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Single-cell sequencing elucidates
the mechanism of NUSAP1 in
glioma and its diagnostic and
prognostic significance
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Background: Personalized precision medicine (PPPM) in cancer immunology

and oncology is a rapidly advancing field with significant potential. Gliomas,

known for their poor prognosis, rank among the most lethal brain tumors.

Despite advancements, there remains a critical need for precise, individualized

treatment strategies.

Methods: We conducted a comprehensive analysis of RNA-seq and microarray

data from the TCGA and GEO databases, supplemented by single-cell RNA

sequencing (scRNA-seq) data from glioma patients. By integrating single-cell

sequencing analysis with foundational experiments, we investigated the

molecular variations and cellular interactions within neural glioma cell

subpopulations during tumor progression.

Results: Our single-cell sequencing analysis revealed distinct gene expression

patterns across glioma cell subpopulations. Notably, differentiation trajectory

analysis identified NUSAP1 as a key marker for the terminal subpopulation. We

found that elevated NUSAP1 expression correlated with poor prognosis,

prompting further investigation of its functional role through both cellular and

animal studies.

Conclusions: NUSAP1-based risk models hold potential as predictive and

therapeutic tools for personalized glioma treatment. In-depth exploration of

NUSAP1’s mechanisms in glioblastoma could enhance our understanding of its

response to immunotherapy, suggesting that targeting NUSAP1 may offer

therapeutic benefits for glioma patients.
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1 Introduction

Gliomas represent the most common malignant tumors within

the central nervous system, accounting for more than 30% of all

primary brain tumors, and are characterized by high rates

of incidence and mortalit (1). Although the precise cause

remains unknown, genetic predispositions, environmental factors,

and gene mutations are thought to significantly contribute to

glioma development (2, 3). Pathologically, gliomas are highly

heterogeneous and aggressive, especially in high-grade forms like

glioblastoma (GBM), known for rapid growth and the ability to

invade surrounding brain tissue (4). Despite standard treatments

such as surgery, radiotherapy, and chemotherapy, the prognosis for

most glioma patients is bleak, with a five-year survival rate below

10% (5). Additionally, gliomas’ resistance to conventional therapies

highlights the urgent need for new treatment strategies to enhance

patient outcomes (2).

Nucleosome- and spindle-associated protein 1 (NUSAP1) is a

microtubule-associated protein essential for cell cycle regulation,

particularly during mitosis, where it governs spindle assembly and

stability to ensure proper chromosome segregation (6, 7). Recently,

abnormal NUSAP1 expression has gained significant attention in

various cancers. Studies have shown that elevated NUSAP1

expression is closely linked to heightened tumor cell proliferation,

migration, and invasion, which is associated with a poor prognosis

in various solid tumors, such as breast, prostate, and lung cancers

(8, 9). In gliomas, NUSAP1’s role is becoming increasingly clear,

with early studies suggesting that its elevated expression in glioma

cells may drive malignant behaviors, such as invasiveness and

resistance to apoptosis. Additionally, research into NUSAP1 as a

potential therapeutic target is growing, indicating that modulating

its expression and function could provide new treatment options for

gliomas (10).

Single-cell sequencing technology, a state-of-the-art high-

throughput analytical tool, has greatly advanced predictive,

preventive, and personalized medicine (PPPM) (11). Single-cell

sequencing facilitates an in-depth examination of individual cells

across genomic, transcriptomic, and epigenomic dimensions,

uncovering cellular heterogeneity, identifying rare disease-related cell

populations, and elucidating their molecular profiles (12, 13). This

approach provides essential insights for prediction and prevention in

medical research. In PPPM, single-cell sequencing is widely used for

early disease diagnosis and the development of personalized treatment

plans. In oncology, for example, single-cell sequencing can uncover the

complexity of the tumor microenvironment, identify resistant clones

and potential therapeutic targets, and customize precise treatment

regimens (14, 15). This technology also plays a crucial role in

monitoring treatment responses and evaluating recurrence risks,

aiding clinicians in optimizing therapeutic strategies and improving

long-term survival rates. As a result, single-cell sequencing has become

an essential tool in shifting from traditional treatment models to

precision medicine, especially in cancer care.

In cancer immunology and oncology, the molecular mechanisms

underlying tumor progression, immune evasion, and treatment
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resistance are of central importance for advancing therapeutic

strategies (16, 17). Immunotherapy has emerged as a powerful

approach to harness the body’s immune system to recognize and

attack cancer cells, showing promise in various tumor types (18, 19).

However, the effectiveness of immunotherapy, particularly in

gliomas, remains limited due to the complex interplay of immune

evasion mechanisms, tumor heterogeneity, and the molecular

landscape of the tumor microenvironment (20, 21). Recent

advances in single-cell technologies have revolutionized the study

of these molecular and cellular mechanisms, enabling detailed

profiling of immune cell populations, tumor cells, and their

interactions within the tumor microenvironment (22, 23). Single-

cell RNA sequencing, in particular, allows for the dissection of

heterogeneity at the single-cell level, offering new insights into drug

sensitivity, immune response, and treatment resistance in gliomas

(24, 25). Nucleosome- and spindle-associated protein 1 (NUSAP1)

has recently gained attention as a key player in cancer biology, with

growing evidence supporting its role in cell cycle regulation,

chromosomal instability, and tumor proliferation. In gliomas,

elevated NUSAP1 expression has been associated with increased

tumor aggressiveness, poor prognosis, and treatment resistance.

Although NUSAP1 has not been extensively studied in the context

of glioma immunology, its potential involvement in immune evasion

and treatment sensitivity presents a promising area for exploration

(26). As a targetable molecule, NUSAP1 could influence key immune

regulatory pathways and modulate the tumor’s response to

immunotherapy. Despite its emerging significance, the relationship

between NUSAP1 and critical processes in cancer immunology and

oncology, such as molecular mechanisms of immune regulation,

immunotherapeutic responsiveness, and drug sensitivity, remains

largely unexplored in gliomas. This gap in research highlights the

need for further investigation into how NUSAP1 may contribute to

immune suppression and treatment resistance in gliomas.

Understanding the role of NUSAP1 in these processes could open

new avenues for developing targeted therapies aimed at improving

the efficacy of immunotherapy and overcoming drug resistance in

glioma patients.
2 Methods

2.1 Data acquisition

Single-cell RNA sequencing (scRNA-seq) data was accessed from

the Gene Expression Omnibus (GEO) database under accession

number GSE141383 (https://www.ncbi.nlm.nih.gov/geo/), Bulk RNA-

seq data was retrieved from The Cancer Genome Atlas (TCGA)

through the official GDC portal (https://portal.gdc.cancer.gov/) (27).
2.2 Data filtering and processing

Each dataset was processed using the Seurat package (v4.3.0) in

R (v4.2.2). Initially, potential doublets were excluded using the
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DoubletFinder package (v2.0.3), and low-quality cells were filtered

out, maintaining cell quality within the following ranges: 300 <

nFeature < 6000 and 500 < nCount < 100,000. Cells meeting these

criteria were retained for further analysis. Additionally, cells were

required to have less than 25% mitochondrial gene expression and

less than 5% red blood cell gene expression to be included in

subsequent analyses.

Next, the expression matrix was normalized, and the top 2000

highly variable genes (HVGs) were identified and standardized.

PCA analysis was then performed on these genes. To address batch

effects across samples, the Harmony package (v0.1.1) was utilized,

selecting the top 30 principal components (PCs) for dimensionality

reduction and clustering. Following this, UMAP was employed to

project the results onto a two-dimensional plot, facilitating cell type

identification. Relevant cell markers from the literature were used to

annotate cell clusters, thereby identifying distinct cell types, and

examining their distribution and proportions.
2.3 Enrichment analysis of differentially
expressed genes

Differentially expressed genes (DEGs) for each cell type were

identified using the “FindAllMarkers” function with default

settings, employing the Wilcoxon rank-sum test. Genes expressed

in over 25% of cells within clusters and exhibiting a log fold change

(logFC) greater than 0.25 were selected. Enrichment analysis of

differentially expressed genes (DEGs) was performed using the

clusterProfiler package, with an emphasis on pathways related to

each cell type as defined by Gene Ontology (GO) Biological

Processes (BP).
2.4 Subpopulation analysis of glia/
neuronal cells

To investigate the heterogeneity among glial and neuronal cells,

we performed additional stratification. Following cell isolation, we

identified the top 2,000 highly variable genes and proceeded with

data normalization. The Harmony method was applied to minimize

batch effects across samples. We selected the top 30 principal

components (PCs) for downsampling and clustering, utilizing

UMAP to project the data onto a two-dimensional map,

facilitating the investigation of intercellular heterogeneity.
2.5 Malignant cell identification
via inferCNV

Copy number variation (CNV) analysis was employed to

distinguish malignant cells from non-tumor cells. By applying the

inferCNV algorithm, we evaluated copy number variability across

cell subpopulations, using vascular endothelial cells as a reference.

Subpopulations with significant CNV alterations were classified as

glioma cells.
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2.6 Differential and enrichment analyses of
cell subpopulations

Subsequently, the “FindAllMarkers” function was utilized to

identify differentially expressed genes within each subpopulation

using the Wilcoxon rank sum test. Following this, Gene Ontology

Biological Process (GO-BP) enrichment analysis was performed

with the clusterProfiler package.
2.7 Trajectory analysis

Three distinct software packages were employed to evaluate the

differentiation progression across oligodendrocyte subpopulations.

Initially, the cytoTRACE algorithm was utilized to assess the

stemness levels within each subpopulation. Subsequently,

differentiation trajectories were mapped using the Monocle R

package (version 2.24.0), with the DDRTree algorithm employed

to trace developmental progress along predetermined pathways.

Finally, we conducted additional trajectory analysis during glioma

differentiation using the Slingshot package. Minimum spanning

trees (MSTs) were employed to infer cell lineages using the

getLineages function, while the getCurves function was utilized to

estimate temporal changes in gene expression within each lineage.
2.8 Cell communication analysis

To investigate the intricate intercellular communication among

distinct cell subpopulations in GBM tumors and their interactions

with the tumor microenvironment, we conducted a cross-talk

analysis. The CellChat R package (version 1.6.1) and the

CellChatDB.human reference database were utilized to examine

ligand-receptor interactions. This analysis provided insights into

cell-cell communication by evaluating signaling pathways and

receptor-ligand interactions, revealing coordinated interactions

among various cell types.
2.9 Prognostic modeling of glioma-
associated cells

To assess the prognostic impact of glioma-associated cell

subpopulations on patient survival, we identified key marker genes

as predictive signatures for gliomas. We employed the survival R

package to perform univariate Cox regression and Lasso regression

for selecting significant prognostic genes. These genes were then

incorporated into a prognostic model through multivariate Cox

analysis. A risk score for each sample was computed using the

following formula: risk score = (expression of gene 1 * coefficient

1) + (expression of gene 2 * coefficient 2) +… + (expression of gene n

* coefficient n). Samples were categorized into high-risk and low-risk

groups according to the median risk score. We then performed

survival analysis to assess patient prognosis across these groups.

The model’s accuracy was assessed using receiver operating
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characteristic (ROC) curves for 1, 3, and 5 years, employing the

timeROC software package (version 0.4.0). Additionally, we

examined the correlations between the prognostic genes, risk

scores, and overall survival (OS).
2.10 Analysis of tumor-infiltrating
immune cells

To thoroughly evaluate the immune microenvironment in

patients, we employed CIBERSORT, ESTIMATE, and xCell to

derive various immune-related scores. We assessed the levels of

22 immune cell types using the CIBERSORT algorithm, comparing

high and low levels between groups. Additionally, we investigated

the interactions among immune cells, risk scores, model genes, and

overall survival (OS). We also analyzed TIDE scores and the

expression of AODRA2A across different groups.
2.11 Differential and enrichment analyses
of bulk genomic data

We performed differential analysis separately for high-risk and

low-risk groups using the DESeq2 R package, applying a threshold

of |logFC| > 2 and a p-value < 0.05. Additionally, we conducted

Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes

(KEGG), and Gene Set Enrichment Analysis (GSEA) on the

differentially expressed genes using the clusterProfiler package.
2.12 Somatic mutation analysis

Somatic mutation data from the TCGA repository were utilized

to assess the mutational landscape of highly mutated genes relative

to reference genes. Glioma samples were stratified into high and low

groups based on the median tumor mutational burden (TMB).

Kaplan-Meier survival analysis was subsequently conducted to

compare survival outcomes between these groups. Additionally,

we investigated the copy number variation (CNV) patterns of the

targeted genes.
2.13 Drug sensitivity analysis

IC50 values for various chemotherapeutic agents were

estimated using the pRRophetic R software (version 0.5).

Sensitivity evaluations for these agents were then conducted

across different categories.
2.14 Cell culture

U-251 and LN229 cell lines were cultured in Dulbecco’s

Modified Eagle’s Medium (DMEM) supplemented with 10% fetal

bovine serum (FBS) and 1% penicillin-streptomycin. Cells were

maintained at 37°C in a humidified atmosphere with 5% CO2. For
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subculturing, cells were detached using trypsin-EDTA, counted,

and reseeded at a density of 1 x 10^5 cells per flask. Cultures were

routinely checked for mycoplasma contamination and passaged

when they reached 80-90% confluency (28).
2.15 Cell transfection, lentivirus vector
construction, and cell infection

Cells were seeded into 6-well plates at 70-80% confluence and

transfected with plasmid DNA using Lipofectamine 3000 (RRID:

AB_2572027, Invitrogen, Thermo Fisher Scientific) according to the

manufacturer’s instructions. After 24 hours, the medium was

replaced with fresh medium, and the sequences used for

transfection are listed in Supplementary Table 1. Lentiviral vectors

were constructed by cloning target genes into a lentiviral expression

plasmid (e.g., pLenti6.3/V5-DEST, RRID: Addgene_17452). The

plasmid was co-transfected with packaging plasmids (pMD2.G,

RRID: Addgene_12259 and psPAX2, RRID: Addgene_12260) into

HEK293T cells (RRID: CVCL_0063, ATCC) using Lipofectamine

3000. Forty-eight to seventy-two hours post-transfection, viral

supernatants were collected, filtered through a 0.45 µm membrane,

and concentrated using a lentivirus concentration kit (Lenti-X

Concentrator, Clontech, Takara Bio, catalog number 631231).

Target cells were infected with lentivirus in the presence of 8 µg/

mL polybrene (Sigma-Aldrich, catalog number 107689). After 24

hours, the virus-containing medium was replaced with fresh growth

medium. Infection efficiency was assessed 48 hours later using

fluorescence microscopy or flow cytometry (29).
2.16 RT-qPCR analysis

Total RNA was extracted from cells using the RNeasy Mini Kit

(Qiagen, RRID: AB_2650242) according to the manufacturer’s

protocol. RNA was subsequently reverse transcribed to

complementary DNA (cDNA) using the PrimeScript RT Reagent

Kit (Takara, RRID: AB_10050579). Quantitative PCR (qPCR) was

performed using SYBR Green Master Mix (Applied Biosystems,

RRID: AB_2733300) on a real-time PCR system (Applied

Biosystems 7500, RRID: AB_2647999). The cycling conditions

consisted of an initial denaturation at 95°C for 10 minutes,

followed by 40 cycles of 95°C for 15 seconds and 60°C for 1

minute. Gene expression levels were normalized to GAPDH

(GenBank accession no. NM_002046), and relative expression

was calculated using the DDCt method. Statistical analysis was

conducted using appropriate software (e.g., GraphPad Prism), and

p-values < 0.05 were considered statistically significant. Primer

sequences are listed in Supplementary Table 1.
2.17 Cell counting kit-8 assay

Cell viability was assessed using the Cell Counting Kit-8 (CCK-8,

Dojindo). Cells were seeded in 96-well plates at a density of 2 x 103 cells
frontiersin.org
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per well and allowed to adhere overnight. After treatment, 10 mL of

CCK-8 solution was added to each well, and cells were incubated for 2

hours at 37°C. The absorbance at 450 nm was measured using a

microplate reader. Data were normalized to control wells, and statistical

analysis was performed with p-values < 0.05 considered significant.
2.18 Colony formation assay

A cohort of 1000 cells was transfected and incubated in 6-well

plates for approximately 14 days under laboratory conditions. After

this two-week period, cellular clones were visually inspected

without assistance. Subsequently, the cells were washed and fixed

with a 4% paraformaldehyde (PFA) solution for 15 minutes.

Following fixation, the cells were stained with crystal violet

(Solarbio, China) for 20 minutes and allowed to air-dry at room

temperature. Finally, cell quantification per well was conducted in

the study.
2.19 Wound healing assay

Wound healing assays were conducted by creating a uniform

scratch in a confluent cell monolayer using a sterile pipette tip. Cells

were then washed to remove debris and incubated in fresh medium.

Wound closure was monitored at 0 and 24 hours using a phase-

contrast microscope. Images were captured, and the wound area

was measured using ImageJ software. The percentage of wound

closure was calculated relative to the initial wound area, and

statistical analysis was performed with p-values < 0.05

considered significant.
2.20 Transwell migration assay

Cell migration was assessed using a Transwell migration assay.

Cells were suspended in serum-free medium and seeded into the

upper chamber of Transwell inserts with an 8 mm pore size

(Corning). The lower chamber was filled with medium containing

10% fetal bovine serum as a chemoattractant. After 24 hours of

incubation at 37°C, non-migrated cells on the upper membrane

were removed with a cotton swab, and migrated cells on the lower

membrane were fixed with 4% paraformaldehyde and stained with

crystal violet. The number of migrated cells was counted under a

light microscope, and statistical analysis was performed with p-

values < 0.05 considered significant.
2.21 Statistical analysis

Biological analyses were performed using R software version

4.1.3, while experimental data analysis was conducted with

GraphPad Prism version 8.0. Mean values and standard

deviations were derived from three independent experiments.

Comparisons between two groups were made using Student’s t-

test, whereas one-way ANOVA followed by Tukey’s post hoc test
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was employed for comparisons among multiple groups. Statistical

significance was indicated as follows: *p<0.05, **p<0.01, ***p<0.001.
3 Results

3.1 Key cell types involved in glioma
progression identified via
snRNA sequencing

Single-nucleus RNA sequencing (snRNA-seq) was conducted

on tumor samples from nine glioma patients to investigate the

cellular diversity within these specimens. After quality control and

filtering, we analyzed 22,392 cells through dimensionality reduction

clustering, identifying 22 clusters corresponding to six different cell

types: oligodendrocytes (771), glial neuronal cells (13,760),

astrocytes (4,980), smooth muscle cells (106), vascular cells (519),

and myeloid cells (2,256) (Figure 1A, upper). Among the 22,392

cells analyzed, 14,611 exhibited the IDH1 mutation, while 20,931

were IDH1 wild-type (Figure 1A). UMAP plots illustrated the

distribution of these six cell types across various cell cycle phases:

5,051 cells in the S-phase, 13,728 in the G1 phase, and 3,613 in the

G2M phase (Figure 1A, bottom).

A bar chart was employed to depict the distribution of the six

cell types within a cohort consisting of eight patients with IDH1

wild-type lesions and one patient with IDH1 mutant lesions

(Figure 1B). This chart highlights the heterogeneity of cell types

among the glioma patients. Box plots further emphasized the

distinct variations among these six cellular phenotypes across the

different cohorts (Figure 1C). Marker gene expression varied among

the six cell types identified in the tumor samples, with the top 10

markers for each cell type displayed in bubble plots (Figure 1D).

RNA characteristics, including nCount_RNA, nFeature_RNA,

G2M score, and S score, were visualized through UMAP plots

(Figure 1E). Word clouds displayed Gene Ontology Biological

Process (GO-BP) enriched pathway terms across the cell types

while volcano plots highlighted distinct genes among the six cell

types (Figure 1F). Heatmaps presented GO-BP enrichment analysis

results for uniquely expressed genes within the six cellular

phenotypes (Figure 1G).
3.2 Intracellular heterogeneity in glia-
neuronal cells

To analyze glia-neuronal cells for malignancy, we applied an

inferred CNV algorithm to identify malignant cells at the single-cell

level. Based on inferred copy number variations (CNV), cells with

elevated CNV levels were classified as glioma cells (Supplementary

Figure 1) revealing three subpopulations: C0 MALAT1+ glioma

cells (2,508), C1 AKAP9+ glioma cells (1,788), and C2 NUSAP1+

glioma cells (1,566) (Figure 2A). We examined the distribution of

cell cycle stages, subsets, and lineages across these three subgroups.

UMAP representations were used to visualize the CNV score,

nCount_RNA, S score, G2M score, and other relevant attributes of

the three cellular subgroups (Figure 2B). Additionally, the
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distribution of these three subtypes was visually examined across

eight cases with IDH1 wild-type lesions and one case with an IDH1

mutant lesion (Figure 2C, left). The C2 NUSAP+ glioma

subpopulation was predominantly found in patients with
Frontiers in Immunology 06
SF12264. Box plots showed varying proportions of the three

subpopulations across the groups (Figure 2C, right). Volcano

plots highlighted differentially expressed genes in each of the

three subpopulations (Figure 2D). Word clouds displayed
FIGURE 1

snRNA sequencing reveals major cell types during GBM progression (A) UMAP projections of 22392 aggregate single cells from 9 patients showing
the composition of different cell types in human gliomas. UMAP projections are shown by cluster numbers, by cluster assignment, by groups, and by
cell cycle phases. (B) Bar graph showing the percentage of the 6 cell types in the IDH1 group versus the IDH1 wildtype group. (C) Box line plot
depicting the percentage of the 6 cell types in the GBM group versus the IDHR132H WT GBM group. (D) Bubble plot showing differential expression
of the Top10maker genes in glioma cells in different cell types. (E) The UMAP plot showcases the distribution of the following relevant features:
nCount_RNA, nFeature_RNA, G2M.score, and S.score. (F) Volcano plot demonstrating differential gene expression in 6 cell types. (G) GO-BP
enrichment analysis revealing biological processes associated with the 6 cell types.
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FIGURE 2

Visualization of Glia-Neuronal-cells cell subpopulations (A) UMAP diagram demonstrating the 3 cell subpopulations of tumor cells in glioma patients and the
number of cells in each subpopulation (top left); UMAP diagram demonstrating the percentage of different cell cycles in the 3 cell subpopulations (top right);
UMAP diagram demonstrating the distribution of the IDH1 mutant group versus the IDH1 wildtype group in the 3 cell subpopulations (bottom left); and
UMAP diagram demonstrating the patient origin of the 3 cell subpopulations (lower right). (B) UMAP plot visualizing the pertinent features of the 3 cell
subpopulations: CNVscore, nCount_RNA, G2M.score, S.score. (C) Bar graph demonstrating the percentage of the 3 cell subpopulations in the IDH1 mutant
group versus the IDH1 wildtype group (left); box line graph depicting the percentage of the 3 cell subpopulations in the IDH1 mutant group versus the IDH1
wildtype group (right). (D) Volcano plot demonstrating the expression of differential genes in the 3 cellular subpopulations. (E) Word cloud graph
demonstrating gene pathway enrichment in the 3 cell subpopulations. (F) Bubble plot showing differential expression of Top10maker genes in 3 cell
subpopulations. (G) GO-BP enrichment analysis demonstrating biological processes associated with the 3 cell subpopulations.
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FIGURE 3

Visualization of proposed time series analysis of 3 glioma cell subpopulations by cytotrace and monocle (A) The differentiation of glioma cell
subpopulations is analyzed using cytotrace. The color can represent the level of differentiation. The figure on the right represents the cytotrace
results displayed according to different glioma cell subpopulations. The colors represent different cell subpopulations. (B) Box line plot showing the
visualization results of cytotrace analysis of glioma cell subpopulations. (C) The occupancy of relevant features in different pseudotime stages of 3
cell subpopulations was visualized": the occupancy of 3 cell subpopulations in the IDH1 mutant group versus the IDH1 wildtype group (left); the
occupancy of 3 cell subpopulations in different cell cycles (right). (D) Bar charts illustrating the proportions of different pseudotime stages (state1-
state3) within the three cell subgroups. (E) Demonstrating the derivation process of glioma cell subpopulation. Left: UAMP plot of the proposed
temporal trajectory showing the 3 cell subpopulations; Middle: UMAP plot showing the pseudotime trajectory of glioma cell subpopulation, starting
from the upper right and dividing into two branches, one of which differentiates downward and the other to the left; Right: UMAP plot showing the
distribution of 3 states on the proposed temporal trajectory plot. (F) Scatter plot showing the changes of 3 cell subpopulations of glioma cell
subpopulation; proposed chronological sequence UMAP plot showing the changes of the cell subpopulations corresponding to the 3 named genes
with the proposed chronological sequence; and the expression of the 3 named genes of cell subpopulations (MALAT1, AKAP9, NUSAP1) on the
pseudotime trajectory.
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enriched Gene Ontology Biological Process (GO-BP) pathway

terms within these subgroups (Figure 2E). Marker genes with

differential expression in the three subpopulations were visualized

using bubble plots and heatmaps (Figure 2F), A heatmap was

generated to illustrate the results of GO-BP enrichment analysis

for the distinct gene sets in the three subgroups (Figure 2G).
3.3 Pseudotemporal analysis of glial and
neuronal cell subpopulations using
CytoTRACE and monocle

To explore the differentiation and developmental trajectories of

glioma cell subpopulations, we conducted CytoTRACE analysis

(Figure 3A), revealing a differentiation pattern from C1 to C0 and

then to C2 (Figure 3B). A bar graph illustrates the distribution of the

three cell subpopulations across IDH1 mutant and IDH1 wildtype

cohorts (Figure 3C, left). Notably, the C2 NUSAP1+ glioma cell

subpopulation was exclusive to the IDH1 wildtype group. This

finding provides a starting point to explore the relationship between

the IDH1 mutant and wildtype groups. Additional bar graphs

illustrated the distribution of the three cell subpopulations across

different stages of the cell cycle (Figure 3C, right). nd to show the
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changes in cell percentages during different stages of trajectory

differentiation (Figure 3D). In state 1, the C0 MALAT1-expressing

glioma cells were the most prevalent. In state 2, C1 AKAP9-

expressing glioma cells dominated, while in state 3, C2 NUSAP1-

expressing glioma cells were the most abundant.

To gain further insights into glioma development, we

conducted additional trajectory analysis of the three cellular

subtypes using monoclonal techniques (Figure 3E). The three

cellular subtypes displayed a continuous distribution along the

pseudotemporal trajectory, eventually diverging at a branching

point. The trajectory commenced in the upper right quadrant and

advanced to the differentiation point designated as state 1. At this

point, the lineage split: one branch continued caudally,

corresponding with state 3, while the other moved leftward,

aligning with state 2. Chronologically, the C1 AKAP9+ glioma

cell subpopulation appears to represent the early stage of

tumorigenesis. As tumorigenesis progresses, this subpopulation

differentiates into other subtypes, eventually becoming C0

DOCK5+ or C2 NUSAP+ glioma cells. We identified the genes

associated with the three cellular subpopulations and mapped their

dynamic trajectories using pseudo-time series scatter plots, UMAP

plots, and pseudo-scatter plots. The analysis revealed that the C1

cell subset, marked by the AKAP9 gene, was predominantly present
FIGURE 4

Slingshot analysis of the pseudotime trajectories of glioma cell subpopulations (A) UMAP plot demonstrating the change of Lineage1 with the fitted temporal
order; (B) UMAP plot demonstrating the differentiation trajectory of Lineage1 on the fitted temporal order (right). (C) GO- BP enrichment analysis
demonstrating the biological processes corresponding to the proposed chronological trajectory of glioma cell subpopulations. (D) Scatterplot demonstrating
the trajectories of the named genes of the three cell subpopulations of glioma cell subpopulations obtained after slingshot visualization.
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early in the temporal sequence, while the C2 subset, characterized

by the NUSAP1 gene, was more prevalent towards the end of the

pseudotemporal series (Figure 3F).

3.4 Slingshot Analysis of Pseudotemporal Trajectories of

Glioma Cell Subpopulations

We further analyzed the differentiation trajectories of the three

glioma cell subpopulations (C0 to C2) using the slingshot

method. These subpopulations were consistently distributed

along the temporal axis, forming a lineage (Figure 4A). Spectrum

1 illustrates the progression from C1 to C0, followed by a shift to C2

(Figure 4B). To understand the biological mechanisms underlying

these pseudotemporal trajectories, We conducted enrichment

analysis for GO-BP. The C1 subpopulation was associated with

processes like polymerization and microtubule dynamics. C2 was

linked to signaling mediation and immune responses, while C3 was

connected to pyrimidine metabolism, and C4 to mitotic processes

(Figure 4C). Scatter plots illustrated the distribution of different cell

subpopulations along Spectrum 1, highlighting their unique

differentiation patterns over pseudotime (Figure 4D).
3.4 CellChat analysis of cell-cell
interactions and PTN signaling
pathway visualization

To better understand complex cellular responses, we aimed to

explore intercellular dynamics and ligand-receptor communication

networks. Using CellChat analysis, we constructed intercellular

communication networks involving various cell types, such as

glioma subpopulations, oligodendrocytes, myeloid cells,

astrocytes, smooth muscle cells, and vascular cells. We quantified

interaction frequencies by measuring connection thickness and

assessed interaction intensities based on line weights (Figure 5A).

To investigate the coordination of various cell populations and

signaling pathways, we used CellChat’s non-negative matrix

decomposition technique for pattern recognition. Our analysis

revealed communication patterns connecting cell populations as

either signal transmitters (outbound) or recipients (inbound).

Using CellChat’s gene expression tool, we further explored these

cellular interactions and signaling pathways. We first linked

hypothesized communication patterns to secretory cell cohorts to

clarify efferent signaling modalities. Then, we correlated these

patterns with secretory cell populations. We identified three

communication modes, each associated with a specific cell type:

mode 1 (glioma subpopulations), mode 2 (vascular endothelial

cells), and mode 3 (oligodendrocytes and myeloid cells)

(Figure 5B). For glioma efferent signaling, mode 1 was

characterized by pathways such as PTN and NCAM. In contrast,

glioma afferent signaling mainly involved mode 1 communication

patterns, including pathways like VEGF, PTN, and JAM

(Figure 5D). Employing CellChat ’s pattern recognition

methodology, we quantitatively analyzed the ligand-receptor

interactions within gliomas to pinpoint key signaling pathways

associated with the three cell subtypes. In gliomas, each cell
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variant functions as both a sender and receiver in the

communication network, releasing various cytokines or ligands

and responding to signals from other cells (Figure 5C).

We created a heatmap to visualize the intensity of afferent and

efferent signals across all cell interactions, specifically focusing on

participation in the PTN signaling pathway (Figure 5E). Utilizing a

centrality measurement algorithm, we classified cell types according

to their roles as mediators and influencers in intercellular

communication. The Glioma C2 subset, characterized by NUSAP

expression, was identified as a pivotal player in the PTN signaling

cascade. Additionally, we found that the NCAM signaling pathway,

involved in cell adhesion, and the VEGF pathway, associated with

angiogenesis, were particularly prominent in the C1 AKAP9+

Glioma subpopulation (Figure 5F). Violin plots highlight cellular

interactions, showing the NUSAP+ Glioma subpopulation in the C2

group with elevated activity in the PTN signaling cascade. In

contrast, the AKAP9+ Glioma subset in the C1 group was

notably involved in the NCAM and VEGF signaling pathways

(Figure 5G). We identified all eight cell types within glioma

tissues as origins of the PTN signaling cascade. The three glioma

subtypes, along with other cell types, were considered potential

targets, highlighting their correlations within the PTN signaling

pathway in a hierarchical plot. The findings suggest that, except for

myeloid cells, oligodendrocytes, and vascular endothelial cells

(VECs), various cell types act as signaling mediators within the

PTN cascade. A heatmap displaying the complex network of cell-

cell interactions is shown in Figures 5I, H.
3.5 Development and validation of a
prognostic model

To assess the clinical significance of the identified cell types, we

performed a univariate Cox analysis on the top 100 marker genes

within the C2 NUSAP+ Glioma subgroup. This analysis revealed three

genes—RPA3, TUBA1C, and NUDT1—that are associated with

patient outcomes (Figure 6A). To address multicollinearity within

the gene pool, we used lasso regression to refine the selection,

identifying three key genes crucial to the NUSAP+ Glioma scoring

system. Lambda plots validated the robustness of this gene subset

(Figure 6B). Patients were categorized into two groups based on their

expression levels of the selected genes: high and low NUSAP+ Glioma

score groups. Survival analysis indicated that individuals in the low

NUSAP+ Glioma score group experienced superior survival outcomes

compared to those in the high NUSAP+ Glioma score group

(Figure 6C). Survival analysis was conducted for the three genes that

make up the NUSAP+ Glioma score model (Figure 6D). The results

consistently demonstrated that elevated expression levels correlated

with poorer survival, whereas reduced expression levels were associated

with improved prognostic outcomes, thereby affirming their role as risk

factors. The NUSAP+ Glioma score for each patient in the TCGA-

GBM cohort was determined by integrating gene expression levels with

their corresponding regression coefficients. Subsequently, patients were
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FIGURE 5

CellChat results presentation (A) Circle plot showing the number (left) and strength (right) of interactions between all cells. (B) Heatmap showing
pattern recognition of outcoming cells in all cells (left), and pattern recognition of incoming cells (right). (C) outcoming contribution bubble plots
and incoming contribution bubble plots showing the expression of cellular communication patterns between each cell subpopulation and other
cells in the glioma cell subpopulation. (D) Mulberry diagram showing cellular communication patterns between all cells. Top: incoming Mulberry
diagram, bottom: outcoming Mulberry diagram. (E) Heatmap showing afferent and efferent signal intensities of all cell interactions. (F) Heatmap
showing PTN, NCAM, and VEGF signaling pathway network centrality scores. (G) Violin diagram of cellular interactions in the PTN, NCAM, and VEGF
signaling pathways. (H) Hierarchical diagram of glioma cell subpopulations interacting with other cells in the PTN signaling pathway. (I) Interaction of
cells in the PTN signaling pathway shown by heatmap.
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categorized into high and low score groups based on the median value.

A higher NUSAP+ Glioma score was associated with reduced survival

times. Expression levels of the three genes in the model are depicted in

Figure 6E. Correlation analysis revealed an inverse relationship

between overall survival (OS) and both the NUSAP+ Glioma score

and the three genes. These relationships are visually represented in

scatter plots (Figure 6F). ROC curves were utilized to evaluate the
Frontiers in Immunology 12
predictive accuracy of the NUSAP+ Glioma score for 1-year, 3-year,

and 5-year survival, yielding AUC values of 0.579, 0.792, and 0.625,

respectively (Figure 6G). Scatter plots displayed the genetic factors

correlated with NUSAP+ Glioma scores (Figure 6H), and Figure 6I

highlighted differences in gene expression levels between high and low

NUSAP+ Glioma score groups. Multifactorial Cox regression analysis

was performed to determine if the NUSAP+ Glioma score serves as an
FIGURE 6 (Continued)
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Modeling of prognosis associated with the C2 NUSAP+ glioma score (A) Forest plot showing univariate Cox analyses of the genes comprising the
C2 NUSAP+ glioma score. Null line HR=1, HR<1 protective factor, HR>1 risk factor. (B) The three genes comprising the C2 NUSAP+ glioma score
were screened by lasso regression (upper panel); Lambda plot of the genes comprising the C2 NUSAP+ glioma score (lower panel). (C) Survival
analysis of the 3 genes screened for constituting the C2 NUSAP+ glioma score in the C2 NUSAP+ glioma high and low subgroups. (D) Survival
analysis plot for the 3 genes comprising the C2 NUSAP+ glioma high and low subgroups. (E) Curve plots showing risk scores for C2 NUSAP+ glioma
high and low subgroups (upper panel); scatter plots showing changes in survival status between C2 NUSAP+ glioma high and low subgroups
(middle panel); and heat maps showing gene expression in C2 NUSAP+ glioma high and low subgroups with color scales based on normalized data
(lower panel). Blue color indicates the C2 NUSAP+ glioma low subgroup and red color indicates the C2 NUSAP+ glioma high subgroup. (F)
Correlation analysis between C2 NUSAP+ glioma score, overall survival (OS), and genes used for modeling. Orange indicates a positive correlation,
blue indicates a negative correlation, and color shades indicate high or low correlation. (G) AUC scores at 1, 3, and 5 years are shown in ROC
plots.AUC (1 year): 0.579, AUC (3 years): 0.792, AUC (5 years): 0.625. (H) Scatterplot illustrating the correlation analysis of the genes comprising the
C2 NUSAP+ glioma score with the C2 NUSAP+ glioma score. (I) Peak and box plots illustrate the variations in the expression of the three genes
comprising the C2 NUSAP+ glioma score between the high and low score groups of C2 NUSAP+ glioma. (J) Combined plot predicting 1-, 3-, and
5-year overall survival (OS) based on age, C2 NUSAP+ glioma high and low score subgroups, and stage. (K) Forest plot displaying multivariate Cox
regression analysis of C2 NUSAP+ glioma score versus other clinical factors. In a null line, HR=1. An HR<1 is considered a protective factor, while an
HR>1 is seen as a risk factor. *p<0.05.
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independent prognostic factor. This analysis incorporated variables

such as age, race, T stage, N stage, M stage, and the NUSAP+ Glioma

score, revealing the latter as a significant independent predictor of

prognosis in glioma patients (p < 0.05) (Figure 6K). Additionally, a

column chart was generated to integrate clinical and pathological risk

factors with cell type characteristics, utilizing age, race, and T stage.

This chart provides an effective prediction of patient survival

probabilities at 1, 3, and 5 years (Figure 6J).
3.6 Immune infiltration differences
between high and low NUSAP+ Glioma
score groups

To investigate immune infiltration in gliomas and assess

differences in immune cell populations between high and low

NUSAP+ Glioma score groups, we utilized heatmaps to visualize

the variations in immune cell infiltration within each group

(Figure 7A). We next evaluated immune cell infiltration in glioma

patients by analyzing data from the TCGA repository using the

CIBERSORT computational tool. Heatmaps were employed to

display the distribution of 22 distinct immune cell types identified

in the samples (Figure 7B). Bar graphs were used to depict the

relationships between immune cell types and glioma subpopulation

markers. The NUSAP+ Glioma scores showed a positive correlation

with M0 macrophages, resting dendritic cells, and other immune

cells, whereas they were negatively correlated with activated NK

cells, monocytes, and additional cell types (Figure 7C). Various

methods of immune cell content assessment were used to compare

and summarize the associations between the three genes under

study and immune cells. These relationships were illustrated using

heatmaps, where positive correlations were represented in red and

negative correlations were depicted in blue (Figure 7D). Violin plots

demonstrated immune dysfunction and tumor rejection across both

high and low scoring groups, with a significantly elevated TIDE

score observed in the low scoring group compared to the high

scoring group (Figures 7E, F ). The expression of ADORA2A was

present in tumors from both groups, but it was notably lower in

the high NUSAP+ Glioma score group relative to the low

scoring group.
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3.7 Differential and enrichment analysis

To compare the high and low NUSAP+ Glioma score groups, we

employed volcano plots and heat maps to illustrate the expression

patterns of distinct genes in each group (Figures 8A, B). To investigate

the role of the C2 NUSAP+ Glioma subgroup in glioma pathogenesis,

we conducted functional enrichment analysis on genes that distinguish

these groups. Bubble plots presented the results of Gene Ontology (GO)

enrichment analysis, highlighting that these genes are primarily involved

in oligosaccharide binding, peptidoglycan binding, and pathways

associated with auditory receptor cell development (Figure 8D).

KEGG enrichment analysis, depicted in bar graphs, revealed

significant associations with pathways such as neuroactive ligand-

receptor interaction and the cAMP signaling pathway (Figure 8C).

Additionally, Gene Set Enrichment Analysis (GSEA) scores indicated

gene enrichment across various pathways, as shown inGO-BP-enriched

entries for differentially expressed genes (Figure 8E).
3.8 Mutation analysis

We analyzed and visualized gene mutations within the tumor

microenvironment (TME) to determine their correlation with

immune components across two cell cohorts. This analysis

revealed differences in the top 30 genes with the highest mutation

frequencies within these mesenchymal cell cohorts. The vertical bar

shows the mutation burden per sample, while the horizontal bar

indicates the overall mutation prevalence of each gene across the

samples (Figure 8F). No significant chromosomal copy number

variations (CNVs) were detected in the genes analyzed, as shown by

the lack of significant gains or losses in the CNV profile (Figure 8G).

Violin plots were employed to examine mutation burden variations

between high and low NUSAP+ Glioma score groups, revealing no

statistically significant differences (Figure 8H). However, scatter

plots showed a statistically significant correlation (P<0.05) between

mutation load and NUSAP+ Glioma scores (Figure 8I). Tumors

were classified into four categories based on mutation burden: high

NUSAP+ Glioma score with high TMB, high NUSAP+ Glioma

score with low TMB, low NUSAP+ Glioma score with high TMB,

and low NUSAP+ Glioma score with low TMB. Survival analysis
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revealed that the group with a low NUSAP+ Glioma score and high

TMB exhibited the most favorable survival outcomes, whereas the

group with a high NUSAP+ Glioma score and low TMB showed the

poorest prognosis (Figure 8J).
3.9 Drug sensitivity analysis

Violin plots were utilized to depict the differential responses to

various medications between high and low NUSAP+ Glioma score

groups, emphasizing variations in drug sensitivity (Figure 8K). The

IC50 value for Axitinib was elevated in the high NUSAP+ Glioma

score group relative to the low score group, indicating a decreased

drug responsiveness in the former.
3.10 Silencing NUSAP inhibits proliferation,
migration, and metastasis in glioma cells

In our investigation of NUSAP1’s influence on glioma, we

conducted NUSAP1 gene knockdown via transfection, with
Frontiers in Immunology 14
confirmation of transfection efficiency using RT-qPCR

(Supplementary Figure 2). Subsequently, colony formation assays

were performed on U251 and LN229 glioma cell lines in both the

negative control (NC) and si-NUSAP1 experimental groups

(Figure 9A). The results indicated that inhibition of NUSAP1 led

to reduced colony sizes in both U251 and LN229 cells, suggesting

that downregulation of NUSAP1 impedes glioma cell proliferation

(Figure 9B). To evaluate the effect of NUSAP1 on glioma cell

migration, scratch and transwell assays were conducted, as

depicted in Figure 9C. Our findings demonstrated a significant

decrease in the migratory potential of U251 and LN229 cells

following NUSAP1 knockdown (Figures 9D, E). Therefore, the

suppression of NUSAP1 showed inhibitory effects on both glioma

cell proliferation and migration, which were further validated using

the CCK-8 assay (Figures 9F, G).
4 Discussion

Glioma continues to be one of the most difficult cancers to

manage, as current treatment approaches have limited efficacy due
FIGURE 7

Differential Analysis of Immune Infiltration in High and Low Subgroups of C2 NUSAP+ Gliomas (A) Heatmap showing the expression of various immune
scores in high and low subgroups of C2 NUSAP+ gliomas. (B) Immune infiltration superimposed bar graph (upper panel); box-and-line plot showing the
expression of 22 immune cells in gliomas (lower panel). (C) Lollipop plot showing the correlation between immune cells and C2 NUSAP+ glioma scores. (D)
Correlation between immune cells and C2 NUSAP+ glioma score genes is shown as a bar graph with a heat map. *P ≤ 0.05, **P ≤ 0.01; ***P≤ 0.001
indicates a significant difference, and NS indicates a non-significant difference. (E) Violin plot showing the high and low TIDE values in the high and low
subgroups of C2 NUSAP+ gliomas. (F) Violin plots showing the expression of AODRA2A between different groups of C2 NUSAP+ gliomas. *p ≤ 0.05, **p ≤

0.01; ***p ≤ 0.001 indicates a significant difference, ns indicates a non-significant difference.
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to its aggressive behavior and intricate biological characteristics

(30–32). Despite advancements in oncology, the progress of

personalized medicine in glioma has been relatively slow,

largely due to the tumor’s heterogeneity and the intricate
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interplay of genetic mutations (24, 33). However, the advent of

single-cell technologies has the potential to revolutionize

personalized treatment for glioma. By enabling detailed

analysis of individual tumor cells, these technologies can uncover
FIGURE 8

illustrates enrichment analysis, mutation analysis, and drug sensitivity analysis among different groups. (A, B) Volcano and heatmap illustrating the
expression of various genes in the high and low C2 NUSAP+ glioma groups. (C) Enrichment results of various pathways are displayed in the KEGG
enrichment analysis of differentially expressed genes. (D) Bar graph illustrating the outcomes of all Gene Ontology (GO) enrichment analyses (GOBP,
GOCC, GOMF). (E) Enrichment scores of genes in various pathways are presented through GSEA scoring of GO-BP-enriched entries of differentially
expressed genes. (F) Mutation waterfall plot illustrating the variances in the top 30 most frequently mutated genes in the two groups of somatic
cells. The top column indicates the mutation load for each sample, and the right column indicates the total percentage of mutations in that gene in
those samples. (G) CNV status of the model gene. (H) Violin plots are used to display the difference in mutation load between the high and low
groupings of C2 NUSAP+ gliomas. (I) Scatter plot illustrating the correlation analysis of mutation load with C2 NUSAP+ glioma score. (J) Scoring is
based on tumor mutation load, divided into four groups: high-risk high mutation load group, high-risk low mutation load group, low-risk high
mutation load group, and low-risk low mutation load group. Curves showing the results of survival analysis for the four groups are presented. (K)
Box diagram showing drug sensitivity analysis.
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unique cellular subpopulations and molecular pathways driving

tumor growth and resistance to therapy (34, 35). This

detailed analysis not only deepens our comprehension of glioma
Frontiers in Immunology 16
biology but also aids in the creation of more targeted and

effective personalized therapies, potentially enhancing patient

outcomes (36, 37).
FIGURE 9

Silencing NUSAP1 Inhibits Proliferation, Migration and Metastasis while Promoting Apoptosis in Glioma Cells. (A) Colony formation assay was performed on
U251 and LN229 glioma cells in the NC and si-NUSAP1 groups. Smaller colonies were observed in the si-NUSAP1 group, indicating that NUSAP1 silencing
inhibits glioma cell proliferation. (B) Quantification of colony formation assay results showing a decrease in colony size in the si-NUSAP1 group compared to
the NC group. (C) Transwell assay demonstrated a decrease in the migration ability of U251 and LN229 cells in the si-NUSAP1 group compared to the NC
group. And scratch assay revealed a decrease in the migration ability of U251 and LN229 cells in the si-NUSAP1 group compared to the NC group. (D)
Quantification of scratch assay results showing a decrease in wound closure percentage in the si-NUSAP1 group compared to the NC group. (E)
Quantification of transwell assay results showing a decrease in the number of invading cells in the si-NUSAP1 group compared to the NC group. (F) CCK-8
assay further confirmed the inhibitory effect of NUSAP1 silencing on LN229 cells proliferation. (G) CCK-8 assay further confirmed the inhibitory effect of
NUSAP1 silencing on U251 cells proliferation. **p<0.01, ***p<0.001.
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In our research, single-nucleus RNA sequencing (snRNA-seq) was

conducted from nine glioma patients, uncovering the primary cell types

and their intricate heterogeneity throughout tumor progression (38).

This investigation provided an in-depth understanding of distinct

cellular subpopulations and highlighted the impact of IDH1

mutation status on the distribution of these subpopulations and

disease progression. Notably, we identified three major glioma cell

subpopulations (C0 MALAT1+, C1 AKAP9+, and C2 NUSAP1+),

which were highly correlated with tumor malignancy. Through

trajectory analysis and interaction network studies, we uncovered the

pivotal roles of these subpopulations in glioma progression and

therapeutic response (39, 40).

These findings offer critical molecular insights for the

development of personalized treatment strategies in glioma. For

example, integrating specific cellular subpopulations identified in

patient tumors with clinical prognosis could enhance the accuracy

of predicting therapeutic responses, thereby supporting the

formulation of individualized treatment plans (41). Moreover, the

identification of intercellular signaling pathways, such as PTN and

NCAM, and the specific gene expression patterns of NUSAP1 and

AKAP9, accelerates the discovery of therapeutic targets and the

development of novel drugs. Consequently, our study not only

charts new directions for personalized glioma treatment but also

presents an innovative approach to managing this highly

heterogeneous tumor (42).

In parallel, our research has shown significant potential in

advancing personalized treatment strategies for glioma,

particularly in the context of genetic interventions aimed at

modulating tumor progression. While NUSAP1 is recognized as

an oncogene in several cancers, its role in glioma remains

inadequately understood (43). Through NUSAP1 knockdown

experiments, we elucidated its pivotal role in regulating glioma

cell proliferation, migration, and distant metastasis. Both in vitro

and in vivo assays—such as colony formation, scratch wound

healing, transwell migration, and flow cytometry—demonstrated

that NUSAP1 silencing significantly suppressed malignant

behaviors of glioma cells and induced a marked increase in

apoptosis. These results further underscore NUSAP1’s potential

as a therapeutic target and lay the foundation for future precision

medicine approaches (36).

Prior research has established a correlation between elevated

NUSAP1 expression and adverse outcomes in various cancers,

including breast, lung, and prostate. Our findings extend this

knowledge to glioma, revealing similar mechanisms by which

NUSAP1 contributes to tumorigenesis. Given the genetic and

microenvironmental similarities between glioma and glioma,

these insights support the potential of targeting NUSAP1 in

glioma treatment (44, 45). By suppressing NUSAP1 expression,

more precise tumor control may be achieved in the context of

personalized therapy, offering better outcomes for patients (46).

Furthermore, with the rapid development of single-cell

technologies, researchers can now capture tumor heterogeneity

more accurately and identify key genes associated with tumor

progression. NUSAP1, as one of these genes, has demonstrated its
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broad role in malignancies. This single-cell-based approach not

only improves our understanding of tumor evolution but also

guides the design of personalized treatment regimens, providing

more precise and effective therapeutic options for patients across

various cancer types (47, 48).

In conclusion, our findings provide new insights into the

potential application of NUSAP1 in personalized glioma

treatment. Future research exploring the interactions between

NUSAP1 and other tumor-related genes may help develop more

effective therapeutic strategies, advancing the progress of

personalized medicine.
5 Conclusions

In conclusion, a thorough prognostic categorization and

immune evaluation of glioma patients can be effectively executed

through NUSAP1-linked methodologies. Furthermore, elevated

NUSAP1 levels indicate a diminished overall survival (OS)

expectation among glioma patients. These discoveries harbor

promising implications for enhancing glioma detection,

therapeutic strategies, and mechanistic investigations.
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SUPPLEMENTARY FIGURE 1

NUSAP1 gene transfection knock-down low efficiency verification.

Compared with untransfected cells, the mRNA level of NUSAP1 gene was
significantly decreased in the transfected knockdown group.

SUPPLEMENTARY FIGURE 2

The classification of GBM cells. According to the infer CNV results, we defined

cells with high CNV levels as GBM cells. Note: C2 NUSAP+ gliomas show
variations in drug sensitivities between high and low groups, as illustrated by

violin plots. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001 indicate a significant
difference, while “ns” indicates a non-significant difference. N: Differences

in drug sensitivities between high and low C2 NUSAP+glioma score groups

are illustrated through violin plots. *, p ≤ 0.05; **p ≤ 0.01; ***p≤ 0.001 indicate
a significant difference, and “ns” indicates a non-significant difference.
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