
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
REVIEW article
Front. Immunol.
Sec. Multiple Sclerosis and Neuroimmunology
Volume 16 - 2025 | doi: 10.3389/fimmu.2025.1514813
This article is part of the Research Topic Use of Big Data and Artificial Intelligence in Multiple Sclerosis View all 7 articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Introduction. Multiple sclerosis (MS) is a chronic neurodegenerative disease that affects over 2.8 million people globally, leading to significant motor and non-motor symptoms. Effective disease monitoring is critical for improving patient outcomes but is often hindered by the limitations of infrequent clinical assessments. Digital remote monitoring tools leveraging big data and AI offer new opportunities to track symptoms in real time and detect disease progression.Methods. This narrative review explores recent advancements in digital remote monitoring of motor and non-motor symptoms in MS. We conducted a PubMed search to collect original studies aimed at evaluating the use of AI and/or big data for digital remote monitoring of pwMS. We focus on tools and techniques applied to data from wearable sensors, smartphones, and other connected devices, as well as AI-based methods for the analysis of big data.Results. Wearable sensors and machine learning algorithms show significant promise in monitoring motor symptoms, such as fall risk and gait disturbances. Many studies have demonstrated their reliability not only in clinical settings and for independent execution of motor assessments by patients, but also for passive monitoring during everyday life. Cognitive monitoring, although less developed, has seen progress with AI-driven tools that automate the scoring of neuropsychological tests and analyse passive keystroke dynamics. However, passive cognitive monitoring is still underdeveloped, compared to monitoring of motor symptoms. Some preliminary evidence suggests that application of AI and big data to other understudied aspects of MS (namely sleep and circadian autonomic patterns) may provide novel insights.Advances in AI and big data offer exciting possibilities for improving disease management and patient outcomes in MS. Digital remote monitoring has the potential to revolutionize MS care by providing continuous, long-term granular data on both motor and non-motor symptoms. While promising results have been demonstrated, larger-scale studies and more robust validation are needed to fully integrate these tools into clinical practice and 46 generalise their results to the wider MS population.
Keywords: Multiple Sclerosis, big data, artificial intelligence, Monitoring, review
Received: 21 Oct 2024; Accepted: 14 Feb 2025.
Copyright: © 2025 Dini, Comi and Leocani. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Letizia Leocani, Vita-Salute San Raffaele University, Milan, 20132, Lombardy, Italy
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.