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Introduction: The incidence of chronic obstructive pulmonary disease (COPD)

and non-alcoholic fatty liver disease (NAFLD) has increased significantly in past

decades, posing a significant public health burden. An increasing amount of

research points to a connection between COPD and NAFLD. This study aimed to

identify the key genes of these two diseases, construct a diagnostic model, and

predict potential therapeutic agents based on critical genes.

Methods: NAFLD and COPD datasets were obtained from the GEO database,

differential genes were identified by differential analysis and WGCNA, PPI

networks were constructed and enriched for differential genes and COPD-

associated secreted proteins, small molecule compounds were screened, and

immune cell infiltration was assessed. Meanwhile, LASSO and RF further screened

the essential genes, and finally, two key genes were obtained. Subsequently, the

nomogram diagnostic model and lncRNA-miRNA-mRNA network were

constructed based on these two core genes, subjected to drug prediction and

GSEA enrichment analysis, and validated in an external cohort using qRT-PCR.

Results: KEGG enrichment analysis indicated that the NF-kappa B and TNF

signaling pathways may be associated with COPD and NASH co-morbidities.

Ten small-molecule drugs associated with COPD and NASH were identified

through cMAP analysis, including ansoprazole and atovaquone. In addition, we

further identified the hub genes S100A9 and MYH2 for NAFLD and COPD by

machine learningmethods. The immune infiltration indicated that these two core

genes might be involved in the immunomodulatory process of NASH by

regulating the function or recruitment of specific immune cell types. A

nomogram diagnostic model was constructed based on these two core genes.

The AUC value for S100A9 was 0.887, for MYH2 was 0.877, and for the

nomogram was 0.889, demonstrating excellent diagnostic efficacy. Two

hundred fifty-four potential drugs targeting S100A9 and 67 MYH2 were

searched in the DGIdb database. Meanwhile, the lncRNA-miRNA-mRNA

network was constructed by predicting target miRNAs of biomarkers and

further predicting lncRNAs targeting miRNAs. qRT-PCR analysis revealed that
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S100A9 was upregulated in both COPD and NAFLD, consistent with

bioinformatic predictions, while MYH2 showed increased expression in COPD

but decreased expression in NAFLD, diverging from the predicted

downregulation in both diseases. These findings suggest that S100A9 serves as

a common inflammatory marker for both diseases, whereas MYH2 may be

regulated by disease-specific mechanisms, highlighting its potential for

distinguishing COPD from NAFLD.

Conclusion: The hub genes S100A9 and MYH2 in COPD and NASH were

identified by various bioinformatics methods and a diagnostic model was

constructed to improve the diagnostic efficiency. We also revealed some

potential biological mechanisms of COPD and NASH and potential drugs for

COPD-related NASH. Our findings provide potential new diagnostic and

therapeutic options for COPD-associated NASH and may help reduce

its prevalence.
KEYWORDS

NAFLD, COPD, inflammation, immunity, metabolism, diagnostic markers, WGCNA,
machine learning
1 Introduction

Prolonged airflow restriction with steady progression is a

hallmark of chronic obstructive pulmonary disease (COPD), a

prevalent and severe respiratory disease. The global incidence of

COPD has risen dramatically, driven by population aging and the

persistent increase in smoking. This condition remains a significant

challenge for clinicians in the 21st century, imposing a substantial

socio-economic and public health burden due to its high morbidity

and mortality rates (1, 2). By 2030, COPD is predicted by the World

Health Organization to rank third in terms of causes of mortality.

Smoking and inhaling harmful particulate matter are known risk

factors (3). In addition, the potential mechanisms by which

inflammation, oxidative stress, and metabolic disorders contribute

to the development of COPD are increasingly being studied (4).

Excessive intracellular fat buildup in hepatocytes as a result of

the exclusion of alcohol and other known liver-damaging agents

characterizes NAFLD, an acquired metabolic stress liver damage.

This disease ranges from mild fatty liver to non-alcoholic

steatohepatitis (NASH) and even to cirrhosis (5, 6). In the past
Disease; NAFLD, Non-
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Expressed Genes; PPI,
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decades, NAFLD has even emerged as the most prevalent chronic

liver disease worldwide, affecting over 25% of adult subjects (7).

Population predisposition to NAFLD exists, and it is typically

l inked to metabolic syndrome components, including

hypertension, type 2 diabetes, and obesity (8).

Multiple studies have shown that NAFLD is associated with

multi-system manifestations such as cardiovascular, renal, and

endocrine (9, 10). Crosstalk between different organs leads to

extrahepatic complications of NAFLD. Several investigations have

shown that NAFLD is associated with several respiratory diseases,

such as COPD (11–14). Viglino et al. screened 111 COPD patients

with serum samples with various conditions. Hepatic steatosis,

NASH, and hepatic fibrosis were noninvasively assessed in these

patients using the FibroMax method, a diagnostic blood test that

combines multiple biomarkers to estimate the degree of liver

damage and fibrosis. The FibroMax method provides a non-

invasive alternative to liver biopsy, offering a quantitative

assessment of liver function and fibrosis. Eventually, they

concluded that 41.4% of these 111 patients with COPD had

moderate to severe steatosis, 36.9% had junctional NASH and

another 61.3% had hepatic fibrosis (15). A study published by

Lowie E.G.W. in the European Respiratory Journal found that

hyperglycemia, dyslipidemia, and atherosclerosis were prevalent

in patients with COPD, deepening our understanding of systemic

comorbidities in patients with COPD (16). NAFLD is considered as

one of the systemic comorbidities of COPD. We know that multiple

factors involved in the progression of NAFLD, including oxidative

stress, low-grade inflammation, low physical activity, insulin

resistance, metabolic disorders, and lipid accumulation (17, 18).

Lipid metabolism and inflammation and show a close association in

the co-morbidity of COPD and NAFLD (18).
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In recent years, bioinformatics and microarray technology have

been rapidly developed, and a large amount of gene expression data

has been made public, providing more help for researchers to study

the diseases (19, 20). COPD and NAFLD seem to be two relatively

independent pathophysiological processes, but more and more

studies have shown a non-accidental link between these two

diseases. Authoritative epidemiological and clinical evidence

suggests that the COPD incidence in NASH is significantly higher

than in the general population, with an increased risk of death (21).

Therefore, screening for NASH in patients with COPD is necessary.

Given that the gold standard for diagnosing NASH is the

histological assessment of liver biopsies (22), an invasive

procedure, there is an urgent need to find an efficient, minimally

invasive, or non-invasive method for diagnosing NASH (23).

Through the analysis, S100A9 and MYH2 were identified as two

key biomarkers in this study. S100A9, a calcium-binding protein, is

highly expressed in immune cells, particularly neutrophils, and

typically forms a heterodimer with S100A8 (S100A8/S100A9),

which plays a crucial role in regulating inflammatory processes.

Members of the S100 protein family, including S100A8/S100A9, are

also pivotal in the pathogenesis of NASH, especially in hepatic

inflammatory cells (24, 25). Meanwhile, MYH2, which encodes the

myosin heavy chain of type 2A fast-twitch muscle fibers, has been

implicated in various hereditary myopathies. These conditions,

which may follow autosomal dominant or recessive inheritance

patterns, are characterized by muscle fiber atrophy (particularly

type 2A fibers), impaired muscle function, and pathological features

such as rimmed vacuoles, fiber-type variability, and fatty infiltration

(26, 27). The combined role of S100A9 and MYH2 may offer novel

insights into the diagnosis and treatment of COPD-

associated NASH.

This study thus focuses on S100A9 and MYH2 to establish a

blood-based, non-invasive diagnostic approach and to explore

relevant therapeutic strategies, contributing to improved clinical

management of COPD-associated NASH.
2 Materials and methods

2.1 Data collection and processing

Table 1 provides comprehensive details about the datasets. Four

NASH datasets, GSE24807, GSE48452, GSE66676, and GSE63067

were retrieved from the GEO database, comprising a total of 119

human liver tissue samples, including 58 normal liver tissues and 61

NASH tissues. These datasets were standardized by replacing

negative values with zero and removing missing data. To address

technical variability between datasets, batch effects were corrected

using the ComBat function from the “sva” package. PCA was

subsequently performed to evaluate sample distribution and

confirm dataset harmonization for downstream analyses.

Similarly, two COPD datasets, GSE38974 and GSE106986 were

obtained from the GEO database, including 14 normal lung tissue

samples and 37 COPD tissue samples. After aligning shared genes

across datasets and replacing negative values with zero, batch effects
Frontiers in Immunology 03
were corrected using the same ComBat approach. Boxplots were

generated before and after correction to assess the consistency of

sample distributions and ensure proper data integration.
2.2 Differential gene analysis

We utilized the “Limma” package, a powerful R tool for

differential analysis, to process the corrected NASH and COPD

datasets and screen for differentially expressed genes (DEGs).

DEGs, defined as genes exhibiting significant differences in

expression levels under varying conditions, were filtered using

thresholds of p ≤ 0.05 and |log2(fold change) | ≥ 0.585. The

filtered DEGs were subsequently visualized using heat maps and

volcano plots, generated with the “heatmap” and “ggplot2”

packages in R software.
2.3 WGCNA

In the present analysis, we utilized the Weighted Gene Co-

expression Network Analysis (WGCNA), a systems biology

approach for studying gene expression data. We aimed to identify

gene modules by building gene co-expression networks and

investigating their relationship with various phenotypes or

biological features. We selected a soft threshold power (b=3) as

the weight to construct the gene co-expression networks. We then

computed the weighted expression correlations to generate the

topological overlap matrix (TOM), conducted hierarchical

clustering analysis on the TOM, identified distinct gene modules,

calculated the module eigenitem volume (ME) for each module,

merged similar modules, and visualized the results using a heat

map. Subsequently, we assessed the correlation of the module

eigenvectors with the given traits and selected the module with

the strongest correlation. Finally, we evaluated the significance of

this module by determining the gene-module correlation (Module

Membership, MM) and the gene-trait correlation (Gene

Significance, GS).
2.4 COPD-secreted proteins

We downloaded 3946 genes encoding secreted proteins using

The Human Protein Atlas database (https://www.proteinatlas.org/).
2.5 Construction of protein-protein
interaction networks

To explore the connection between COPD-related secreted

proteins and essential NASH genes, we created a protein-protein

interaction (PPI) network using the “SRING” database (https://

cn.string-db.org/), with a minimum interaction score of 0.4. We

employed MCODE to identify the essential modules and chose

those with the highest scores for further analysis.
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2.6 Cellular function enrichment analysis

After identifying the differential genes and key modules, we

delved into their biological functions and disease-causing

mechanisms. We then conducted GO and KEGG enrichment

analyses using the clusterProfiler package, encompassing BP, CC,

and MF. A significance level of P<0.05 was applied to the

enrichment analysis. Subsequently, we pinpointed significantly

enriched pathways and functions and visualized them using the

GOChord function. Moreover, we employed CMAP analysis to

investigate the impact of small molecule compounds on gene

expression and to uncover novel small molecule compounds

associated with the target disease. These compounds could

potentially serve as drug candidates for further research and

development. In our study, we inputted the highest-scoring

upregulated genes in the PPI network into the map database and

identified ten small molecule compounds with top scores as

potential drugs for treating NASH.
2.7 Machine learning

LASSO is a widely used statistical method for feature selection

and regression analysis. Random forest is a machine learning

algorithm based on integrated learning, which improves

prediction accuracy and stability by integrating multiple decision

trees. In our study, we initially utilized the LASSO algorithm to

identify potential diagnostic genes from the shared genes of

WGCNAs and DEGs. Subsequently, we employed the

randomForest method to select disease signature genes, ranking

them based on gene importance and using LASSO regression for

feature selection. We then conducted cross-validation to screen

potential diagnostic genes for intersection analysis, aiming to obtain

the most effective model for identifying and improving the accuracy

of diagnosis and treatment.

To create visual representations of predictive models’ results

and probabilities, we used logistic regression and the lm function.

We then constructed Nomogram plots using the nomogram

function. The pROC package helped us calculate and plot the
Frontiers in Immunology 04
ROC curve, which we used to assess the model’s performance by

calculating the area under the ROC curve (AUC) and 95%

confidence interval (CI) values. Higher AUC values indicate

better predictive ability. We also plotted calibration curves to

compare predicted probabilities with actual incidences.

Additionally, we performed DCA analysis to evaluate the

effectiveness of the Nomogram model across different

probability thresholds.
2.8 lncRNA-miRNA-mRNA
network construction

The miRWalk database was used to predict biomarker target

miRNAs. The ENCORI database was then used to indicate the

lncRNAs targeting miRNAs. Cytoscape (version 3.8.2) was used to

build lncRNA-miRNA-mRNA networks.
2.9 Single gene enrichment analysis GSEA

GSEA was conducted separately for the essential genes MYH2

and S100A9. To thoroughly examine the main pathways linked to

the development of COPD and NASH. The dataset used as a

reference was “h.all.v2023.2.Hs.symbols.gmt” and was acquired

from MSigDB (28). The screening parameters of P< 0.05 and

FDR< 0.25 were used to identify routes that showed significant

enrichment. These pathways were then displayed using the

“Enrichment Map” software package.
2.10 qRT-PCR

At the hospital, 75 blood samples were obtained from patients:

25 COPD patients, 25 NAFLD patients, and 25 healthy individuals.

Table 2 summarizes the clinical data collected from the patients.

Each volunteer gave informed consent to use their serum in our

study. We extracted total RNA using the Trizol method and

performed concentration measurements, followed by reverse
TABLE 1 Descriptive statistics of the GEO datasets.

GEO accession Platform Origin Sample Species

Control NAFLD

GSE24807 GPL2895 liver 5 12 Homo sapiens

GSE48452 GPL11532 liver 12 14 Homo sapiens

GSE66676 GPL6244 liver 34 26 Homo sapiens

GSE63067 GPL570 liver 7 9 Homo sapiens
GEO accession Platform Origin Sample Species

Control COPD

GSE38974 GPL4133 lung 9 23 Homo sapiens

GSE106986 GPL13497 lung 5 14 Homo sapiens
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TABLE 2 Patient baseline demographic and clinical characteristics.

Variables
Overall COPD NAFLD Normal

p-value
N = 751 N = 251 N = 251 N = 251

Age (years), Median (Q1, Q3) 65.00 (61.00, 70.00) 65.00 (61.00, 68.00) 64.00 (61.00, 67.00) 65.00 (60.00, 73.00) 0.4822

Gender, n (%) 0.6873

Male 40.00 (53.33%) 15.00 (60.00%) 12.00 (48.00%) 13.00 (52.00%)

Female 35.00 (46.67%) 10.00 (40.00%) 13.00 (52.00%) 12.00 (48.00%)

Height (cm), Mean ± SD 165.33 ± 7.06 166.20 ± 7.65 165.56 ± 6.18 164.24 ± 7.40 0.2432

Weight (kg), Mean ± SD 66.23 ± 11.15 61.62 ± 11.87 71.20 ± 10.48 65.88 ± 9.21 0.0272

BMI, Mean ± SD 24.23 ± 3.81 22.29 ± 3.99 25.95 ± 3.28 24.45 ± 3.32 0.0022

Hypertension, n (%) 0.0303

No 45.00 (60.00%) 19.00 (76.00%) 10.00 (40.00%) 16.00 (64.00%)

Yes 30.00 (40.00%) 6.00 (24.00%) 15.00 (60.00%) 9.00 (36.00%)

Diabetes, n (%) <0.0013

No 49.00 (65.33%) 18.00 (72.00%) 6.00 (24.00%) 25.00 (100.00%)

Yes 26.00 (34.67%) 7.00 (28.00%) 19.00 (76.00%) 0.00 (0.00%)

Current Smoking Status, n (%) 0.0053

No 55.00 (73.33%) 24.00 (96.00%) 17.00 (68.00%) 14.00 (56.00%)

Yes 20.00 (26.67%) 1.00 (4.00%) 8.00 (32.00%) 11.00 (44.00%)

Ex-smoker Status, n (%) >0.9993

No 42.00 (56.00%) 14.00 (56.00%) 14.00 (56.00%) 14.00 (56.00%)

Yes 33.00 (44.00%) 11.00 (44.00%) 11.00 (44.00%) 11.00 (44.00%)

Alcohol Consumption, n (%) 0.5183

No 57.00 (76.00%) 17.00 (68.00%) ` 20.00 (80.00%)

Yes 18.00 (24.00%) 8.00 (32.00%) 5.00 (20.00%) 5.00 (20.00%)

FEV1 predicted, Median (Q1, Q3) 47.90 (36.80, 58.20) 47.90 (36.80, 58.20) NA (NA, NA) NA (NA, NA)

FEV1/FVC, Median (Q1, Q3) 50.63 (37.63, 57.02) 50.63 (37.63, 57.02) NA (NA, NA) NA (NA, NA)

LAMA Usage, n (%)

Not using 25.00 (100.00%) 25.00 (100.00%) 0.00 (NA%) 0.00 (NA%)

iCS.LABA Usage , n (%) >0.9994

Not using 24.00 (96.00%) 24.00 (96.00%) 0.00 (NA%) 0.00 (NA%)

Using 1.00 (4.00%) 1.00 (4.00%) 0.00 (NA%) 0.00 (NA%)

iCS.LABA.LAMA Usage, n (%) >0.9994

Not using 1.00 (4.00%) 1.00 (4.00%) 0.00 (NA%) 0.00 (NA%)

Using 24.00 (96.00%) 24.00 (96.00%) 0.00 (NA%) 0.00 (NA%)

Blood glucose (mmol/L), Median
(Q1, Q3)

5.50 (4.90, 7.20) 5.30 (4.60, 5.50) 7.30 (5.90, 8.70) 5.20 (4.70, 6.40) <0.0012
F
rontiers in Immunology
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1Median (IQR) or Mean ± SD or Frequency (%).
2Kruskal-Wallis rank sum test.
3Pearson's Chi-squared test.
4Fisher's exact test.
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transcription. Next, qRT-PCR was performed using the cDNA as a

template. Ultimately, the target gene’s expression data was

normalized using GAPDH as the internal reference gene, and 2 -

DDCt was used to determine the target gene’s relative expression.

The following primer sequences are used in this experiment:

S100A9: Forward: 5′-CTGTGTGGCTCCTCGGCTTTG-3′;
Reverse: 5′-TGGTGGAAGGTGTTGATGATGGTC-3′.

MYH2: Forward: 5′-GCCAACTTCCAGAAGCCCAAGG-3′;
Reverse: 5′-CAGTCCAACCACGGTCTCATTCAG-3′.

GAPDH: Forward: 5′-CAGGAGGCATTGCTGATGAT -3′;
Reverse: 5′- GAAGGCTGGGGCTCATTT-3′.
3 Results

3.1 Data acquisition

Figure 1 displays the schematic diagram. We have downloaded

four datasets of NASH patients from the GEO database and merged

them. After normalization, NASH group samples and 58 control group

samples were obtained. To minimize the discrepancies between

datasets, we first performed PCA on the raw data and visualized the

results in a PCA plot (Figure 2A), which illustrates the variation across

the four datasets. The initial PCA results revealed significant batch

effects between the datasets. To mitigate these batch effects, we applied
Frontiers in Immunology 06
the ComBat method for batch effect correction and conducted a

subsequent PCA analysis on the corrected data (Figure 2B). The

PCA plot in Figure 2B demonstrates that, after batch effect

correction, the samples from the four datasets are more tightly

clustered in the lower-dimensional space, with a clearer separation

between the NASH and control groups. The R “Limma” package was

then used for analyzing the produced data. One thousand one hundred

thirty-three differential genes were identified, including 562 up-

regulated and 571 down-regulated genes. Volcano and heat maps

were also drawn (Figures 2C, D). The volcano plot illustrates the

relationship between the log fold change of each gene and the adjusted

p-value, with significantly upregulated and downregulated genes

highlighted in red and blue, respectively. The heatmap displays the

expression patterns of the top 30 differentially expressed genes across

different samples, providing further insights into the expression

differences between the NASH and control groups.
3.2 WGCNA

To conduct a comprehensive analysis of the essential genes of

NASH, we employed WGCNA to identify the gene modules most

closely associated with NAFLD samples. By considering the scale

independence and average linkage properties of the data, we set a soft

threshold of 3 (as shown in Figure 3A), resulting in the generation of
FIGURE 1

Pattern diagram of this study.
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five modules. The MOD rule’s cluster tree diagram is depicted in

Figure 3B, and the results of MOD rule sample clustering are

presented in Figure 3C. Additionally, we analyzed the correlation

between NASH and gene modules, as illustrated in Figure 3D. Our

findings revealed a significant positive association between the brown

module and NASH (r = 0.52, p = 1e-9) and a significant negative

correlation between the blue module and NASH (r = -0.52, p = 1e-9).

Consequently, we focused our investigation on the brown and blue

modules. Furthermore, we observed a substantial association between

gene importance and module affiliation in both the brown module (r

= 0.84, p = 1e-200) and the blue module (r = 0.81, p = 1e-200), as

shown in Figures 3E and F. These modules contained 5518 crucial
Frontiers in Immunology 07
genes significantly linked to NASH. To further identify essential

genes in NASH, we intersected DEG genes with WGCNA essential

genes in NASH samples, resulting in the retrieval of 1,133 genes for

further research (Figure 3G).
3.3 DEGs and secreted proteins in COPD

Several studies have indicated a potential link between COPD

and NASH, suggesting that COPD may contribute to the

accelerated progression of NASH. This highlights the need to

investigate pro-NASH genes involved in COPD (15, 28, 29). The
FIGURE 2

Differential expression analysis and principal component analysis of the NASH dataset were conducted before and after the de-batch effect. (A) PCA
on four sets of raw NASH data before batch effect correction. (B) PCA following batch effect correction on the combined NASH dataset. (C) Volcano
plots of DEGs in the integrated NASH dataset, which represent NASH. Genes that are up-regulated are shown by red dots and those that are down-
regulated by blue dots. (D) A heatmap displaying the DEGs in the NASH dataset that are up-and down-regulated. NASH, Non-alcoholic
steatohepatitis; PCA, Principal Component Analysis; DEGs, Differentially Expressed Genes.
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COPD dataset comprises 37 COPD samples and 14 controls. We

then used the “Limma” tool in R to run a differential analysis. In all,

920 genes with differential expression in COPD were found.

Volcano maps and heat maps were plotted (Figures 4A, B).

COPD involves a variety of inflammatory responses and cytokine
Frontiers in Immunology 08
changes, and we hypothesized that COPD may contribute to the

progression of NASH through secreted proteins; we took the

intersection of 920 differentially expressed genes and secreted

proteins in COPD and obtained 189 secreted proteins associated

with COPD (Figure 4C).
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FIGURE 3

Using the WGCNA to screen essential modular genes in the integrated NASH dataset and the intersection of essential modular genes with DEGs to
find critical NASH genes. The ideal b-value was found using a scale-free topology model, and b=3 was chosen as a soft threshold based on scale
independence and average connectedness. (B) shows the gene dendrograms and the network tree diagrams of modular feature genes.
(C) Presentation of samples of the clustered dendrograms. (D) A heatmap illustrating the connection between NASH status and genes with modular
features. (E, F) Correlation plots between modular affiliation and gene significance. (G) Intersection of essential modular genes with DEGs taken
through a Wayne diagram. WGCNA (weighted gene co-expression network analysis) of NASH.
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3.4 Network of PPI and functional
enrichment of critical genes in NASH
disease associated with COPD

We used the STRING database to analyze the interactions

between the core gene proteins, studied the two most essential

modules using the MCODE plug-in algorithm of Cytoscape

software, and constructed a PPI network graph to identify the node

genes (Figures 5A, B). We obtained the module genes of the essential

modules and performed functional enrichment analysis. The results

showed that the biological process (BP) of Aerobic respiration,

regulation of blood coagulation, regulation of hemostasis,

regulation of coagulation were associated with NASH (Figure 5C),

while in cellular composition (CC) with blood microparticle,

mitochondrial protein-containing complex, inner mitochondrial
Frontiers in Immunology 09
membrane protein complex (Figure 5D), and in MF with

chemokine activity, chemokine receptor binding, structural

constituent of ribosome (Figure 5E). The correlation between viral

protein interaction with cytokine and cytokine receptors, the NF-

kappa B signaling pathway, and the TNF signaling pathway was

obtained by KEGG enrichment analysis (Figure 5F).
3.5 Identification of small
molecule compounds

We utilized the cMAP database to predict possible small-

molecule drugs that could be therapeutic for COPD patients with

NASH by importing up-regulated genes from pathogenic

NASH-related genes. The top 10 highest-rated compounds
FIGURE 4

Differential expression analysis and identification of COPD-associated secreted proteins by differentially expressing the COPD dataset. (A) Volcano
plot of revealed DEGs in the COPD dataset. (B) Heatmap of the top 30 DEGs in the COPD dataset that were up-regulated and down-regulated in
their expression. (C) Intersection of the DEGs of COPD with genes of secreted proteins through the Weyen diagram. A total of 189 COPD-
associated secreted proteins were identified.
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FIGURE 5

PPI analysis of COPD-associated secreted proteins with essential genes for NASH and node enrichment analysis for PPI screening. (A) PPI network of
module1 genes based on the Cytoscape plugin scored top1 in MCODE analysis. Nodes are labeled as critical genes. (B) MCODE analysis of the PPI
network of the top 2 scoring module genes. Circus displays the findings of the GO enrichment analysis of the genes included in Modules 1 and 2’s
biological processes (C), cellular components (D), and molecular functions (E). The (F) Circos plot displays the findings from the KEGG analysis of the
genes involved in the PPI protein-protein interactions in modules 1 and 2.
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from the study included lansoprazole, atovaquone, tacrine,

clofibric-acid, amiloride, BAY-K8644, CD-437, methoprene-acid,

GW-4064, VU-0415374-1, as drug candidates for the

treatment of NASH (Figure 6A). The biological mechanisms and

molecular architectures of these ten substances are illustrated.

Comprehensive evaluation suggests that Amiloride and VU-

0415374-1, as sodium ion channel inhibitors, may alleviate airway

obstruction by improving airway fluid balance, while also exhibiting

diuretic and sodium/hydrogen exchanger inhibitory properties.

Clofibric-acid and GW-4064, as PPAR and FXR agonists,

respectively, demonstrate significant anti-inflammatory and

metabolic regulatory effects, indicating their potential in

managing COPD-related inflammation and metabolic

dysregulation. Atovaquone, through its role as a mitochondrial

electron transport inhibitor, may reduce oxidative stress and

mitigate cellular damage in severe COPD cases. Although

Lansoprazole and Tacrine show limited direct efficacy in COPD,

their mechanisms of action, such as glutamate receptor modulation
Frontiers in Immunology
 11
and acetylcholinesterase inhibition, highlight their indirect

therapeutic benefits, warranting further investigation. Future

research should focus on preclinical validation of these drugs,

deeper exploration of their molecular mechanisms, and evaluation

of their efficacy in COPD models to facilitate clinical translation

(Figure 6B). The chemical structures of the 10 selected drugs are

presented to highlight their molecular characteristics, which are

closely associated with their biological activities. For instance, the

guanidine group in Amiloride is linked to its sodium channel

blocking activity, while the carboxylic acid group in Clofibric-acid

is essential for its anti-inflammatory effects. Although this study

does not include experimental validation of these structures, their

presentation provides a foundation for understanding their

mechanisms of action and supports future research, such as

molecular docking studies, structure-activity relationship (SAR)

analyses, and the design of drug derivatives. These insights are

expected to aid in the development of therapeutic strategies for

COPD (Figure 6C).
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FIGURE 6

Using cMAP analysis to screen possible small molecule treatments for NASH. (A) The ten chemicals with the highest negative enrichment scores
across 10 cell lines are displayed in a heat map based on cMAP analysis. (B) Sankey diagram showing the description of the ten compounds.
(C) Displays the 10 compounds’ chemical structures.
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3.6 Construction of a diagnostic model for
COPD-associated NASH disease

Since the critical genes of COPD-associated secretory proteins

and NASH overlapped, which predicted that they might play crucial

roles, 56 common vital genes were obtained between COPD-

associated secretory proteins and NASH differential genes. The
Frontiers in Immunology 12
shared essential genes were used in the constructed diagnostic

model of NASH (Figure 7A). Immediately after that, we

performed LASSO regression analysis on the screened 56

common essential genes to identify four potential candidate genes

(Figures 7B, C) and to screen the diagnostic markers more

accurately; we also used the Random Forest (RF) machine

learning algorithm to rank the 56 common genes according to the
FIGURE 7

Possible diagnostic biomarkers for NASH linked to COPD to be found utilizing machine learning techniques. (A) A Venn diagram showing 56 genes
for NASH-DEGs, key modules, and secretory proteins linked to COPD. (B, C) The LASSO logistic regression algorithm determined the Minimum and
l-values of the diagnostic biomarkers (n=4). (D) Based on the NASH in the 56 genes with MeanDecreaseGini scores greater than 1.0 for 22
biomarkers, the RF algorithm was selected. (E) Displays the Wayne diagram of the two genes that were found to be hub genes for COPD-associated
NASH by the LASSO and RF algorithms. LASSO minimum absolute contraction and selection operators, RF random forests.
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variable significance of each gene and to mention the

MeanDecreaseGini>1 genes (Figure 7D). After overlapping 22

probable genes from RF and four probable genes from LASSO,

only two hub genes—for S100A9 and MYH2—were found to

overlap in two subgroups (Figure 7E). We constructed a

nomogram based on logistic regression analysis using S100A9

and MYH2 as the hub genes (Figure 8A). The prediction ability

of each crucial gene and the Nomogram model for COPD-
Frontiers in Immunology 13
associated NASH was assessed using the ROC and AUC. Sure

enough, among them, the AUC value of S100A9 was 0.887, the

AUC value of MYH2 was 0.877, and the AUC value of Nomogram

was 0.889, suggesting that Nomogram has a robust diagnostic value

for COPD-associated NASH disease (Figures 8B–D). The

diagnostic model constructed by the Nomogram model had a

prediction probability close to that of the ideal model (Figure 8E)

and was analyzed by DCA to show its potential validity in the
FIGURE 8

Diagnostic column-line diagram model construction and efficacy assessment. (A) Diagnostic biomarker-based column-line diagram construction.
ROC curves for each candidate biomarker S100A9, MYH2, and diagnosis of COPD-associated NASH were plotted, and the column-line diagram
model was constructed. (B-D) AUC values for each pivotal gene and the Nomogram were evaluated using the ROC. (E) Column-line diagram model
predicting calibration curves for COPD-associated NASH. (F) DCA used for the column-line diagram model. (G) Our column line graph model
predicts ROC curves for the diagnostic performance of NASH patients in the GSE48452 dataset in the GEO database. AUC Area under the curve,
ROC subject operating characteristic curves, DCA decision curve analysis.
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diagnosis of COPD-related NASH (Figure 8F). 12 samples of

normal tissue and 14 samples from NASH patients were included

in the GEO database’s GSE48452 dataset (Figure 8G), this

Nomogram model also had some predictive value for COPD-

combined NASH patients.
3.7 Analysis of immune cell infiltration and
correlation between essential genes and
immune cells in NASH patients

The inflammatory and immunological systems have a strong

correlation with the pathogenic genes linked to COPD in NASH,

according to functional and pathway studies. In order to investigate

the immune regulatory mechanisms of NASH and the relationship

between immune cell infiltration and diagnostic markers,

the CIBERSORT algorithm was utilized to examine the

characterization of NASH immune cells. Figure 9A displays the

relative amounts of 22 immune cells in each sample. Significant

variations were seen among the 10 subpopulations of immune cells,

with activated Mast cells, Monocytes, resting NK cells, and CD4

memory T cells showing notable changes between NASH and

control samples. The level of resting was elevated, but the levels

of Mast cells resting, Macrophages M2, Macrophages M1, NK cells

activated, T cells gamma delta, Macrophages M0, and T cells CD8

were reduced (Figure 9B). The correlation analysis of 22 types of

immune cells revealed several significant correlations. There was a

strong negative correlation (r=-0.61) between activated NK cells

and resting NK cells. Additionally, there was a negative correlation

(r=-0.73) between M2 macrophages and monocytes. On the other

hand, there was a significant positive correlation (r=0.63) between

activated mast cells and monocytes, as well as between resting mast

cells and monocytes (r=-0.68). Furthermore, there was a significant

positive correlation (r=-0.68) between activated mast cells and M2

macrophages, and between activated mast cells and resting mast

cells (r=-0.7) (Figure 9C). Figure 9D shows the significant

correlation of S100A9 and MYH2 genes with different immune

cell types in NASH. It suggests that these two core genes may be

involved in the immunoregulatory process of NASH by regulating

the function or recruitment of specific immune cell types.
3.8 lncRNA-miRNA-mRNA network

To explore potential drugs for treating NAFLD in COPD

patients, we searched the DGIdb database for potential drugs

targeting the biomarkers. As shown in Figures 10A, B, 67 drugs

targeting MYH2 and 254 drugs targeting S100A9 were mined.

Meanwhile, the lncRNA-miRNA-mRNA network was constructed

by predicting the target miRNAs of the biomarkers and further

predicting the lncRNAs targeting the miRNAs (Figure 10C). GSEA

enrichment analysis showed (Figures 11A, B) that MYH2

and S100A9 were mainly enriched in the fol lowing:

“HALLMARK_FATTY_ACID_METABOLISM “,”HALLMARK_

TNFA_SIGNALING_VIA_NFKB. “
Frontiers in Immunology 14
3.9 Validation of the screened hub genes

In this study, we screened the pivotal genes S100A9 and

MYH2to validate the accuracy of the bioinformatics approach.

We collected 25 serum samples each from healthy individuals,

COPD patients, and NAFLD patients with the informed consent of

volunteers. qRT-PCR was performed to validate the critical genes at

the mRNA level. The results demonstrated that S100A9 expression

was significantly upregulated in both COPD (Figure 12A) and

NAFLD patients (Figure 12B). In contrast, MYH2 expression was

markedly increased in COPD patients (Figure 12C) but showed a

notable downregulation in NAFLD patients (Figure 12D).
4 Discussion

NAFLD and COPD are significant public health issues

characterized by a high incidence of illness and death, as well as

significant financial burdens (28). An increasing number of studies

have suggested a potential link between the two diseases.

Authoritative epidemiological and clinical evidence further

indicates that patients with COPD have a significantly higher

prevalence of NAFLD compared to the general population with

similar pathogenic backgrounds and high co-morbidities. This

association is not coincidental but is attributed to their shared

pathophysiological mechanisms. Viglino D indicated that both

COPD and NAFLD involve inflammatory processes, which may

also promote the progression of NAFLD (15).

We studied these two diseases using bioinformatics methods

with the help of public databases. This can facilitate our

comprehension of the progression of both diseases and offer

novel insights for diagnosis and therapy. KEGG enrichment

analyses and GO-biological process annotation indicated that the

inflammatory-immune pathway may be vital in developing COPD-

associated NASH. Comprehensive evaluation suggests that

Amiloride and VU-0415374-1, as sodium ion channel inhibitors,

may alleviate airway obstruction by improving airway fluid balance,

while also exhibiting diuretic and sodium/hydrogen exchanger

inhibitory properties. Clofibric-acid and GW-4064, as PPAR and

FXR agonists, respectively, demonstrate significant anti-

inflammatory and metabolic regulatory effects, indicating their

potential in managing COPD-related inflammation. Atovaquone,

through its role as a mitochondrial electron transport inhibitor, may

reduce oxidative stress in severe COPD cases. While Lansoprazole

and Tacrine show limited direct efficacy, their mechanisms, such as

glutamate receptor modulation and acetylcholinesterase inhibition,

suggest indirect therapeutic benefits. The inclusion of chemical

structures provides a basis for understanding the molecular

characteristics underlying these effects, such as the guanidine

group in Amiloride for sodium channel blocking and the

carboxylic acid group in Clofibric-acid for anti-inflammatory

activity. Although experimental validation of these structures is

not included, they offer insights for future molecular docking, SAR

studies, and derivative design, supporting the development of

therapeutic strategies for COPD.
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FIGURE 9

Examination of the invasion of immune cells in NASH. (A) The proportion of immune cells in the NASH and control groups is displayed using stacked
histograms. (B) Violin graphs illustrating the 22 immune cells compared between the NASH and control groups. (C) Heatmap demonstrating a
correlation between immune cells and infiltration of 22 immune cells at p<0.05 level. (D) Heatmap illustrating the relationship between two key
genes and various infiltrating immune cells.
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Liver biopsy remains the gold standard for diagnosing NASH,

but its invasive nature limits its clinical applicability. This

underscores the urgent need for reliable blood-based biomarkers

as non-invasive diagnostic tools for NASH (30). This study utilized

comprehensive bioinformatics methods to identify S100A9 and

MYH2 as potential biomarkers from public databases and further

validated their diagnostic value through serum sample analysis

from COPD and NAFLD patients. In the ROC analysis based on

public datasets, S100A9 and MYH2 demonstrated excellent

diagnostic performance, with AUC values of 0.887 and 0.877,

respectively, indicating high sensitivity and specificity.

Additionally, a nomogram model integrating S100A9 and MYH2

further improved diagnostic performance, achieving an AUC of
Frontiers in Immunology 16
0.889, providing a theoretical foundation for risk assessment and

screening of COPD-related NAFLD.

In the serum validation analysis, S100A9 levels were significantly

elevated in the serum of both COPD and NAFLD patients,

supporting its potential as a systemic inflammatory biomarker. In

contrast, MYH2 was significantly upregulated in the serum of COPD

patients, whereas it was downregulated in NAFLD patients. This

discrepancy may be attributed to the distinct pathological

mechanisms underlying the two diseases. In NAFLD, the

downregulation of MYH2 may be related to disease-specific

mechanisms such as insulin resistance and lipid metabolism

dysregulation. On the other hand, the increased expression of

MYH2 in COPD patients may reflect a disease-specific adaptive
FIGURE 10

Drug-gene network of MYH2 (A) and S100A9 (B) lncRNA-miRNA-mRNA network was constructed. (C) Red triangles represent core genes. Yellow
circles represent miRNAs, and green squares represent lncRNAs.
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remodeling of skeletal muscle, supporting its role as a complementary

diagnostic marker for COPD-related NAFLD (31–33).

By combining bioinformatics screening and serum-based

validation, this study confirmed the potential diagnostic value of

S100A9 and MYH2, providing a scientific basis for further

exploration of their functional mechanisms and clinical

applications. Future studies should integrate tissue samples and

functional experiments to refine the application of these biomarkers

in the diagnosis and treatment of COPD-related NAFLD.

In this study, we focused on S100A8/S100A9 and explored their

roles in NAFLD and COPD. Previous research by Averill et al.
Frontiers in Immunology 17
found that in low-density lipoprotein receptor (LDLR)-deficient

S100A9 chimeras, insulin resistance did not improve after a high-fat

diet (34). Furthermore, S100A8 can bind to receptors such as Toll-

like receptor 4 (TLR4) and receptor for advanced glycation end-

products (RAGE), activating downstream signaling pathways and

acting as a chemokine to recruit macrophages and neutrophils,

thereby exacerbating hepatic inflammation (35). Notably, S100A9

deletion is often accompanied by reduced S100A8 expression,

suggesting a potential regulatory relationship that warrants

further investigation. S100A9 has also been shown to bind to

TLR4 and activate the NF-kB pathway through a MyD88-
FIGURE 11

Functional enrichment analysis of the two hub genes using ssGSEA hallmark gene sets: (A) MYH2 and (B) S100A9.
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dependent mechanism, inducing the production of inflammatory

factors (36, 37). Liu et al. demonstrated that S100A9 levels in rat

liver and serum were consistent with hepatic mRNA levels,

suggesting its potential as a biomarker for predicting NAFLD

progression and distinguishing between phenotypes (38). In

COPD, S100A9 is strongly expressed in immune cells in the lungs

and contributes to disease progression by stimulating neutrophil

adhesion and activating NF-kB via TLR4. Importantly, inhibiting

S100A9 has been shown to significantly reduce neutrophil-

associated inflammation in COPD lungs (39). Consistent with our

findings, S100A9 plays a critical role in both NAFLD and COPD,

underscoring its potential as a key target for developing diagnostic

and therapeutic strategies for NASH in COPD patients.
Frontiers in Immunology 18
The essential role of MYH2, which encodes myosin heavy chain

IIA, in the pathophysiology of myopathies and cachexia has been

well-documented in numerous studies (26, 40). Cachexia is a

prevalent comorbidity in chronic conditions such as COPD and

NAFLD. It is frequently associated with systemic inflammation,

characterized by elevated levels of TNF-a and IL-6, and metabolic

dysregulation, including insulin resistance. These factors may

collectively influence MYH2 expression, contributing to anabolic

resistance and the degradation of muscle fibers. In COPD, chronic

inflammation and hypoxic conditions may promote adaptive

remodeling of fast-twitch muscle fibers through MYH2

regulation. Notably, data from the 2008-2011 Korean National

Health and Nutrition Examination Survey indicate that COPD
FIGURE 12

qRT-PCR analysis was performed using serum samples from healthy individuals, NAFLD patients, and COPD patients. (A, B) Relative expression levels
of S100A9 mRNA in COPD and NAFLD patients. (C, D) Relative expression levels of MYH2 mRNA in COPD and NAFLD patients. Data are expressed
as mean ± SD (n = 25). Statistical comparisons between groups were performed using Student's t-test with Welch’s correction. ****p < 0.0001
indicates a statistically significant difference.
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patients with sarcopenia are more likely to be comorbid with

NAFLD, suggesting a potential link between muscle wasting and

metabolic dysfunction in these populations (41). Conversely,

systemic insulin resistance and inflammation induced by NAFLD

may indirectly affect MYH2 expression and skeletal muscle function

(42, 43).The role of MYH2 in muscle metabolism, inflammatory

responses, and chronic diseases underscores its potential as a

therapeutic target.

In conclusion, this study demonstrates that the differential

expression patterns of S100A9 and MYH2 in COPD and NAFLD

have significant diagnostic potential. S100A9 serves as a cross-

disease biomarker, reflecting a shared inflammatory response, and

thus shows promise in diagnosing both diseases. On the other hand,

MYH2 exhibits disease-specific expression changes, effectively

distinguishing COPD from NAFLD. The combined use of these

two biomarkers in a diagnostic model not only improves early

diagnostic accuracy but also enhances the differentiation between

the two diseases. Therefore, the joint application of S100A9 and

MYH2 provides a novel approach for the clinical diagnosis of

COPD and NAFLD, with important implications for early

detection and disease monitoring. Further clinical validation is

crucial to confirm the diagnostic efficacy and real-world

applicability of these biomarkers. The potential for improved

diagnostic tools, based on S100A9 and MYH2, could lead to more

accurate disease differentiation and timely interventions.

Importantly, while this study focuses on diagnostic markers,

previous research has shown that managing NAFLD in COPD

patients may improve patient outcomes and survival (44).

Therefore, integrating NAFLD screening in COPD patients may

not only enhance early diagnosis but also contribute to better

disease management and prognosis.
4.1 Limitations

However, despite our efforts to combine numerous datasets, this

study still has certain constraints, primarily due to the restricted size

of our sample. While bioinformatics tools have identified vital genes

mostly linked to immunity and inflammation, further research is

required to understand how these crucial genes regulate immune

cells. Despite an extensive literature review revealing substantial

evidence of a potential association between MYH2 and COPD as

well as NAFLD, no studies to date have demonstrated a direct role

for MYH2 in these conditions. Moreover, our research faced

limitations in resources and data availability, precluding a detailed

analysis of the correlation between MYH2 expression and

inflammatory markers or direct experimental validation using

muscle tissue samples. We acknowledge that these constraints

have limited our ability to comprehensively elucidate the role of

MYH2 in COPD and NAFLD.
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