resulted in STAT1 enrichment in sEVs and decreased

intracellular STAT1 levels, revealing a critical role of IFIT3 in

regulating STAT1 distribution. These findings emphasize the

importance of IFIT3 in PrCa progression and intercellular

communication (64).
4.8 Other cancers

With ongoing research, the role of IFIT3 in cancer has become

increasingly prominent. In addition to the known fields, the critical

role of IFIT3 in a variety of cancer types, including but not limited

to esophageal squamous cell carcinoma (45, 65), myeloma,

leukemia (73, 74), breast cancer (66), nasopharyngeal carcinoma

(80), bladder carcinoma (69), thyroid carcinoma (72), and

melanoma (70), has been further revealed utilizing comprehensive

bioinformatic analyses and other means. These studies have shown

that IFIT3 can significantly regulate the proliferation rate, migration

and invasion potential, and the dynamic balance of immune

responses of tumor cells, as well as affect the sensitivity of cancer

cells to chemotherapeutic agents, and thus it is considered as an
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indispensable key regulator in the mechanism of the occurrence and

development of these cancers.
5 Conclusion

As a key immunoregulatorymolecule, IFIT3 has demonstrated its

important role in tumorigenesis, development, and immune escape,

and has become a hotspot of tumor immunity research in recent

years. This review provides a comprehensive overview of IFIT3’s

multifaceted roles in cancer progression, immune evasion, and drug

resistance. By regulating key processes such as cell proliferation,

invasion, immune checkpoint modulation, and inflammation, IFIT3

has emerged as a critical player in tumor immunity. Its involvement

in pathways such as interferon signaling, RIG-I-like receptors, Toll-

like receptors, cGAS-STING, and NF-kB highlights its potential as a

target for cancer immunotherapy. Future research should focus on

uncovering IFIT3’s interactions with additional immune checkpoints

across various cancer types and investigating the efficacy of IFIT3-

targeted therapies in clinical settings.

Of interest is the unique role of IFIT3 in the remodeling of

the tumor microenvironment, the regulation of inflammatory

response, and the modulation of immune checkpoint molecules,

suggesting that it has an important potential for clinical application

in tumor immunotherapy. Future studies should explore more

deeply the regulatory role of IFIT3 in other immune checkpoint

molecules, especially the differential expression in different cancer

types. Meanwhile, it will be clinically important to evaluate the

effect of IFIT3 inhibitors or targeted modulation strategies against

tumors in conjunction with the latest advances in immunotherapy.

Integrating IFIT3-targeted therapies with establ ished

immunotherapies, such as PD-1/PD-L1 inhibitors, holds promise

for novel cancer treatment strategies. In addition, the cross-

regulation of IFIT3 with signaling pathways such as NF-kB and

cGAS-STING should be the focus of future studies to understand its

multiple roles in tumors fully.
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