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Xin Li1* and Sailing Zhu1*
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Background: Skin cutaneous malignant melanoma (SKCM) is among the most

aggressive forms of skin cancer, notorious for its rapid progression and poor

prognosis under late diagnosis. This study investigates the role of circadian

rhythm-related genes (CRGs) in SKCM addressing a gap in understanding how

CRGs affect tumor progression and patient outcomes.

Methods: An analysis of CRGs expression was conducted on SKCM samples

derived from The Cancer Genome Atlas datasets(TCGA). Moreover, a correlation

between various subtypes and their clinical features was identified. The study

employed various bioinformatics methods, including differential expression

analysis, consensus clustering, and survival analysis, to investigate the role of

CRGs. The functional consequences of various CRG expression patterns were

further investigated using immune infiltration analysis and gene set variation

analysis (GSVA). A scoring system based on CRGs was developed to predict

overall survival (OS) and treatment responses in SKCM patients. The predictive

accuracy of this score system was then tested, and a nomogram was used to

improve its clinical usefulness.

Results: Key findings from this study include significant genetic alterations in

circadian rhythm-related genes (CRGs) in skin cutaneous melanoma (SKCM),

such as mutations and CNVs. Two molecular subtypes with distinct clinical

outcomes and immune profiles were identified. A prognostic model based on

six CRGs (CMTM, TNPO1, CTBS, UTRN, HK2, and LIF) was developed and

validated with TCGA and GEO datasets, showing high predictive accuracy for

overall survival (OS). A high CRGs score correlated with poor OS, immune
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checkpoint expression, and reduced sensitivity to several chemotherapeutics,

including AKT inhibitor VIII and Camptothecin.

Conclusions: This work provides valuable insights into the circadian regulation of

SKCM and underscores the potential of CRGs as biomarkers for prognosis and

targets for therapeutic interventions. The novel molecular subtypes and CRGs

prognostic scoring model introduced in this study offer significant contributions

to the understanding and management of SKCM.
KEYWORDS

melanoma, circadian rhythm related genes, prognosis, tumor immune
microenvironment, immunotherapy
1 Introduction

Cutaneous malignant melanoma (SKCM) is a highly aggressive

skin cancer originating from melanocytes. In recent years, the

incidence of SKCM has been on the rise, particularly in Western

countries, where it has become one of the fastest-growing

malignancies. Recent cancer statistics indicate that in 2023, the

United States is projected to see approximately 97,610 new

melanoma cases and 7,990 associated fatalities (1). Projections

suggest a substantial increase, with potential rises to 510,000 new

cases and 96,000 deaths by 2040 if current trends persist (2).

Although early detection and treatment could significantly improve

survival rates, the prognosis remains poor once metastasis occurs,

with a low five-year survival rate (3). Immunotherapy has emerged as

a key therapeutic option for metastatic melanoma since the

development of immune checkpoint inhibitors, such as anti-PD-1

and anti-CTLA-4 antibodies (4). However, despite the significant

therapeutic effects observed in some patients, a considerable

proportion does not respond to treatment or eventually develop

resistance, greatly limiting the widespread clinical application of

immunotherapy (5). Therefore, identifying reliable biomarkers to

predict patient responses to immunotherapy and to develop

personalized treatment strategies is of paramount importance.

Circadian rhythm genes (CRGs) regulate various physiological

processes by controlling the cell cycle, DNA repair, and metabolism

(6). In recent years, increasing research has revealed the crucial role of

CRGs in cancer development, progression, and treatment response

(7). Dysregulated CRG expression is strongly linked to tumor growth

and a poor prognosis in many forms of cancer. For example, studies

have shown that changes in CRG expression in breast cancer could

affect cell proliferation and apoptosis, thereby influencing patient

outcomes (8). Although research on CRGs in melanoma is relatively

limited, existing evidence suggests that these genes might play a role

in tumor development by regulating the tumor microenvironment,

immune evasion, and metabolic reprogramming (9). Thus, exploring

the mechanisms by which CRGs function in melanoma, particularly
02
in the context of immunotherapy, holds significant theoretical and

clinical implications.

Recent studies have increasingly illuminated the crucial role of

CRGs in the field of cancer immunotherapy, emphasizing their

potential to revolutionize treatment modalities for diseases like

melanoma, which is heavily dependent on immunological

strategies for management and cure (10). Specifically, CRGs

might influence tumor responses to immunotherapy by regulating

the circadian rhythms of the immune system. For instance,

key CRGs such as CLOCK and BMAL1 have been shown to

modulate the functional state of immune cells within the

tumor microenvironment, thereby affecting the efficacy of

immunotherapy (11). This modulation is crucial because it can

considerably improve immunotherapy efficacy by matching

treatment time to the patient’s biological clocks, possibly

enhancing therapeutic effectiveness while reducing side effects.

Moreover, the expression patterns of CRGs might be closely

related to patient prognosis, offering possibilities for the

development of prognostic models based on CRGs. In melanoma,

given its strong reliance on immunotherapy, focusing on how CRGs

affect melanoma’s response to immunotherapy, this research could

pave the way for novel, more effective treatment protocols that are

synchronized with the patient’s circadian biology, offering a new

dimension to oncological care and a promising avenue for future

scientific exploration and clinical application.

Building on this background, this study aims to systematically

analyze the expression characteristics of CRGs and their

relationships with immunotherapy response and patient

prognosis by integrating clinical and gene expression data from a

large cohort of SKCM patients. We hypothesize that CRGs

expression patterns predict patient responses to immunotherapy,

and serve as independent prognostic markers, providing new

foundations for the precision treatment of melanoma. The results

of this study are expected to support personalized treatment

strategies for melanoma and expand the application prospects of

CRGs in cancer immunotherapy.
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2 Materials and methods

2.1 Data acquisition and circadian rhythm-
related genes

The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.

gov/), the Genotype-Tissue Expression Project (GTEx) (https://

www.genome.gov/Funded-Programs-Projects/Genotype-Tissue-

Expression-Project), and the Gene Expression Omnibus (GEO)

(https://www.ncbi.nlm.nih.gov/geo) databases provided data on

gene expression and clinical pathology for Skin Cutaneous

Melanoma (SKCM). All samples in the datasets were derived

from Homo sapiens, with patients lacking survival information

excluded. To enhance the consistency and reliability of the data, we

integrated gene expression data from the TCGA-SKCM (The

Cancer Genome Atlas - Skin Cutaneous Melanoma) and

GSE65904 datasets. Specifically, the TCGA provided FPKM

(Fragments Per Kilobase of transcript per Million mapped reads)

sequencing data for 471 SKCM patients, combined with

corresponding clinical information, which served as an essential

foundation for our subsequent analyses (12) (Table 1), and

transcriptome data for 812 normal skin samples from the GTEx

database (13). The GSE65904 dataset, based on the GPL10558

platform, comprises transcriptome data from 214 SKCM patients

of Homo sapiens origin (14, 15). During the processing of dataset

GSE65904, normalization was performed by applying a log

transformation to the expression data to eliminate skewness and

enhance comparability. Additionally, the avereps function was used

to average genes with repeated measurements, thereby reducing

technical noise. Standardization was carried out using the

normalizeBetweenArrays function from the limma package (16)

to adjust for technical variations between samples, ensuring data

consistency and comparability. These steps ensured the reliability

and accuracy of the subsequent analysis results. During the data

integration process, differences in experimental conditions,

technical platforms, and sample handling methods between

datasets may lead to expression biases, known as batch effects.

These inconsistencies could negatively affect the subsequent

analysis results. Therefore, we applied the “Combat” algorithm to

correct for batch effects in the data. The Combat algorithm uses

parametric modeling to evaluate and adjust the impact of batch

effects on gene expression data, thereby eliminating systematic

biases between batches. This correction ensured that data from

different sources could be compared under the same standard,

providing a more robust foundation for downstream analyses.

After correcting for batch effects, we generated a merged

transcriptomic dataset that effectively eliminated potential

inconsistencies caused by data discrepancies, ensuring the

accuracy and reliability of statistical analyses. This process is

crucial for subsequent analyses, including differential expression

analysis, gene correlation studies, and prognostic evaluations. The

TCGA-SKCM dataset’s FPKM values were translated to transcripts

per million (TPM). After merging the TCGA-SKCM and GSE65904

datasets, the “Combat” method was used to eliminate batch effects

(Supplementary Figure S1).
Frontiers in Immunology 03
To investigate somatic mutations, 469 SKCM patients’ “Masked

Somatic Mutation” data were chosen from the TCGA GDC website.

VarScan software was used to preprocess the data, and the maftools

program was used to show somatic mutations (17). We downloaded

the “Masked Copy Number Segment” data for 471 SKCM patients

in order to examine copy number variations (CNVs) in important

genes among TCGA-SKCM patients. GISTIC 2.0 was used to

evaluate the CNV segment data (18). In GenePattern (https://

cloud.genepattern.org) to investigate CNVs in circadian rhythm-

related genes (CRGs).

Circadian rhythm-related key genes (CRGs) were obtained from

previous studies and reviews (19, 20). Aiming to represent the core

regulatory roles of circadian rhythms in various biological processes,

we extracted 17 CRGs for further research, including ARNTL,

ARNTL2, CLOCK, CRY1, CRY2, CSNK1D, CSNK1E, NPAS2,

NR1D1, NR1D2, PER1, PER2, PER3, RORA, RORB, RORC, and

TIMELESS. In this study, the selection of 17 CRGs was based on

their well-established roles in circadian regulation and cancer
TABLE 1 Baseline data from TCGA.

Characteristic levels TCGA-SKCM

n 471

Gender, n (%) Female 179 (38%)

Male 292 (62%)

Age, n (%) <=60 252 (54.4%)

>60 211 (45.6%)

T stage, n (%) T1 41 (11.3%)

T2 79 (21.7%)

T3 91 (25%)

T4 153 (42%)

N stage, n (%) N0 235 (56.8%)

N1 74 (17.9%)

N2 49 (11.8%)

N3 56 (13.5%)

M stage, n (%) M0 418 (94.4%)

M1 25 (5.6%)

Pathologic stage, n (%) Stage I 77 (18.7%)

Stage II 140 (34%)

Stage III 171 (41.5%)

Stage IV 24 (5.8%)

OS event, n (%) Alive 247 (53.2%)

Dead 217 (46.8%)

DSS event, n (%) Alive 267 (58.3%)

Dead 191 (41.7%)

PFI event, n (%) Alive 153 (33%)

Dead 311 (67%)
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research. Circadian rhythm genes are highly conserved throughout

evolution, from invertebrates to humans, and play critical roles in

regulating physiological functions and disease-related pathways. The

same foundational principle applies to melanoma, as circadian

rhythm disruptions can influence cancer cell cycles and growth

(19). Therefore, the selection of these genes primarily considered

their functional conservation in model organisms. Additionally, the

impact of these genes in prostate cancer, particularly their key roles in

the tumor immune microenvironment, was also taken into account

(20). Our selection process incorporated similar bioinformatics

analyses, including the use of TCGA and GeneCards databases,

along with Lasso and Cox regression analyses, to confirm the

expression patterns of these genes in melanoma samples and their

alignment with circadian rhythm regulation characteristics. Special

attention was given to genes that have demonstrated significant

influence on tumor progression and immune regulation in multiple

studies. As a result, the selected CRGs not only represent key

molecules in the circadian regulation of melanoma but may also

influence melanoma growth and development by modulating the

tumor immune microenvironment. The selection of these genes was

guided by their demonstrated significant biological functions in prior

research, with the aim of further uncovering the roles of circadian

rhythms in tumor progression.
2.2 Differential expression, gene
correlation, and prognosis analysis

To further investigate the expression characteristics of circadian

rhythm-related genes (CRGs) in SKCM samples, we integrated the

TCGA-SKCM and GTEx datasets and performed differential

expression analysis between the tumor group (SKCM) and the

normal group (normal skin tissues) using the limma package.

During the data analysis, we evaluated the expression levels of each

gene and identified those significantly upregulated or downregulated

in tumor tissues. The results of the differential expression analysis were

presented as boxplots, which visually depict the significant differences

in gene expression between the two groups. Subsequently, to explore

the relationships among CRGs, we performed Spearman rank

correlation analysis. This method calculates correlation coefficients

between gene expression levels, revealing significant correlations and

regulatory networks among the genes. Using the ggplot2 package for

visualization, we generated a correlation heatmap that clearly

illustrates the expression patterns among different CRGs, providing

valuable insights into their potential biological functions. Based on the

expression levels of CRGs in SKCM, we further divided the samples

into a low-expression group (0%-50%) and a high-expression group

(51%-100%). This grouping strategy facilitates the analysis of how

different expression levels of CRGs impact patient prognosis.

Subsequently, we used the survminer and survival packages to

analyze the prognostic differences between these two groups. We

applied a Cox regression model to evaluate survival risks between the

low-expression and high-expression groups and used the log-rank test

to compare the survival curves between groups.
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2.3 Identification of circadian rhythm-
related molecular subtypes

One technique for figuring out the size and composition of

possible clusters in a dataset (gene expression profiles) is consensus

clustering (21). In order to distinguish between distinct circadian

rhythm-associated subtypes, we used the “ConsensusClusterPlus”

package to conduct consensus clustering on the combined TCGA

and GEO datasets utilizing important genes linked to circadian

rhythm (21). ClusterAlg = “pam” and distance = “euclidean” were

used to sample 80% of the total data in 100 repetitions, with the

number of clusters being set between 2 and 9.
2.4 Relationship between circadian
rhythm-related molecular subtypes and
clinical features

We examined the connections between molecular subtypes,

clinical pathological features, gene expression levels, molecular

functions, and immunological infiltration in order to investigate

the clinical use of the two subtypes found by consensus clustering.

Patient characteristics included age, gender, and TNM staging.

Additionally, we downloaded the “c5.go.bp.v7.5.1.symbols” and

“c2.cp.kegg.v7.4.symbols” gene sets from the MSigDB database

(22) to perform gene set variation analysis (GSVA). Gene

expression matrices from various samples were converted into

gene set expression matrices using GSVA, a non-parametric and

unsupervised analytic technique, in order to assess gene set

enrichment findings from transcriptome microarrays (23). Based

on the gene expression matrix of each sample, pathway scores were

computed using the GSVA package in R (https://github.com/

rcastelo/GSVA), and the limma program was used to perform

differential screening of enriched functions or pathways.

Additionally, we measured the relative abundance of immune

cell infiltration for every sample using the ssGSEA method (24).

There are 28 different kinds of immune cells that have been

discovered, including natural killer T cells, macrophages, activated

CD8 T cells, and activated B cells. The relative abundance of each

kind of immune cell in the samples was represented by enrichment

scores that were computed using ssGSEA. The ggplot2 software was

used to visualize the association between immune cell expression

and several molecular subtypes.
2.5 Identification of differentially expressed
genes (DEGs) between molecular subtypes

Using the R limma package, differential analysis of genes

between several molecular subtypes was carried out. The criterion

of a fold change more than 1.5 and an adjusted p-value less than

0.05 was used to identify differentially expressed genes (DEGs)

among subtypes of circadian rhythms. In order to maximize the
frontiersin.org
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inclusion of DEGs with practical biological significance in terms of

expression levels, we selected |logFC| > 0.585 and adjusted P value <

0.05 as the screening criteria (25). DEGs that were found to be up-

regulated were those with logFC > 0.585 and adj p value < 0.05,

whereas down-regulated DEGs were identified as those with logFC

< -0.585 and adj p value < 0.05.
2.6 Functional enrichment analysis of
differentially expressed genes between
circadian rhythm subtypes

A popular technique for conducting extensive functional

enrichment studies on biological processes (BP), molecular

functions (MF), and cellular components (CC) is gene ontology

(GO) analysis (26). The Kyoto Encyclopedia of Genes and

Genomes (KEGG) is an extensive database that stores data about

illnesses, medications, biological processes, and genomes (27). Using

the clusterProfiler package (28), GO annotation analysis and KEGG

pathway enrichment analysis of DEGs were carried out (27), with

FDR < 0.05 being regarded as statistically significant. Adj p.value <

0.05 and q.value < 0.05 were the selection criterion for entries, and the

Benjamini-Hochberg technique (BH) was used to correct the p-value.
2.7 Identification of circadian rhythm-
related gene clusters and construction of a
prognostic model

To further search prognostic genes and construct a prognosis

model, multivariate Cox regression analysis, lasso regression analysis,

and univariate Cox regression analysis were used. Initially, univariate

Cox regression analysis was carried out on DEGs, keeping genes

linked with SKCM prognosis if p < 0.05. Consensus clustering was

used to classify SKCM patients into distinct gene clusters, and

then these gene clusters were examined for variations in gene

expression and prognosis. Based on the combined TCGA and GEO

datasets, all SKCM patients were randomly divided into training

and test sets in a 1:1 ratio. The LASSO technique (29) was utilized

in the training set to reduce multicollinearity and filter significant

variables from univariate Cox regression analysis. To acquire more

accurate independent prognostic indicators (prognostic characteristic

genes), we applied multivariate Cox regression analysis with

stepwise regression for final screening. Lastly, by considering the

optimized gene expression and corresponding estimated Cox

regression coefficients, we generated a risk score formula: Riskscore =

(exp − Gene1� coef − Gene1) + (exp − Gene2� coef − Gene2) +

… + (exp − Gene� coef − Gene). The training and test set samples

were separated into high-risk and low-risk categories based on their

median risk score (30). The term exp-Gene represents the expression

level of a specific gene, and coef-Gene represents the regression

coefficient of that gene. To compare overall survival between the

training and test sets, Kaplan-Meier analysis was performed using the

survival program. Furthermore, survival prediction was assessed using
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time-dependent receiver operating characteristic (ROC) curves, and

prognostic or predictive accuracy was measured by calculating the

area under the ROC curve (AUC) using the timeROC R package (31).
2.8 Gene Set Enrichment Analysis

We employed Gene Set Enrichment Analysis (GSEA) to

perform functional enrichment analysis in order to investigate

biological process differences between high-risk and low-risk

SKCM patients. A computer technique called GSEA assesses if a

predetermined gene set exhibits statistically significant changes

between two biological states (32). Usually, it is applied to

quantify changes in biological process and pathway activity

within samples of expression datasets. For Gene Set Enrichment

Analysis , the gene sets “c2.cp.v7.2 .symbols .gmt” and

“h.all.v7.2.symbols.gmt” were obtained from the MSigDB database

(22), with a false discovery rate (FDR) < 0.25 regarded as

substantially enriched.
2.9 Immune infiltration analysis

CIBERSORTx (33) is a method that estimates the makeup and

quantity of immune cells inside mixed cells by deconvolution of

transcriptome expression matrices using linear support vector

regression. To generate the immune cell infiltration matrix, we

uploaded gene expression matrix data (TPM) to CIBERSORTx,

used the LM22 signature gene matrix, and filtered samples with

p<0.05. The association between risk scores, critical genes, and

immune cell infiltration levels was investigated. The ESTIMATE R

package (34) was utilized to predict stromal and immune cell scores

from gene expression profiles, followed by the calculation of these

cell counts. We investigated the relationship between ESTIMATE

scores and high- and low-risk categories.
2.10 Prediction of immunotherapy
response and drug sensitivity

Utilizing the Tumor Immune Dysfunction and Exclusion

(TIDE) tool (35), prognosis was assessed based on risk scores,

and variations in TIDE, Dysfunction, and Exclusion scores between

high-risk and low-risk groups were evaluated. Additionally,

immunotherapy responses in SKCM patients were predicted.

Genomic sensitivity indicators and tumor drug response

information were found using the Genomics of Drug Sensitivity

in Cancer (GDSC) database (36). Using the pRRophetic algorithm

(37), we constructed a ridge regression model based on the

expression profiles of CCLE cell lines and TCGA-SKCM gene

expression profiles. This allowed us to estimate the IC50 values

for the sensitivity of common anticancer treatments in both high-

risk and low-risk groups.
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2.11 Construction of a nomogram
scoring system

We conducted univariate and multivariate Cox regression

studies on risk scores and clinical parameters in order to optimize

the prediction power of the model and further evaluate the

influence of risk scores and clinicopathological aspects on patient

prognosis. The R package “regplot” (https://CRAN.R-project.org/

package=regplot) was used to construct a nomogram by integrating

clinical features and risk scores, predicting 1-, 3-, and 5-year

survival probabilities for SKCM patients. Each variable in the

nomogram scoring system has a corresponding score, and the

sum of all the variable scores for each sample yields the final

score. After that, time-dependent ROC curves and calibration

curves were used to assess the nomogram’s discriminating power.
2.12 Statistical analysis

R programming was used for all statistical analysis and data

processing. The Mann-Whitney U test (also known as theWilcoxon

rank-sum test) was used to analyze differences between non-

normally distributed variables, while the independent Student’s t-

test was used to estimate the statistical significance of normally

distributed variables for comparisons between two groups of

continuous variables. P < 0.05 was deemed statistically significant

for all two-sided statistical p-values. A detailed flow chart of this

research can be found in Figure 1.
Frontiers in Immunology 06
3 Results

3.1 SNPs and CNVs in circadian rhythm-
related genes

This study included 17 circadian rhythm-related genes (CRGs). A

summary analysis of somatic mutation rates in these 17 CRGs revealed

that 123 out of 469 SKCM samples (26.23%) had mutations in CRGs.

Among these, RORB had the highest mutation frequency (6%),

followed by PER3, RORC, TIMELESS, and others (Figure 2A). Next,

we investigated somatic copy number variations (CNVs) in these CRGs

(Figure 2B) and found that CNVs were common across all 17 CRGs.

Notably, CSNK1D, CSNK1E, RORC, and CLOCK exhibited widespread

increases in copy number variations, whereas PER3, PER2, PER1, and

CRY1 showed decreases in CNVs. Figure 2C illustrates the locations of

CNV changes in CRGs on their respective chromosomes, such as CNV

changes in CSNK1D located on chromosome 17 and in CSNK1E on

chromosome 22.
3.2 Differential expression, gene
correlation, and prognosis analysis

We further compared the mRNA expression levels of CRGs

between tumor tissues and normal tissues. As shown in Figure 2D,

compared with normal skin tissues, the expression of ARNTL,

ARNTL2, CRY1, CRY2, CSNK1E, NR1D1, NR1D2, PER1, PER2,

PER3, RORA, RORB, and RORC was significantly downregulated in
FIGURE 1

Flowchart of the research. TCGA, The Cancer Genome Atlas; GDC, Genomic Data Commons; SKCM, Skin cutaneous malignant melanoma; CRGs,
circadian rhythm-related genes; GTEx, Genotype-Tissue Expression Project; SNP, Single Nucleotide Polymorphism; CNV, copy number variations;
GSVA, gene set variation analysis; ssGSEA, single sample gene set enrichment analysis; DEGs, Differentially Expressed Genes; LASSO, Least Absolute
Shrinkage and Selection Operator; KM, Kaplan-Meier; ROC, Receiver Operating Characteristic Curve.
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tumor tissues (P<0.001), whereas the expression of CSNK1D and

TIMELESS was significantly upregulated (P<0.001). Figure 2E

shows the PCA analysis results of tumor and normal tissues.

Next, we analyzed the expression correlation among CRGs.

Spearman correlation analysis revealed significant correlations

between the expression of the 17 genes, with most genes

showing positive correlations, except for TIMELESS and

CLOCK, which were negatively correlated with other genes

(Figure 3A). Figure 3B illustrates the interactions among 17
Frontiers in Immunology 07
CRGs, with each node representing a gene and edges denoting

the correlations between genes and their associations with patient

prognosis. The color and style of the edges indicate the type of

correlation: pink lines represent positive correlations, while blue

lines represent negative correlations, both with high statistical

significance (P < 0.0001). The network reveals that most CRGs

exhibit significant positive correlations, suggesting co-expression

in tumor cells and involvement in related biological processes. In

contrast, negative correlations involving TIMELESS, CLOCK, and
FIGURE 2

Genetic and transcriptomic alterations of CRGs. (A) Mutation frequencies of 17 CRGs in patients from TCGA. (B) Frequency of CNV gains and losses
among CRGs. (C) Locations of CNV changes of CRGs across 23 chromosomes. (D) Expression differences of 17 CRGs between normal tissues and
SKCM tissues. (E) PCA results of transcriptomic data from tumor and normal tissues. *** indicates P<0.001. TCGA, The Cancer Genome Atlas; CRGs,
Circadian Rhythm Related Genes; CNV, Copy Number Variations; SKCM, Skin Cutaneous Melanoma; PCA, Principal Component Analysis.
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other genes indicate distinct functions or regulatory mechanisms,

potentially playing opposing roles in tumor progression. This

network provides insight into the complex interplay of CRGs

and their roles in melanoma biology. Moreover, Figure 3C

highlights the association between gene expression and patient

prognosis, demonstrating that high expression of ARNTL2,

ARNTL, NR1D2, and RORC correlates with favorable outcomes,
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while elevated levels of PER1, PER2, CRY1, TIMELESS, PER3, and

CSNK1E are linked to poor prognosis. By illustrating both the

interactions among these genes and their impact on survival time

and quality of life, the figure provides valuable insights into the

prognostic significance of specific gene expressions and the

complex interactions of CRGs and their roles in melanoma

biology. Understanding the interactions between these genes
FIGURE 3

Gene correlation and prognosis analysis. (A) Correlation of expression levels among 17 CRGs. (B) Prognostic network diagram. (C) Prognostic
differences between high and low expression groups of CRGs based on TCGA data. • indicates P<0.05, ** indicates P<0.01, *** indicates P<0.001.
CRGs, Circadian Rhythm Related Genes; TCGA, The Cancer Genome Atlas.
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and their prognostic significance may provide new biomarkers for

clinical applications, facilitating risk stratification and

personalized treatment strategies.
3.3 Identification of circadian rhythm-
related molecular subtypes

In this study, to identify circadian rhythm-related molecular

subtypes of melanoma, we employed an unsupervised consensus

clustering analysis. Specifically, we used the “ConsensusClusterPlus”

R package to perform consensus clustering on the combined TCGA

and GEO datasets, with 17 circadian rhythm-related genes as

features. This method assesses the stability of different clustering

numbers by repeated resampling and uses the consensus matrix to

evaluate the optimal number of clusters (k). Ultimately, we

determined that k=2 was the optimal clustering number and

categorized the patients into two molecular subtypes accordingly.

Figure 4A shows the consensus matrix generated through consensus

clustering analysis, where the color intensity of each cell represents

the similarity between samples. For the clustering scenario with k=2,

the samples are divided into two main groups, illustrating the

relationships between the samples and the concentration of their

clustering. Figure 4B The figure displays the consensus matrix for

k=3. Compared to k=2, the sample division becomes more complex,

potentially resulting in multiple subgroups. At this point, the

similarity between samples decreases, indicating a lower clustering

quality and suggesting that the clustering may not be optimal under

these conditions. Figure 4C presents the consensus CDF curves for

different k values. Compared to other k values, the curve for k=2 has

the largest proportion in the region above 0.8, indicating it as the

optimal clustering choice. This provides strong evidence for

determining the most suitable number of clusters for the samples.

Figure 4D shows the number of clusters (k) on the x-axis and the

change in clustering quality (Delta area) on the y-axis. As the k value

increases, there is a clear downward trend in the Delta area, with the

most significant drop observed at k=2. This further supports

the conclusion that k=2 is the optimal choice. Figures 4A–D

display the clustering results obtained at different k values based on

the consensus clustering method. After considering the consensus

cumulative distribution function (CDF) curve, Delta area variation,

and clustering stability, we ultimately selected k=2 as the optimal

number of clusters. This classification was based on the similarity of

gene expression patterns between samples, rather than traditional

methods using mean or median cutoffs, ensuring the rationality and

stability of the SKCM molecular subtypes. Significant variations in

the gene expression patterns of the two subtypes were found using

PCA analysis (Figure 4F). Figures 4E, G show the relationship

between CRG expression and clinicopathological features, with

circadian rhythm-related genes expressed significantly higher in

CRG cluster B than in CRG cluster A: ARNTL (P<0.001), ARNTL2

(P<0.001), CLOCK (P<0.001), CRY1 (P<0.001), CRY2 (P<0.001),

CSNK1D (P<0.001), CSNK1E (P<0.001), NPAS2 (P<0.001), NR1D1
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(P<0.001), NR1D2 (P<0.001), PER1 (P<0.001), PER2 (P<0.001),

PER3 (P<0.001), RORA (P<0.001), RORB (P<0.05), RORC (P<0.001).
3.4 GSVA and immune infiltration analysis

GSVA enrichment analysis indicated that CRG cluster B was

significantly enriched in biological processes related to protein

synthesis, metabolism, and substance transport, including positive

regulation of response to endoplasmic reticulum stress, golgi

organization, magnesium ion transport, and er nucleus signaling

pathway (Figure 5A). Additionally, cluster B was enriched in

pathways such as mtor signaling pathway, erbb signaling

pathway, insulin signaling pathway, and retinol metabolism

(Figure 5B). To further investigate the role of CRGs in the tumor

immune microenvironment (TME), we used the ssGSEA algorithm

to assess the relative abundance of immune cells in each SKCM

sample and the differences between clusters (Figure 5C). The results

showed that the immune infiltration levels of activated B cells,

activated CD8+ T cell, CD56dim natural killer cells, Myeloid-

derived suppressor cells, macrophages, monocytes, and natural

killer T cells were significantly higher in CRG cluster A than in

CRG cluster B. In contrast, immature dendritic cells, plasmacytoid

dendritic cells, and type 2 T helper cells were significantly more

infiltrated in CRG cluster B than in CRG cluster A.
3.5 Identification of differentially expressed
genes (DEGs) between molecular subtypes

Using the “limma” package in R, we found 457 circadian

rhythm subtype-related DEGs and carried out functional

enrichment analysis to investigate the possible biological roles of

each CRG cluster. (Figures 6A, B, Table 2). Cell adhesion and

communication-related biological processes, including cell-matrix

adhesion, cell-substrate adhesion, cell-cell junction, integrin

complex, cell adhesion molecule binding, and extracellular matrix

binding, were shown to be enriched in DEGs, according to GO

enrichment analysis. The ECM-receptor interaction, focal adhesion,

proteoglycans in cancer, PI3K-Akt signaling pathway, and Hippo

signaling pathway were among the pathways in which DEGs were

enriched, according to KEGG enrichment analysis.

We then performed univariate Cox regression analysis to

determine the prognostic value of the 457 circadian rhythm subtype-

related DEGs and identified 127 genes associated with overall survival

(OS). We classified data into two gene clusters, A and B, using a

consensus clustering technique based on the expression patterns of the

127 OS-related DEGs in order to further confirm this regulation

mechanism. Figure 6C displays the consensus matrix calculated

through consensus clustering, where k=2 successfully divides all

samples into two distinct groups. The color intensity represents the

similarity between samples, with darker colors indicating high

similarity and lighter colors indicating greater differences. This result
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lays a foundation for subsequent analyses of potential biological

functions. (Figure 6D) In the consensus matrix for k=3, the

clustering of samples appears more complex, suggesting the potential

presence of additional subgroups. Compared to k=2, the clustering
Frontiers in Immunology 10
quality shown here is lower, indicating that k=3 may not be suitable for

effective sample classification. Figure 6E shows the consensus CDF

curves for different k values. Observations reveal that the curve for k=2

has the highest proportion in the region above 0.8, indicating better
FIGURE 4

Identification of circadian rhythm-related molecular subtypes. (A) Consensus clustering heatmap defining two clusters (k = 2) and their associated
area. (B) Consensus clustering heatmap defining three clusters (k = 3) and their associated area. (C) CDF plot showing the distribution of consensus
clustering corresponding to each k (D) Delta area plot visualizing the relative change in the area under the CDF curve at different k values. (E)
Heatmap showing the relationship between gene expression levels and clinicopathological parameters across different clusters. (F) PCA analysis
showing differences in gene expression profiles between the two subtypes. (G) Expression differences of CRGs between CRG cluster A and B. •
indicates P<0.05, ** indicates P<0.01, *** indicates P<0.001. CDF, Cumulative Distribution Function; PCA, Principal Component Analysis; CRGs,
Circadian Rhythm Related Genes.
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clustering performance at this value. This further validates the

effectiveness of k=2 as the optimal choice. Figure 6F indicates that as

the k value increases, the largest drop in the Delta area occurs at k=2,

supporting the use of k=2 for consensus clustering analysis. This clearly

reflects k=2 as the optimal number of clusters. Figure 6G shows
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the relationship between OS-related DEG expression and

clinicopathological features, with these genes being significantly more

expressed in gene cluster B than in gene cluster A. Kaplan-Meier curves

indicated that patients in gene cluster A had poorer OS, whereas gene

cluster B exhibited longer OS (P<0.001) (Figure 6H).
FIGURE 5

GSVA and immune infiltration analysis. (A) GSVA-GOBP analysis results between CRG cluster A and B. (B) GSVA-KEGG analysis results between CRG
cluster A and B. (C) ssGSEA immune infiltration analysis showing differences in the relative abundance of immune cells between CRG cluster A and
B. • indicates P<0.05, ** indicates P<0.01, *** indicates P<0.001. GSVA, Gene Set Variation Analysis; GOBP, Gene Ontology Biological Process; KEGG,
Kyoto Encyclopedia of Genes and Genomes.
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FIGURE 6

Identification of gene clusters based on OS-DEGs. (A) GO functional enrichment analysis of DEGs between circadian rhythm-related molecular
subtypes. (B) KEGG functional enrichment analysis of DEGs between circadian rhythm-related molecular subtypes. (C) Consensus clustering
heatmap defining two clusters (k = 2) and their associated area. (D) Consensus clustering heatmap defining three clusters (k = 3) and their associated
area. (E) CDF plot showing the distribution of consensus clustering corresponding to each k. (F) Delta area plot visualizing the relative change in the
area under the CDF curve at different k values. (G) Heatmap showing the relationship between gene expression levels and clinicopathological
parameters across the two gene clusters. (H) Kaplan-Meier curve showing the prognostic differences between the two gene clusters. DEG,
Differentially Expressed Gene; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; CDF, Cumulative Distribution Function.
Frontiers in Immunology frontiersin.org12

https://doi.org/10.3389/fimmu.2025.1513750
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2025.1513750
TABLE 2 Results of GO and KEGG enrichment analysis.

ONTOLOGY ID Description p.adjust Count

BP GO:0007160 cell-matrix adhesion 6.21E-05 22

BP GO:0001933
negative regulation of
protein phosphorylation 6.21E-05 31

BP GO:0042326 negative regulation of phosphorylation 0.000292 31

BP GO:0031589 cell-substrate adhesion 0.000304 26

BP GO:0007229 integrin-mediated signaling pathway 0.000693 13

BP GO:0070373
negative regulation of ERK1 and
ERK2 cascade 0.000781 11

BP GO:0007369 gastrulation 0.001024 17

BP GO:0001503 ossification 0.00138 26

BP GO:0050808 synapse organization 0.00181 26

BP GO:1990778 protein localization to cell periphery 0.00181 22

CC GO:0031252 cell leading edge 8.26E-08 33

CC GO:0005911 cell-cell junction 8.26E-08 35

CC GO:0005925 focal adhesion 1.21E-07 32

CC GO:0005924 cell-substrate adherens junction 1.21E-07 32

CC GO:0030055 cell-substrate junction 1.23E-07 32

CC GO:0008305 integrin complex 1.41E-06 9

CC GO:0098636 protein complex involved in cell adhesion 2.95E-06 9

CC GO:0005913 cell-cell adherens junction 3.52E-06 15

CC GO:0030027 lamellipodium 4.17E-06 19

CC GO:0030175 filopodium 4.17E-06 14

MF GO:0050839 cell adhesion molecule binding 7.05E-11 44

MF GO:0045296 cadherin binding 3.17E-06 28

MF GO:0005178 integrin binding 0.000157 15

MF GO:0005543 phospholipid binding 0.000297 28

MF GO:0035091 phosphatidylinositol binding 0.000297 20

MF GO:0050840 extracellular matrix binding 0.000917 9

MF GO:0098631 cell adhesion mediator activity 0.001052 9

MF GO:0001968 fibronectin binding 0.003071 6

MF GO:0043236 laminin binding 0.004205 6

MF GO:0001618 virus receptor activity 0.004282 9

MF GO:0104005 hijacked molecular function 0.004282 9

KEGG hsa04512 ECM-receptor interaction 9.8E-06 14

KEGG hsa05412
Arrhythmogenic right
ventricular cardiomyopathy 9.8E-06 13

KEGG hsa04510 Focal adhesion 9.62E-05 19

KEGG hsa05205 Proteoglycans in cancer 0.000399 18

KEGG hsa04810 Regulation of actin cytoskeleton 0.000705 18

KEGG hsa05165 Human papillomavirus infection 0.000705 23

(Continued)
F
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3.6 Construction of a circadian rhythm-
related prognostic model

In this study, the training and validation sets used to construct

the circadian rhythm-related prognostic model were randomly

allocated in a 1:1 ratio after merging the TCGA and GEO

datasets. This process ensured the representativeness of each

dataset while providing a sufficient sample size for model

construction and validation. LASSO and multivariate Cox

regression analyses were conducted on the 127 OS-related DEGs

to construct a prognostic model. Based on the smallest partial

likelihood deviation in LASSO regression analysis, we retained 13

genes: CMTM6, TNPO1, SLC5A3, CTBS, UTRN, HK2, SYNM,

ZNF697, CSGALNACT1, GBP3, LIF, TPD52L1, and BCAN

(Figures 7A, B). Multivariate Cox regression analysis ultimately

produced a prognostic model containing six genes, with the risk

score calculated as follows: Riskscore = CMTM6* − 0:286 + TNPO

1*0:523 + CTBS* − 0:361 + UTRN* − 0:209 +HK2*0:308 + LIF* −

0:131. We found a significant difference in risk scores between gene

clusters A and B (P<2.2e-16), while no significant difference in risk

scores was observed between CRG clusters A and B (Figures 7C, D).

Figure 7E shows the relationship between molecular subtypes, gene

clusters, risk scores, and survival status. Kaplan-Meier survival

curves demonstrated that patients with low-risk scores had

significantly better OS than those with high-risk scores in the

training set, validation set, and overall dataset (Figures 7F–H).

The ROC curves for the training set indicated that the model’s

AUC for 1, 3, and 5 years was 0.679, 0.664, and 0.661, respectively.

Additionally, ROC curves for the validation set and overall dataset
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also demonstrated good predictive performance of the model

(Figures 7I–K).
3.7 Gene Set Enrichment Analysis

To further explore the functions of the risk score, we performed

GSEA on the high-risk and low-risk groups. The results showed that

the high-risk group was primarily enriched in pathways such as cristae

formation, activation of the pre replicative complex, aminoacyl trna

biosynthesis, gluconeogenesis, and DNA replication, as well as

MYC_TARGETS_V2, hallmark myc targets v1, E2F targets,

oxidative phosphorylation, and G2M checkpoint.

In contrast, the low-risk group was mainly enriched in

pathways such as focal adhesion, GPCR ligand binding, G alpha I

signaling events, toll like receptor cascades, and apoptosis, as well as

IL2 STAT5 signaling, epithelial mesenchymal transition, KRAS

signaling up, inflammatory response, and interferon gamma

response (Figures 8A–D, Table 3).
3.8 Immune infiltration analysis between
high-risk and low-risk groups

We assessed the relationship between risk scores and immune

cell abundance using the CIBERSORTx algorithm. As shown in

Figure 8E, risk scores were positively correlated with M0

macrophages and negatively correlated with memory B cells,
TABLE 2 Continued

ONTOLOGY ID Description p.adjust Count

KEGG hsa05410 Hypertrophic cardiomyopathy 0.000731 11

KEGG hsa05414 Dilated cardiomyopathy 0.001182 11

KEGG hsa04550
Signaling pathways regulating pluripotency
of stem cells 0.002465 13

KEGG hsa04151 PI3K-Akt signaling pathway 0.003451 22

KEGG hsa04919 Thyroid hormone signaling pathway 0.007015 11

KEGG hsa05222 Small cell lung cancer 0.013198 9

KEGG hsa04929 GnRH secretion 0.02517 7

KEGG hsa05167
Kaposi sarcoma-associated
herpesvirus infection 0.028658 13

KEGG hsa04390 Hippo signaling pathway 0.044293 11

KEGG hsa04310 Wnt signaling pathway 0.048091 11

KEGG hsa04935
Growth hormone synthesis, secretion
and action 0.054994 9

KEGG hsa04925 Aldosterone synthesis and secretion 0.054994 8

KEGG hsa04750
Inflammatory mediator regulation of
TRP channels 0.058929 8

KEGG hsa04611 Platelet activation 0.062936 9
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gamma delta T cells, and activated CD4+ memory T cells. We also

evaluated the relationship between immune cell abundance and the

six genes in the prognostic model, finding that most immune cells,

particularly HK2, were significantly correlated with these genes

(P<0.05) (Figure 8F). We evaluated TME scores (stromal score,
Frontiers in Immunology 15
immune score, and ESTIMATE score) between high-risk and low-

risk groups using the ESTIMATE package. We discovered that the

high-risk group had significantly lower stromal score (P<0.001),

immune score (P<0.001), and ESTIMATE score (P<0.001) than the

low-risk group. (Figure 8G).
FIGURE 7

Construction of circadian rhythm prognostic model. (A, B) LASSO Cox regression analysis of OS-DEGs. (C) Differences in risk scores between gene
cluster A and B. (D) Differences in risk scores between CRG cluster A and B. (E) Sankey diagram showing the relationships between molecular
subtypes, gene clusters, risk scores, and survival status. (F-H) Kaplan-Meier curves showing prognostic differences between high and low-risk groups
in the training set, validation set, and overall dataset. (I-K) ROC curves of the training set, validation set, and overall dataset. OS, Overall Survival;
DEG, Differentially Expressed Gene; LASSO, Least Absolute Shrinkage and Selection Operator; ROC, Receiver Operating Characteristic Curve.
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3.9 Prediction of immunotherapy response
and drug sensitivity

We used TIDE scores to evaluate the effectiveness of

immunotherapy. We found that, compared to the low-risk group,

patients in the high-risk group had lower TIDE scores (P<0.001),

lower Dysfunction scores (P<0.001), and higher Exclusion scores

(P=0.002) (Figures 9A–C). According to the TIDE algorithm,

immunotherapy responders had higher risk scores (P<0.001)

(Figure 9D). Kaplan-Meier curves indicated that patients with

both high-risk scores and high TIDE scores had the worst

prognosis, whereas those with low-risk scores and low TIDE

scores had the best prognosis (P<0.001) (Figure 9E). Figure 9F

shows the relationships between TIDE scores, immunotherapy

response, risk scores, and survival status.
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Next, we analyzed differences in chemotherapy drug sensitivity

between the high-risk and low-risk groups. The high-risk group

exhibited decreased sensitivity (increased IC50) to AKT inhibitor

VIII (P=0.00051), Camptothecin (P=3.1e-08), Gefitinib (P<0.001),

Lapatinib (P=3.6e-05), Nilotinib (P=1.2e-13), Rapamycin

(P=0.00054), and Temsirolimus (P=1.5e-11). In contrast, the

sensitivity to Imatinib (P=0.00097) was increased (decreased

IC50) in the high-risk group (Figure 9G).
3.10 Construction of a nomogram
scoring system

A univariate Cox regression analysis revealed a substantial

correlation between risk scores and a patient’s bad prognosis. (HR
FIGURE 8

GSEA enrichment analysis and immune infiltration analysis between high-risk and low-risk groups. (A-D) GSEA enrichment analysis results for high-
risk and low-risk groups. (E) Correlation between risk scores and immune cell infiltration levels. (F) Correlation between model genes and immune
cell infiltration levels. (G) Correlation of TME scores between high-risk and low-risk groups. • indicates P<0.05, ** indicates P<0.01, *** indicates
P<0.001. GSEA, Gene Set Enrichment Analysis; TME, Tumor Microenvironment.
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[95% CI] = 2.143 [1.589-2.892], P<0.001). Risk ratings for SKCM

patients were found to be an independent unfavorable prognostic

factor by multivariate Cox regression analysis. (HR [95% CI] = 2.165

[1.606-2.919], P<0.001) (Figures 10A, B, Table 4). Considering that the

circadian rhythm risk score is not convenient for clinical application in

predicting OS in SKCM patients, we developed a nomogram

incorporating risk scores and clinicopathological parameters to

predict 1-year, 3-year, 5-year, and 10-year OS. The predictive factors

included risk score, patient age, and stage (Figure 10C). Calibration

curves demonstrated good predictive accuracy of the model

(Figure 10D). Time-dependent ROC results showed that the AUC

values of the nomogram in the training group for 1, 3, 5, and 10 years

were 0.688, 0.737, and 0.690, respectively (Figure 10E).
4 Discussion

SKCM is recognized for its aggressive nature, high metastatic

potential, and considerable therapeutic challenges. According to the

latest cancer statistics, an estimated 97,610 new cases and 7,990

deaths are expected in the United States in 2023, reflecting a

continued upward trend in incidence (1). This type of melanoma

has become one of the fastest-growing malignancies in Western

countries, particularly due to increased UV exposure and genetic
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predispositions. Advancements in early detection and novel

therapeutic strategies have significantly improved survival rates

for patients diagnosed at an early stage of melanoma. However,

the prognosis for patients with late-stage or metastatic melanoma

remains dismal. While non-metastatic melanoma patients could

expect a five-year survival rate of up to 99%, this rate plummets to

approximately 25% once the disease has metastasized (38). The

molecular pathogenesis of SKCM is intricate, involving multiple

genetic alterations and signaling pathways. Mutations in key

oncogenes such as BRAF, NRAS, and c-KIT activate pathways

including MAPK/ERK and PI3K/AKT, which drive cellular

proliferation, survival, and migration. Approximately 48% of

melanoma cases harbor a BRAF mutation, with the BRAF V600E

mutation being particularly prevalent (39). These mutations not

only fuel tumor growth but also contribute to the immune evasion

mechanisms by up-regulating PD-L1 expression and modulating

the tumor microenvironment to suppress immune surveillance

(40). In terms of treatment, the advent of immune checkpoint

inhibitors, such as anti-PD-1 (nivolumab and pembrolizumab) and

anti-CTLA-4 (ipilimumab) antibodies, has revolutionized the

management of advanced melanoma. These therapies have

significantly improved outcomes, with about 45% of patients

experiencing durable responses. However, the treatment success is

not uniform, with resistance developing in a substantial subset of
TABLE 3 Results of GSEA enrichment analysis.

Description enrichmentScore p.adjust

HALLMARK_MYC_TARGETS_V2 0.766095 0.026483

HALLMARK_MYC_TARGETS_V1 0.56333 0.080515

HALLMARK_E2F_TARGETS 0.561358 0.080515

HALLMARK_OXIDATIVE_PHOSPHORYLATION 0.499392 0.080515

HALLMARK_G2M_CHECKPOINT 0.497002 0.080515

HALLMARK_IL2_STAT5_SIGNALING -0.64374 0.004145

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION -0.65837 0.004145

HALLMARK_KRAS_SIGNALING_UP -0.69475 0.004145

HALLMARK_INFLAMMATORY_RESPONSE -0.72604 0.004145

HALLMARK_INTERFERON_GAMMA_RESPONSE -0.77103 0.004145

KEGG_FOCAL_ADHESION -0.48112 0.019213

REACTOME_GPCR_LIGAND_BINDING -0.50436 0.019213

REACTOME_G_ALPHA_I_SIGNALLING_EVENTS -0.53569 0.019213

REACTOME_TOLL_LIKE_RECEPTOR_CASCADES -0.54188 0.019213

KEGG_APOPTOSIS -0.56615 0.019213

REACTOME_CRISTAE_FORMATION 0.847113 0.037178

REACTOME_ACTIVATION_OF_THE_PRE_REPLICATIVE_COMPLEX 0.742989 0.046003

KEGG_AMINOACYL_TRNA_BIOSYNTHESIS 0.692399 0.04434

REACTOME_GLUCONEOGENESIS 0.677523 0.049903

KEGG_DNA_REPLICATION 0.589663 0.049903
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patients (41, 42). Moreover, the management of immune-related

adverse events, which could significantly impact the quality of life,

remains a critical aspect of treatment strategies.

Circadian Rhythm Genes (CRGs) orchestrate a vast array of

biological processes vital for organismal homeostasis, including the

cell cycle, DNA repair mechanisms, and metabolic pathways, all
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critical in tumorigenesis and cancer progression. The core clock

mechanism involves a transcription-translation feedback loop

wherein CLOCK and BMAL1 heterodimers promote the

expression of period (Per1/2/3) and cryptochrome (Cry1/2) genes.

These proteins, in turn, regulate their expression by interacting with

CLOCK and BMAL1, establishing a circadian rhythm that impacts
FIGURE 9

Prediction of immunotherapy response and drug sensitivity. (A) Differences in TIDE scores between high-risk and low-risk groups. (B) Differences in
Dysfunction scores between high-risk and low-risk groups. (C) Differences in Exclusion scores between high-risk and low-risk groups. (D)
Differences in risk scores between immunotherapy responders and non-responders as predicted by TIDE. (E) Kaplan-Meier curve combining risk
scores and TIDE scores. (F) Sankey diagram showing the relationships between TIDE scores, immunotherapy response, risk scores, and survival
status. (G) Prediction of drug sensitivity between high-risk and low-risk groups. TIDE, Tumor Immune Dysfunction and Exclusion.
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various cellular functions (43, 44). In the context of oncology,

disruptions in CRG expression notably influence tumor behavior,

affecting proliferation, apoptosis, and metastasis across several cancer

types. For instance, in breast cancer, altered expression of Per genes

has been linked to increased cell proliferation and reduced apoptosis,

thereby exacerbating cancer progression. Similarly, studies in

colorectal cancer have identified mutations in various CRGs that

correlate with tumor growth and poor patient prognosis due to

disrupted circadian control over cell cycle and apoptosis (45, 46).

In SKCM, recent studies have elucidated that CRGs such as

CLOCK and BMAL1 significantly influence various cellular functions

including the tumor microenvironment, cell cycle, apoptosis

regulation, DNA damage response, metabolic reprogramming, and

immune evasion, thus affecting the response to therapy. These genes

modulate the functionality of immune cells within the tumor

microenvironment, potentially altering immunotherapy outcomes.

For example, the circadian clock regulates the timing of UV exposure,

which impacts the efficacy of DNA repair mechanisms and

consequently influences melanoma risk and progression (47, 48).
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Furthermore, CRGs interact directly with key cell cycle and apoptosis

regulators. Studies have demonstrated that CLOCK and BMAL1

affect cell proliferation by regulating the expression of Wee1, a kinase

that inhibits cell cycle progression from G2 to M phase, suggesting a

mechanism where disruptions in circadian rhythms could promote

uncontrolled cell growth typical of melanoma (49). Additionally, the

timing of DNA repair processes is controlled by circadian regulators,

which modulate the expression and activity of various nucleotide

excision repair enzymes. In SKCM, where UV-induced DNA damage

is a critical risk factor, the efficiency of repair mechanisms during

peak UV exposure times could significantly influence the risk of

mutation accumulation and tumor initiation. Research has shown

that the expression of XPA, a crucial DNA repair protein, is

circadian-regulated, aligning DNA repair processes with periods of

likely UV exposure (50). Moreover, melanoma cells exhibit unique

metabolic profiles influenced by the circadian clock. CRGs like

BMAL1 are involved in the regulation of oxidative phosphorylation

and glycolysis pathways, which are often altered in cancer cells to

meet their increased energy demands. Disruption of these pathways
FIGURE 10

Construction of nomogram scoring system. (A) Results of univariate Cox analysis of risk scores and clinicopathological factors. (B) Results of
multivariate Cox analysis of risk scores and clinicopathological factors. (C) Construction of a Nomogram scoring system to predict 1-year, 3-year,
and 5-year survival. (D) Calibration curve of the Nomogram. (E) ROC curve of the Nomogram. ROC, Receiver Operating Characteristic Curve.
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could create a metabolic environment that facilitates melanoma

progression and resistance to therapy (51).

Our study rigorously explored the genetic and transcriptional

landscapes of CRGs in SKCM using advanced bioinformatics tools.

By analyzing comprehensive datasets from TCGA and GEO, we

identified significant somatic mutations and CNVs in CRGs such as

RORB, PER3, and CLOCK, which are associated with diverse clinical

outcomes and immune infiltration patterns in SKCM. Upon

comparing mRNA expression levels of CRGs in tumor and

normal tissues, it was observed that the expression of the

TIMELESS gene was elevated and associated with poor prognosis,

confirming findings from previous studies. Zhao et al. have

specifically noted that TIMELESS may regulate DNA replication

and cell cycle-related genes, potentially influencing melanoma

progression (52). In contrast, RORA expression was notably

reduced in tumor tissues. Consistent with findings from the

Benna study, this reduction and the presence of rs339972 C and

rs10519097 T alleles of RORA were linked to a decreased risk of

developing melanoma (53). Our prognostic model suggests that

overexpression of PER predicts a poor prognosis in melanoma. The

implicated mechanism involves the recognition of m6A-modified

PER1 by the protein YTHDF2, which may accelerate melanoma

progression (54). More importantly, using LASSO regression

analysis to identify the smallest partial likelihood deviation,

followed by multivariate Cox regression analysis, we ultimately

developed a prognostic model comprising six genes. These genes are

believed to play critical roles in the progression of CMM. CMTM6

has been identified as a key regulator of immune evasion in tumor

cells. It promotes tumor cell escape from immune surveillance by

modulating the expression of immune checkpoint molecules,

particularly programmed death-ligand 1 (PD-L1). CMTM6

stabilizes PD-L1 on the surface of tumor cells by preventing its

lysosomal degradation, thereby enhancing the tumor’s ability to

suppress T cell-mediated immune responses in the tumor
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microenvironment. This mechanism underscores the pivotal role

of CMTM6 in the regulation of immune checkpoint pathways,

which are critical in tumor immune evasion and resistance to

immunotherapy (55, 56). CMTM6 also influences the interaction

between tumor cells and immune cells within the tumor

microenvironment. Studies suggest that CMTM6 may modulate

the activity of tumor-associated macrophages (TAMs), natural

killer (NK) cells, and dendritic cells, thereby shaping the immune

landscape of the tumor microenvironment. For instance, CMTM6-

mediated stabilization of PD-L1 can inhibit the activation of

cytotoxic NK cells and impair the antigen-presenting function of

dendritic cells, further promoting an immunosuppressive

microenvironment conducive to tumor growth and progression

(57). The clinical significance of CMTM6 lies in its potential as a

prognostic biomarker and therapeutic target. Elevated expression of

CMTM6 has been associated with poor prognosis, including

reduced survival rates and increased risk of tumor recurrence in

several cancer types, such as lung cancer, melanoma, and colorectal

cancer (58–60). Targeting CMTM6 has been proposed as a novel

therapeutic strategy to enhance the efficacy of immune checkpoint

blockade therapies by destabilizing PD-L1 and restoring T cell-

mediated antitumor immunity. These findings highlight

modulating CMTM6 expression may offer new avenues for cancer

immunotherapy, particularly in tumors where PD-L1 plays a

critical role in immune evasion (59). TNPO1 is a transport

protein involved in nuclear-cytoplasmic trafficking which plays a

critical role in regulating the cell cycle and is implicated in tumor

cell proliferation and metastasis. Overexpression of TNPO1 has

been linked to increased tumor cell proliferation and migration,

contributing to aggressive cancer phenotypes. For instance, elevated

TNPO1 expression has been observed in colorectal cancer, where it

correlates with enhanced tumor growth and poor prognosis (61).

TNPO1 influences tumor progression through its involvement in

critical oncogenic signaling pathways. It has been shown to regulate
TABLE 4 Results of univariate and multivariate Cox analysis.

Characteristics Total(N)
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Gender 413

Female 157 Reference

Male 256 1.036 (0.767-1.399) 0.819

Age 413

<=60 218 Reference

>60 195 1.622 (1.208-2.179) 0.001 1.664 (1.237-2.239) <0.001

Stage 413

I-II 224 Reference

III-IV 189 1.631 (1.218-2.185) 0.001 1.776 (1.324-2.380) <0.001

Riskscore 413

low 182 Reference

high 231 2.143 (1.589-2.892) <0.001 2.165 (1.606-2.919) <0.001
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components of the PI3K/Akt and MAPK pathways, which are

essential for tumor cell survival, proliferation, and migration. By

modulating the nuclear transport of signaling proteins, TNPO1

indirectly affects downstream signaling cascades that drive tumor

growth and metastasis (61). TNPO1 is a key mediator of

nucleocytoplasmic transport, specifically facilitating the nuclear

import of RNA and proteins critical for cellular homeostasis. In

tumor cells, TNPO1 plays a pivotal role in the transport of

transcription factors, splicing regulators, and other nuclear-

localized proteins that govern gene expression and cellular

behavior. This function is particularly relevant in cancer, as

dysregulated nuclear transport can lead to aberrant gene

expression patterns that promote tumor growth, invasion, and

metastasis (62). Additionally, TNPO1-mediated transport may

contribute to the adaptation of tumor cel ls to their

microenvironment, enhancing their ability to evade immune

surveillance and thrive in metastatic sites (62, 63). Moreover,

TNPO1 has been linked to melanoma cell proliferation and

metastasis through its regulation of nuclear import/export

processes. Its dysregulation is associated with poor prognosis in

cancers (64). Cathepsin B serine protease is involved in extracellular

matrix remodeling and tumor invasion. Elevated expression of

CTBS facilitates melanoma metastasis by promoting cell

migration and invasiveness (65). A key glycolytic enzyme,

hexokinase 2 (HK2) is associated with metabolic reprogramming

in melanoma cells. Its upregulation promotes the Warburg effect,

which supports tumor growth and survival (66). SLC5A3 plays a

central role in ion transport and energy metabolism. Its expression

levels may directly impact the metabolic state of cells, thereby

influencing tumor growth and metastatic potential (67). These

investigations extend beyond previous studies by not only

identifying these variations but also linking them to functional

consequences within the tumor microenvironment. The

methodological approach of this study stands out due to its use of

consensus clustering to classify SKCM patients into distinct

molecular subtypes, CRG cluster A and B, based on CRG

expression profiles.

The GSVA analysis results revealed that CRG cluster B was

significantly enriched with several pathways closely associated with

cellular biological functions. For example, in Protein Synthesis and

Metabo l i sm: the “GOBP_POSITIVE_REGULATION_

OF_RESPONSE_TO_ENDOPLASMIC_RETICULUM_STRESS”

pathway is involved in regulating the cellular response to

endoplasmic reticulum (ER) stress. This pathway may be linked

to the survival and adaptability of melanoma cells under external

stress conditions (68). What’s more, Transport and Signal

Transduction: The “KEGG_MTOR_SIGNALING_PATHWAY” is

closely associated with cell growth, proliferation, and survival. This

pathway is a critical regulator of tumor cell metabolism and drug

resistance, playing a pivotal role in melanoma progression (69).

Correspondingly, recent research has corroborated that selective

inhibition of these pathways(mTOR and ERBB) presents a

promising therapeutic avenue for melanoma variants that exhibit

resistance to PD-1 monoclonal antibodies, which are critical in the

disease’s advancement (70, 71). Biosynthesis and Repair Pathways:
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Pathways such as “GOBP_GOLGI_ORGANIZATION” and

“GOBP_MAGNESIUM_ION_TRANSPORT” suggest that

alterations in endoplasmic reticulum and Golgi apparatus

functions may support the biosynthetic and repair processes

required for tumor growth in melanoma cells (72). Moreover,

The GSEA analysis results revealed significant differences in

biological processes and signaling pathways between the high-risk

and low-risk groups. Pathways Enriched in the High-Risk Group:

The high-risk group was primarily enriched in pathways such as

“REACTOME_ACTIVATION_OF_THE_PRE_REPLICATIVE_

COMPLEX” and “KEGG_DNA_REPLICATION.” These findings

suggest that enhanced cell cycle regulation and DNA replication in

melanoma cells may contribute to the rapid proliferation of tumor

cells. These pathways provide potential therapeutic targets,

particularly for the use of cell cycle inhibitors in cancer treatment

(73–75). Pathways Enriched in the Low-Risk Group: The low-risk

group exhibited enrichment in pathways such as “KEGG_

FOCAL_ADHESION” and “REACTOME_GPCR_LIGAND_

BINDING.” This indicates that patients in the low-risk group

may have stronger cell-cell interactions and adhesion abilities.

These findings imply that tumors in the low-risk group are more

effectively integrated within the tumor microenvironment,

potentially linked to local immune responses or tumor

suppression (76, 77). Targeting these pathways could potentially

disrupt the melanoma’s progression mechanisms, offering new

hope for treatment-resistant forms of this malignancy.

Furthermore, the immune infiltration analysis demonstrated that

CRG cluster A had higher infiltration of immune cells such as

activated CD8+ T cells and macrophages, which are known to be

critical for anti-tumor immunity, compared to CRG cluster B. The

differential immune infiltration between high-risk and low-risk

groups provides insights into the prognostic value of CRGs in

SKCM. High-risk patients, as identified by our prognostic model,

exhibited lower levels of immune cell infiltration, which might

contribute to their poorer prognosis. Conversely, low-risk patients

showed higher immune scores, indicating a more robust immune

surveillance mechanism. In our study, we observed significant

differences in immune infiltration between the high-risk and low-

risk groups, which may have important implications for the

effectiveness of immunotherapy. In the high-risk group, lower

levels of immune cell infiltration may reflect a microenvironment

characterized by immune evasion mechanisms, such as the

upregulation of immune checkpoint molecules or the recruitment

of immunosuppressive cells, such as regulatory T cells (Tregs) and

myeloid-derived suppressor cells (MDSCs). These mechanisms are

known to diminish immune system activity, potentially leading to

reduced responses to immunotherapy and weakened immune

surveillance, allowing tumor cells to evade recognition by the

immune system (78, 79). The immune microenvironment in the

high-risk group suggests that these patients may respond poorly to

conventional immune checkpoint inhibitors (e.g., PD-1/PD-L1

inhibitors). This is consistent with studies that have demonstrated

that immunosuppressive microenvironments reduce the efficacy of

immunotherapy. Furthermore, the increased presence of MDSCs may

exacerbate immune suppression by secreting immunosuppressive
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cytokines, thereby further impairing anti-tumor immune responses

and enhancing tumor immune evasion. In contrast, the low-risk

group exhibits higher immune cell infiltration, which may indicate a

more active and effective anti-tumor immune response and likely to

support more robust anti-tumor responses, making these patients

more sensitive to immunotherapy. Elevated levels of effector T cells

and natural killer (NK) cells suggest stronger immune surveillance,

which has been associated with improved responses to immune

checkpoint blockade therapies (80). These findings underscore the

potential for stratifying patients based on immune infiltration patterns

to predict immunotherapy outcomes and optimize treatment

strategies. Further analysis of these differences could enhance our

understanding of the tumor immune microenvironment and guide

the development of combination therapies that target immune

evasion mechanisms in high-risk patients, improving their response

to treatment. This finding aligns with the immunosuppressive nature

of the TME in high-risk groups and suggests that CRG expression

could be a key modulator of immune evasion in melanoma (81).

CRGs such as CLOCK and BMAL1 play pivotal roles in modulating

the tumor immune microenvironment, influencing immune cell

function and potentially contributing to immune evasion

mechanisms. The CLOCK protein, a core component of the

circadian clock, forms a heterodimer with BMAL1 to regulate the

expression of genes involved in various physiological processes,

including immune responses. Disruption of CLOCK expression can

lead to altered immune cell function, impacting the body’s ability to

mount effective anti-tumor responses. Studies have shown that

circadian disruptions can affect the recruitment and function of

myeloid-derived suppressor cells (MDSCs), which facilitate immune

evasion in tumors (82). On the other hand, BMAL1 is integral to

maintaining the circadian rhythm and has been implicated in the

regulation of immune cell metabolism and function. In macrophages,

BMAL1 acts as a metabolic sensor, influencing inflammatory

responses and phagocytic activity. Deficiency in BMAL1 has

been associated with reduced inflammatory responses and

altered metabolic processes in microglial cells, suggesting its

role in modulating immune cell activity within the tumor

microenvironment (83). Disruptions in circadian clock genes like

CLOCK and BMAL1 can lead to immune dysregulation, creating an

environment conducive to tumor progression. Abnormal circadian

rhythms have been linked to upregulation of immune inhibitory

molecules such as PD-L1 and CTLA-4, contributing to T cell

exhaustion and immune evasion in cancer (84). According to

Adegoke et al., patients whose tumors had a higher infiltration of

immune cells, such as macrophages, experienced better response rates

and longer progression-free survival compared to those with tumors

characterized by moderate or scarce immune cell presence (81).

Future research should focus on elucidating the precise mechanisms

by which these CRGs influence immune cell infiltration and function

in SKCM, potentially uncovering novel therapeutic targets to enhance

anti-tumor immunity. The predictive accuracy of our risk model was

further validated using ROC curve analysis, with the nomogram

integrating clinical parameters and risk scores demonstrating

substantial predictive power for 1-, 3-, and 5-year overall survival.
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Compared to other studies, such as those by Cabrita and Cirenajwis

(14, 15), which predominantly focused on broader genomic profiling,

our research specifically targets the circadian regulatory network. This

unique focus allows us to provide novel insights into the temporal

dynamics of gene expression in SKCM. Unlike general genomic

studies that provide a static snapshot of genetic alterations, our

approach delves into how these alterations are influenced by the

body’s circadian rhythms, offering a dynamic perspective that is

critical for understanding tumor behavior over time. In our drug

sensitivity analysis, the sensitivity differences to AKT inhibitor VIII

were particularly notable. Although AKT inhibitors have not yet

become a standard part of melanoma treatment, their clinical

potential should not be overlooked. The PI3K/AKT signaling

pathway plays a crucial role in melanoma progression, making

AKT a promising therapeutic target. Several AKT inhibitors have

been developed and are undergoing clinical evaluation. For instance,

ipatasertib, an oral AKT inhibitor, has shown potential in clinical

trials targeting tumors with specific genetic alterations. Additionally,

the combination of AKT inhibitors with other therapeutic agents is

being explored to overcome resistance mechanisms and enhance

treatment efficacy. For example, combining AKT inhibitors with

BRAF inhibitors has demonstrated synergistic effects in preclinical

melanoma models, suggesting a potential strategy for patients with

BRAF-mutant melanoma (85). As a result, AKT inhibitors have

shown potential therapeutic value in inhibiting tumor cell

proliferation and promoting apoptosis (86). Currently, multiple

AKT inhibitors are undergoing clinical trials to explore their

specific applications in melanoma treatment. Among them, AKT

inhibitor VIII has demonstrated efficacy in selectively targeting the

AKT pathway and effectively suppressing melanoma cell proliferation,

providing a promising avenue for personalized treatment strategies.

Camptothecin, a topoisomerase I inhibitor, has shown anti-tumor

activity in various cancers, including melanoma (87). However, due to

its toxicity and solubility issues, derivatives such as irinotecan and

topotecan have been developed and are currently used in clinical

settings. These agents interfere with DNA replication in rapidly

dividing cells, leading to cell death (88). While not standard

treatments for melanoma, camptothecin derivatives are being

investigated in clinical trials, either alone or in combination with

other therapies, to assess their efficacy and safety profiles in

melanoma patients (89). Our findings suggest that patients in the

low-risk group may exhibit increased sensitivity to AKT inhibitors and

camptothecin derivatives, potentially leading to better therapeutic

outcomes. Conversely, high-risk patients may require alternative

strategies or combination therapies to achieve optimal results.

Incorporating these insights into clinical decision-making could

enhance personalized treatment approaches for melanoma patients.

In this study, we performed differential expression analysis

between tumor and normal groups using the limma package, a

widely accepted and well-performing method that has been

successfully applied in many high-throughput data analyses.

Furthermore, our analysis was primarily focused on key biological

hypotheses, and the differentially expressed genes identified have

been partially validated in the literature (49, 53). Therefore, the
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primary objective of this study is to investigate the impact of

circadian rhythms on tumorigenesis and progression, identify key

genes associated with SKCM and their potential mechanisms, and

develop a prognostic model. SNPs and CNVs, as genetic markers,

can influence patients’ clinical manifestations through various

mechanisms (90). These variations can lead to changes in gene

function, thereby affecting disease progression and treatment

responses at multiple levels. In SKCM patients, CNVs may result

in the loss of key tumor suppressor genes or the activation of

oncogenes, thus promoting tumor development. For example, the

loss of tumor suppressor genes can disrupt cell cycle checkpoints,

leading to faster cell proliferation (91, 92). SNPs may affect the

function of key genes in signaling pathways, altering cell growth

regulation and impacting tumor proliferation and progression (93).

Certain SNPs and CNVs can modify the structure and function of

drug targets or drug-metabolizing enzymes, directly influencing

patients’ responses to specific drugs (94). Genetic variations can also

affect immune cell infiltration, angiogenesis, and other factors,

thereby altering the tumor microenvironment and influencing

patient survival rates (95). Furthermore, our study lays the

groundwork for more personalized approaches in cancer

treatment, where circadian biomarkers could predict patient-

specific optimal treatment times, enhancing survival rates and

quality of life for melanoma patients. Although our study

provides robust insights, it is not without limitations. The reliance

on retrospective data and potential biases in the TCGA and GEO

datasets could affect the generalizability of the findings. Moreover,

functional validation of CRG-related mechanisms in experimental

models is necessary to confirm the causative roles suggested by our

analyses. Although the prognostic model we constructed

demonstrates good predictive performance, the lack of external

dataset validation may limit the generalizability and applicability of

the results. Future research will consider incorporating independent

datasets to enhance the comprehensiveness of the findings and we

plan to collect clinical samples and employ experimental methods

such as qRT-PCR or IHC to further validate the conclusions of this

study. Last but not least, immune infiltration analysis was included

as a complementary aspect to broaden the research perspective and

provide insights into the role of circadian rhythm-related genes in

skin cutaneous melanoma. It is critical to incorporate additional

experimental validations in future studies to enhance the credibility

and comprehensiveness of our research.

Our study’s integration of circadian genomics with immune

profiling offers a groundbreaking perspective, suggesting that the

timing of therapeutic interventions could be crucially optimized

based on circadian influences. This innovative approach not only

proposes the possibility of enhancing treatment efficacy but also

suggests reducing side effects by aligning treatment schedules with

the body’s biological clock. Such synchronization could exploit the

natural peak activity phases of cancer cell vulnerability and immune

system responsiveness, potentially transforming the strategic planning

of melanoma therapy. The implications of our findings extend beyond

the immediate benefits of therapy timing. By understanding the

circadian modulation of gene expression, our research significantly

contributes to the broader understanding of melanoma pathogenesis.
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This knowledge is pivotal for developing future interventions that are

finely tuned to the biological rhythms of the body, thereby improving

prognostic assessments and therapeutic outcomes.
5 Conclusion

This study systematically explored the role of CRGs in SKCM.

Our analysis identified significant gene alterations and differential

expression patterns of CRGs between tumor and normal tissues,

revealing their association with poor prognosis and immune

modulation. Two molecular subtypes were established based on

CRG expression, showing distinct clinical features and immune

infiltration patterns. A prognostic model comprising six key CRGs

(e.g., CMTM6, TNPO1, and HK2) demonstrated reliable accuracy

in predicting overall survival. High-risk scores were linked to

elevated immune checkpoint expression, decreased immune cell

infiltration, and lower sensitivity to chemotherapies, underscoring

CRGs’ impact on immune evasion and therapy resistance.
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