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Introduction: The neutrophil cytosolic factor 1 (NCF1) rs201802880

polymorphism is a missense mutation resulting in an amino acid substitution

from arginine to histidine at position 90, which impairs the function of NADPH

oxidase. This casual variant confers an increased risk for multiple autoimmune

disorders, including primary Sjögren’s syndrome and systemic lupus

erythematosus. Given the high prevalence of this autoimmune disease risk

variant in East Asia, we hypothesized that it may confer an evolutionary

advantage by providing protection against infectious diseases.

Methods: To test this hypothesis, we investigated whether the NCF1

rs201802880 variant offers a protective effect against tuberculosis (TB), a

historically significant and deadly infectious disease. Our study included 490

healthy controls and 492 TB patients who were genotyped for the NCF1

rs201802880 polymorphism.

Results: Our results showed that the NCF1 rs201802880 AA genotype was

associated with a reduced risk of TB in women (OR= 0.25, 95% CI: 0.09-0.68,

p=0.0023). Additionally, healthy individuals with the NCF1 rs201802880 AA

genotype had significantly lower circulating white blood cell (5.56 ± 1.78 vs

6.43 ± 1.59, p=0.003) and neutrophil (3.23 ± 1.20 vs 3.74 ± 1.23, p = 0.02) counts

compared to those with the GG or GA genotypes, with this difference beingmore

pronounced in women than in men.

Conclusion: This study demonstrates that the autoimmune disease-causal NCF1

variant is associated with a protective effect against TB infection.
KEYWORDS

autoimmune diseases (AD), infectious diseases, neutrophil cytosolic factor 1 (NCF1),
genetic association, evolutionary trade-offs, tuberculosis
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Introduction

Genetic association studies have identified the GTF2I-NCF1

intergenic region on chromosome 7 as a significant susceptibility

locus for various autoimmune disorders, including primary Sjögren’s

syndrome (pSS) (1, 2), systemic lupus erythematosus (SLE) (3, 4),

rheumatoid arthritis (5), systemic sclerosis (SSc) (6), and neuromyelitis

optica spectrum disorder (NMOSD) (7, 8). In 2017, the causal

polymorphism within this susceptibility locus was pinpointed as the

neutrophil cytosolic factor 1 (NCF1) rs201802880 G>A variant. This

missense mutation results in an amino acid substitution from arginine

(Arg) to histidine (His) at position 90 (9, 10). Beyond its association

with disease susceptibility, the NCF1 Arg90His variant has been linked

to various clinical and immunological features in SLE. These include an

earlier age at diagnosis, presence of anti-beta2 glycoprotein I and

anticardiolipin antibodies, increased formation of neutrophil

extracellular traps (NETs), elevated serum interferon activity, and

impaired macrophage efferocytosis (9–12). This association is further

supported by experimental data from NCF1-His90 knock-in (KI) mice,

which exhibit reduced oxidative burst, diminished macrophage

efferocytosis, splenomegaly, increased type I interferon (IFN-I) scores,

and higher levels of plasma cells, as well as enhanced Pristane-induced

kidney disease compared to wild-type littermates (11).

The NCF1 Arg90 residue is evolutionarily conserved within the

p47phox subunit of the phagocyte NADPH oxidase complex. The

frequency of the NCF1 rs201802880 A allele varies significantly

globally, being less than 0.5% in Caucasian populations, while

exceeding 15% in East Asian groups such as Chinese, Japanese,

and Korean populations (13). Despite its association with

autoimmune disorders, including those linked to infertility and

pregnancy loss due to autoantibodies such as anti-beta2

glycoprotein I and anticardiolipin antibodies (14, 15), the variant

persists in human populations. This suggests that the NCF1

Arg90His variant may confer an evolutionary advantage, possibly

by offering protection against infectious diseases. Indeed,

neutrophils with the homozygous AA genotype demonstrate

markedly reduced production of reactive oxygen species (ROS)

compared to those with GG or GA genotypes (9, 12). Consistent

with this, splenocytes from NCF1-His90 KI mice show a reduced

capacity for ROS generation (11). Considering the crucial role of

ROS in the pathogenesis of tuberculosis (TB) (16), a contagious

disease caused by infection with Mycobacterium tuberculosis (Mtb)

bacteria and coexisted with human for more than 40,000 years

history (17), we hypothesize that the homozygous AA genotype

may confer resistance to TB. This study aims to investigate the

relationship between the NCF1 Arg90His variation and

susceptibility to tuberculosis.
Materials and methods

Patients and control subjects

All patients with tuberculosis (TB) and healthy control subjects

were recruited from the First Affiliated Hospital of Henan

University of Science and Technology, Luoyang, China. The
Frontiers in Immunology 02
diagnosis of TB was made in accordance with the Chinese

Guidelines for the Diagnosis and Treatment of Tuberculosis

(2020 edition) (18). Specifically, individuals meeting any of the

following four criteria were classified as having TB: (1) positive

sputum smear for acid-fast bacilli; (2) culture of Mycobacterium

tuberculosis from sputum, bronchoalveolar lavage fluid, or pleural

effusion; (3) positive nucleic acid test for M. tuberculosis and/or

positive culture in sputum, bronchoalveolar lavage fluid, or pleural

effusion; (4) positive acid-fast bacilli staining or nucleic acid test for

M. tuberculosis in lung tissue specimens from the lesion site. Both

pulmonary and extrapulmonary TB patients were included in this

study. All procedures were conducted in accordance with the

principles of the Declaration of Helsinki, and ethical approval for

the study protocol was obtained from the Ethics Committee of the

First Affiliated Hospital of Henan University of Science and

Technology. The ethical approval batch number is 2024-03-K187.
Data collection

Demographic and clinical data, including sex, age, clinical

symptoms, purified protein derivative (PPD) skin test results,

erythrocyte sedimentation rate (ESR), treatment regimens, and

responses to treatment, were collected from electronic medical

records. Hematological parameters, including counts of white

blood cells (WBC), neutrophils (NEU), eosinophils (EOS),

basophils (BAS), monocytes (MON), lymphocytes (LYM), red

blood cells (RBC), and platelets (PLT), were measured for both

TB patients and healthy controls using a Sysmex XN-1000 Analyzer

(Sysmex, Japan).
DNA isolation and genotyping

Genomic DNA was extracted from peripheral blood leukocytes

using the TaKaRa Blood Genome DNA Extraction Kit (Takara

Biotechnology, Dalian Co., Ltd., China) following the

manufacturer’s protocol. Genotyping of the NCF1 rs201802880

G>A polymorphism was conducted using nested PCR followed by

a TaqMan assay, as previously described (10). Briefly, a specific

NCF1 fragment was initially amplified through PCR by targeting the

GTGT sequence in exon 2 of the gene. The resulting PCR product

then served as the template for SNP genotyping using the

TaqMan assay.
Statistical analysis

Statistical analyses were conducted using GraphPad Prism

software (version 5.01, GraphPad Software Inc., La Jolla, CA, USA).

Hardy–Weinberg equilibrium (HWE) was assessed using Fisher’s exact

test, with p < 0.05 indicating a deviation fromHWE. The Kolmogorov-

Smirnov test was used to assess the normality of quantitative variables.

For data following a normal distribution, comparisons between two

groups were conducted using the Student’s t-test. For non-normally

distributed data, the Mann-Whitney U test was applied. Genotype
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frequency differences were analyzed using Fisher’s exact test or chi-

square test, as appropriate. Five genetic models—co-dominant,

dominant, recessive, over-dominant, and additive—were applied for

the genetic association analysis using the SNPSTATS program (https://

www.snpstats.net/). The optimal inheritance model was determined

based on the Akaike Information Criterion (AIC) and Bayesian

Information Criterion (BIC), with the model yielding the lowest

AIC and BIC values considered the best fit. Statistical significance

was defined as p < 0.05.
Results

Demographic, clinical and laboratory
features of patients with
active tuberculosis

A total of 492 patients with active TB and 490 healthy control

subjects were included in this study. The demographic, clinical, and

laboratory characteristics of both groups are summarized in Table 1.

The average age of TB patients was 45.0 ± 18.6 years, which was

approximately 6 years older than that of the control subjects.

Compared to the controls, TB patients exhibited higher levels of

circulating neutrophils, eosinophils, and monocytes, while levels of

lymphocytes and red blood cells were reduced. Among the 492 TB
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patients, 39 (7.93%) had extrapulmonary tuberculosis. The PPD skin

test was administered to 223 patients, with 92.8% testing positive

(defined as a reaction >10 mm). All patients received antibiotic

treatment, with 54.9% showing a favorable response. Drug resistance

was observed in 20.5% of patients, who were resistant to one or more

antibiotics. The patient cohort included 196 females and 296 males,

while the healthy control group comprised 221 females and 269males.

Stratified analysis revealed that females exhibited lower levels ofWBC,

neutrophils, eosinophils, basophils, monocytes, and RBC compared to

males in both TB patients and healthy individuals. Furthermore,

female TB patients demonstrated better treatment responses and a

lower incidenceofdrug resistancecompared tomalepatients (Table1).
NCF1 rs201802880 AA genotype confers
resistance to tuberculosis in women

To assess the hypothesis that the NCF1 rs201802880 AA

genotype offers protection against tuberculosis, we genotyped all

492 TB patients and 490 controls for this polymorphism. The

genotype distribution for NCF1 rs201802880 was in Hardy-

Weinberg equilibrium for both patient and control groups.

Among the five genetic models, the recessive model demonstrated

the lowest AIC and BIC values and was therefore selected for the

association analysis (Supplementary Table 1).
TABLE 1 Demographic, clinical and laboratory features of patients with active tuberculosis.

Healthy controls TB patients

All
(n=490)

Male
(n=269)

Female$

(n=221)
All§

(n=492)
Male

(n=296)
Female$

(n=196)

Age, years (mean ± SD) 38.7 ± 15.8 37.1 ± 15.0 40.6 ± 16.5* 45.0 ± 18.6**** 45.8 ± 18.2 43.8 ± 19.0

Hematological parameters

WBC (103/mL) 6.38 ± 1.64 6.63 ± 1.69 6.06 ± 1.53** 6.33 ± 2.21 6.70 ± 2.19 5.80 ± 2.14****

NEU (103/mL) 3.70 ± 1.23 3.84 ± 1.27 3.53 ± 1.17** 4.10 ± 1.97*** 4.39 ± 1.89 3.68 ± 2.01****

EOS (103/mL) 0.14 ± 0.12 0.16 ± 0.13 0.12 ± 0.10*** 0.18 ± 0.17**** 0.20 ± 0.18 0.15 ± 0.15**

BAS (103/mL) 0.03 ± 0.02 0.04 ± 0.02 0.03 ± 0.02** 0.03 ± 0.02 0.04 ± 0.02 0.03 ± 0.02**

MON (103/mL) 0.36 ± 0.18 0.39 ± 0.19 0.33 ± 0.15** 0.42 ± 0.17**** 0.47 ± 0.18 0.35 ± 0.13****

LYM (103/mL) 2.14 ± 0.65 2.18 ± 0.65 2.08 ± 0.64 1.58 ± 0.59**** 1.60 ± 0.61 1.58 ± 0.56

RBC (106/mL) 4.78 ± 0.58 5.05 ± 0.55 4.46 ± 0.44**** 4.65 ± 0.55*** 4.79 ± 0.59 4.45 ± 0.42****

PLT (103/mL) 243.9 ± 63.6 238.5 ± 56.7 250.4 ± 70.6* 244.0 ± 81.3 239.8 ± 83.8 250.0 ± 77.2

Extrapulmonary tuberculosis – – – 39 (7.93%) 18 (6.08%) 21 (10.7%)

PPD above 10 mm – – – 207/223 (92.8%) 118/128 (92.2%) 89/95 (92.7%)

ESR (mm/h) – – – 21.0 (7.0 - 44.0) 21.0 (6.5 - 41.0) 21.0 (8.0 - 48.5)

Treatment with antibiotics – – – 492 (100%) 296 (100%) 196 (100%)

Response to treatment – – – 396 (80.4%) 221 (74.6%) 175 (89.2%)****

Drug resistance – – – 101 (20.5%) 80 (27.0%) 21 (10.7%)****
§484 out of 492 patients with follow up data. PPD, purified protein derivative; ESR, erythrocyte sedimentation rate; WBC, white blood cells; NEU, neutrophils; EOS, eosinophils; BAS, basophils;
MON, monocytes; LYM, lymphocytes; RBC, Red blood cells; PLT, platelets; §Comparison between TB patients and healthy controls; $Comparison between women and men. Quantitative data
following a normal distribution are expressed as mean ± standard deviation (SD), whereas non-normally distributed quantitative data are reported as median (Q1–Q3). Categorical variables are
presented as frequency (number of samples) and percentage. *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001.
frontiersin.org

https://www.snpstats.net/
https://www.snpstats.net/
https://doi.org/10.3389/fimmu.2025.1514296
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hu et al. 10.3389/fimmu.2025.1514296
Compared to healthy controls, TB patients exhibited a trend

towards a lower frequency of the AA genotype, though this

difference was not statistically significant (4.7% vs 6.7%, OR =

0.68, 95% CI: 0.39-1.17, p = 0.164) (Table 2). Given the association

of NCF1 rs201802880 with autoimmune diseases, which

predominantly affect women, we further explored the genotype-

disease relationship by stratifying the analysis by gender. In women,

the frequency of the AA genotype was significantly lower among TB

patients compared to controls (2.6% vs 9.5%, OR = 0.25, 95% CI:

0.09-0.68, p=0.0023). Conversely, no significant difference was

observed in men (Table 2).
Association between NCF1 rs201802880
and clinical features of TB

The observed association of the NCF1 rs201802880 variant with

TB susceptibility in women prompted an investigation into its

relationship with clinical features of TB. We compared patients

with different genotypes (GG+GA vs AA) regarding clinical

presentation, treatment responses, and follow-up outcomes. As

detailed in Table 3, the two patient subgroups were comparable

in terms of age, PPD test positivity, erythrocyte sedimentation rate

(ESR), treatment response, drug resistance, and most hematological

parameters. A significant difference was noted in platelet counts,

with patients carrying the AA genotype exhibiting higher platelet

levels compared to those with GG or GA genotypes (295.6 ± 107.9

vs 241.5 ± 79.5, p = 0.004). Additionally, although not statistically

significant, there was a trend towards a lower rate of

extrapulmonary tuberculosis (0.00% vs 8.32%) and a reduced

female-to-male ratio (5/18 vs 191/278) in patients with the AA

genotype (Table 3). Gender-stratified analysis did not reveal any

additional difference between the two patient subgroups

(Supplementary Table 2).
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Association between NCF1 rs201802880
and neutrophil counts in healthy subjects

Given the substantial alterations in hematological parameters

during Mtb infection, we next examined whether the NCF1 His90

variant is associated with hematological parameters in healthy

subjects. Compared to those with GG or GA genotypes,

individuals with the AA genotype had significantly lower white

blood cell counts (5.56 ± 1.78 vs 6.43 ± 1.59, p = 0.003). This

difference was primarily due to lower neutrophil counts in AA

genotype carriers compared to GG+GA carriers (3.23 ± 1.20 vs 3.74

± 1.23, p = 0.02), with no significant differences observed in other

leukocyte types (Figure 1, Table 4). Additionally, healthy

individuals with the AA genotype exhibit lower platelet counts

compared to those with the GG or GA genotypes (Table 4).

Stratified analysis by gender revealed that the reduction in

circulating white blood cells and neutrophils associated with the

AA genotype was more pronounced in women compared to men

(Figure 1, Supplementary Table 3).
Discussion

In this study, we investigated the association between the

autoimmune disease-causal variant NCF1 rs201802880 A and

tuberculosis, a persistent global infectious disease. Our findings

suggest that the AA genotype of the NCF1 rs201802880

polymorphism is associated with a protective effect against active

TB in women. Furthermore, the AA genotype correlates with

reduced levels of white blood cells and neutrophils in healthy

individuals. To date, three genome-wide association studies

(GWAS) have been conducted to investigate TB susceptibility in

Chinese populations, identifying more than ten genetic loci

associated with the disease (19–21). However, the genetic region
TABLE 2 Association of NCF1 Arg90His variation with TB.

All subjects Control (n=490) TB (n=492) OR (95% CI)* p value

GG 318 (64.9%) 300 (61.0%)

GA 139 (28.4%) 169 (34.3%)

AA 33 (6.7%) 23 (4.7%) 0.68 (0.39-1.16) 0.164

Male Control (n=269) TB (n=296)

GG 181 (67.3%) 182 (61.5%)

GA 76 (28.2%) 96 (32.4%)

AA 12 (4.5%) 18 (6.1%) 1.39 (0.66-2.94) 0.391

Female Control (n=221) TB (n=196)

GG 137 (62.0%) 118 (60.2%)

GA 63 (28.5%) 73 (37.2%)

AA 21 (9.5%) 5 (2.6%) 0.25 (0.09-0.68) 0.0023
*Odd ratio (OR) and p values were calculated for the comparison of AA vs. GG+GA.
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encompassing the NCF1 gene on chromosome 7 has not been

identified as a susceptibility locus for TB. This discrepancy may be

attributed to the fact that all prior GWAS analyses were based solely

on allele frequencies and did not incorporate stratified analyses by

sex (19–21). Given that only theNCF1AA genotype, rather than the

NCF1 A allele, is associated with TB in women, it is unsurprising

that this genetic association was not detected in previous studies.

The NCF1 rs201802880 A variant, while conferring protection

against TB, is associated with an increased susceptibility to various

autoimmune disorders, exemplifying evolutionary trade-offs (22).

Throughout human history, our immune system has evolved under

the selective pressure of infectious diseases such as TB, which posed

significant threats to survival (23). Consequently, genetic variants

that enhanced resistance to infections were positively selected. In

modern contexts, where infectious diseases are less prevalent, these

same variants may lead to overactive immune responses and

contribute to autoimmune disorders (24).

Notably, the AA genotype of NCF1 rs201802880, which confers

protection against TB in women, is linked to decreased circulating

neutrophil levels in healthy individuals. This decrease is more

pronounced in women than in men. Neutrophils, the most

abundant leukocytes in the blood, play a crucial role in the early

immune response to Mtb infection (25). In both human TB and

animal models, lung disease manifestations are characterized by
Frontiers in Immunology 05
neutrophilic inflammation (25, 26), highlighting the critical role of

neutrophils in TB pathogenesis.

Neutrophils are thought to play a dual role in the development

of TB (27). On one hand, they are highly efficient pathogen-killing

cells, employing both direct and indirect mechanisms to contribute

significantly to the clearance of Mtb infection. On the other hand,

neutrophils have been implicated in promoting Mtb growth and

facilitating TB progression. For instance, studies have demonstrated

that the risk of TB infection is inversely and independently

associated with peripheral blood neutrophil count (28).

Additionally, CXCL5 deficiency in murine TB models results in

resistance to Mtb infection, attributed to impaired neutrophil

recruitment from the bloodstream (29). Thus, it is plausible that

the NCF1 rs201802880 AA genotype may confers protection

against TB, at least in part, by reducing circulating neutrophil levels.

Both human studies and animal experiments have demonstrated

that the NCF1 rs201802880 AA genotype results in reduced ROS

production in neutrophils (9, 11, 12). While ROS are essential for

neutrophil-mediated elimination ofMtb (30), pathogenicMtb strains

can exploit ROS to enhance their survival (31). For instance, it has

been observed that virulent Mtb can persist within human

neutrophils despite their rapid activation. This survival is associated

with the necrotic death of infected neutrophils, a process entirely

dependent on ROS production (32). Therefore, while a complete

deficiency in neutrophil-derived ROS impairs the clearance ofMtb, a

moderate reduction in neutrophil ROS production may paradoxically

confer resistance to TB development.

Notably, the AA genotype is associated with TB specifically in

women, but not in men. This sex-specific association suggests that the

effect of theNCF1 variant is more pronounced in females than inmales.

Experimental evidence from knock-in mice supports this hypothesis, as

female mice carrying the NCF1 AA genotype exhibit splenomegaly,

increased IFN scores, the development of autoantibodies, and lupus-like

kidney disease following pristane injection. In contrast, male mice with

the same genotype show no evidence of autoimmune disease

manifestation (11). The present study further supports this notion, as

the decrease in circulating neutrophil levels associated with the AA

genotype is more pronounced in women than in men.

Based on these findings, we propose a hypothetical mechanism

for the protective effect of the NCF1 rs201802880 AA genotype

against TB infection in women. The AA genotype may lead to lower

circulating neutrophil levels, thereby impairing neutrophil

recruitment to the lung and reducing the transition from Mtb

infection to active TB and subsequent neutrophil-mediated tissue

damage. Additionally, decreased ROS production in neutrophils

may prevent Mtb-triggered ROS-dependent necrotic cell death and

facilitate bacterial elimination. It is important to note that this is a

simplified model, and other mechanisms involving various immune

cells, such as macrophages and dendritic cells, and their

dysregulation may also contribute to the observed protective

effect against TB (9, 11, 12). For instance, the NCF1 variant may

contribute to TB development by affecting the function of antigen-

presenting cells. Evidence indicates that NADPH oxidase regulates

the activity of cysteine cathepsins by modulating the lumenal redox

potential, thereby influencing the production of the MHC II

repertoire. This, in turn, impacts antigen presentation and CD4+
TABLE 3 Association of NCF1 Arg90His variation with clinical and
immunological characteristics in patients with TB.

GG + GA
(n=469) AA (n=23)

Age, years (mean ± SD) 45.0 ± 18.7 43.5 ± 17.8

Sex (female/male) 191/278 5/18

Extrapulmonary
tuberculosis

39 (8.32%) 0 (0.00%)

PPD above 10 mm 194/209 (92.8%) 13/14 (92.9%)

ESR (mm/h) 20 (7 - 44) 31 (13.5 - 55.5)

Treatment 469 (100%) 23 (100%)

Response to treatment 378 (80.5%) 18 (78.2%)

Drug resistance 97 (20.7%) 4 (17.4%)

Hematological parameters

WBC (103/mL) 6.31 ± 2.19 6.87 ± 2.50

NEU (103/mL) 4.07 ± 1.94 4.69 ± 2.43

EOS (103/mL) 0.18 ± 0.17 0.17 ± 0.13

BAS (103/mL) 0.03 ± 0.02 0.03 ± 0.02

MON (103/mL) 0.42 ± 0.17 0.46 ± 0.17

LYM (103/mL) 1.59 ± 0.59 1.52 ± 0.57

RBC (106/mL) 4.64 ± 0.55 4.83 ± 0.38

PLT (103/mL) 241.5 ± 79.5 295.6 ± 107.9*
Quantitative data following a normal distribution are expressed as mean ± standard deviation
(SD), whereas non-normally distributed quantitative data are reported as median (Q1–Q3).
Categorical variables are presented as frequency (number of samples) and
percentage. *p<0.05.
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T cell-mediated immunity (33, 34). Therefore, it is plausible that the

NCF1 AA genotype, which impairs ROS production, may alter the

presentation ofMtb antigens to CD4+ T cells. Given the pivotal role

of CD4+ T cells in controllingMtb infection (35), it is reasonable to

propose that the NCF1 variant confers resistance to TB in women

by modulating antigen presentation.

This study has two main limitations. Firstly, the association

between the NCF1 rs201802880 polymorphism was examined in a

single case-control study, and the lack of replication compromises

the robustness of the findings. Secondly, although the sample size is

substantial, it may still be insufficient for stratified analyses. For

example, examining associations between the NCF1 rs201802880

polymorphism and clinical features of TB in subgroups with

relatively small sample sizes may reduce statistical power.

Therefore, further validation in independent case-control studies

with larger sample sizes is warranted.

In conclusion, this study is the first to demonstrate that the

autoimmune disease-causal NCF1 variant is associated with a

protective effect against TB infection. This finding exemplifies the

evolutionary trade-offs where genetic variations that were positively
FIGURE 1

Association of NCF1 rs201802880 with circulating levels of white blood cells (WBC) and neutrophils in healthy control subjects. Comparison of levels
of circulating WBC between AA and GG+GA genotypes in all subject (A), men (B) and women (C). Comparison of levels of circulating neutrophils
between AA and GG+GA genotypes in all subject (D), men (E) and women (F). Data are presented as mean ± SEM. Statistical significance was
determined using unpaired student’s t test. ns, not significant, *p<0.05 and **p<0.01.
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TABLE 4 Association of NCF1 Arg90His variation with laboratory
characteristics in healthy subjects.

GG + GA (n=457) AA (n=33)

Age, years (mean ± SD) 38.4 ± 15.8 42.8 ± 14.8

Sex (female/male) 200/257 21/12*

Hematological parameters

WBC (103/mL) 6.43 ± 1.59 5.56 ± 1.78**

NEU (103/mL) 3.74 ± 1.23 3.23 ± 1.20*

EOS (103/mL) 0.14 ± 0.12 0.12 ± 0.10

BAS (103/mL) 0.03 ± 0.02 0.03 ± 0.02

MON (103/mL) 0.36 ± 0.18 0.33 ± 0.12

LYM (103/mL) 2.14 ± 0.65 2.00 ± 0.51

RBC (106/mL) 4.79 ± 0.57 4.66 ± 0.73

PLT (103/mL) 244.4 ± 63.2 222.6 ± 59.4*
Quantitative data following a normal distribution are expressed as mean ± standard deviation
(SD), whereas non-normally distributed quantitative data are reported as median (Q1–Q3).
Categorical variables are presented as frequency (number of samples) and percentage.
*p<0.05, **p<0.01.
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selected for protection against infectious diseases may also increase

the risk of autoimmune disorders.
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