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Background: CD8+ T lymphocytes greatly affect the efficacy of immunotherapy,

displaying promising potential in various tumors. Here, we aimed to identify

immune subtypes associated with CD8+ T cell-related genes to predict the

efficacy of treatment in esophageal cancer (ESCA).

Methods: We obtained 13 immune cell-related datasets from the Gene

Expression Omnibus (GEO) database and removed batch effects. Weighted

correlation network analysis (WGCNA) and co-expression analysis were

performed to identify highly correlated CD8+ T cell genes. Cox analysis was

used to process ESCA clinical information, and the immune clusters (ICs) were

constructed through consensus cluster analysis. Furthermore, we constructed

an immune risk score model to predict the prognosis of ESCA based on these

CD8+ T cell genes. This model was verified using the IMvigor210 dataset, and we

functionally validated the immune risk score model in vitro.

Results: The results revealed significant correlations between CD8+ T cell-

related genes and immune-related pathways. Three ICs were identified in

ESCA, with IC3 demonstrating the most favorable prognosis. The final 6-gene

prognostic risk model exhibited stable predictive performance in datasets across

different platforms. Compared with that in normal esophageal epithelial (HEEC

cells), CHMP7 in the 6-gene prognostic risk model was upregulated in KYSE150

and TE-1 cells. Si-CHMP7 transfection led to a decrease in tumor cell migration,

invasion, and proliferation, accompanied by an accelerated apoptotic process.

Conclusions: Collectively, we identified the immune subtypes of CD8+ T cell-

related genes with different prognostic significance. We designated CHMP7 in
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the 6-gene prognostic risk model as a potential target to improve tumor cell

prognosis. These insights provide a strong basis for improving prognosis and

facilitating more personalized and accurate treatment decisions for the

immunotherapy of ESCA.
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1 Introduction

Esophageal cancer (ESCA) exhibits a poor prognosis and high

mortality rate, ranking seventh in terms of incidence and sixth in

mortality overall according to global cancer statistics in 2020 (1). The

incidence rate of ESCA is high in Africa, Southeast Asia (especially in

China), and South America (1). Successful treatment of early ESCA

can be achieved through endoscopic resection (2), while locally

advanced cases require surgery combined with radiotherapy and

chemotherapy (3). Late diagnosis is a common issue, with

approximately 70–80% of resected specimens in North America

showing metastases in regional lymph nodes (4). To improve the

overall survival of advanced or metastatic ESCA, which currently has

a median survival of less than one year (5), new treatments for ESCA

are urgently needed.

Immune checkpoint blockers (ICBs), programmed cell death

protein 1 (PD-1)/programmed cell death ligand 1(PD-L1)

antibodies (trastuzumab, ramucirumab, and pembrolizumab),

have been effective in enhancing the survival of patients with

ESCA. However, PD-L1 expression has been observed in only

about 40% of patients with ESCA (6). A more comprehensive

understanding of the heterogeneity of the immune response is

essential for selecting the most suitable immunotherapy for ESCA.

Existing studies have analyzed transcriptomics, epigenetics, and

immunohistochemistry data of ESCA, leading to the identification

of subtypes of ESCA related to the prognosis of patients (7, 8). Xie Y

et al. used unsupervised learning to identify immune subtypes (ISs)

of ESCA in publicly available data, revealing the potential for

targeted immunotherapy based on different ISs (9). Further

studies have shown that increased PD-L1 expression in ESCA

correlates with a decrease in the number of tumor-infiltrating

lymphocytes (10). The primary manifestation of lymphopenia is

observed in CD8+ T cells, leading to diminished patient survival

rates (11). Hence, we aimed to explore the relationship between

CD8+ T cells and ESCA immunotherapy.

In this study, we selected CD8+ T cell-related genes from the

immune cell data set. Subsequently, we used the single-sample gene

set enrichment analysis (ssGSEA) method to evaluate immune

characteristics based on the CD8+ T cell-related genes and

classified ESCA into different ISs through ConsensusClusterPlus.

Finally, the ESCA risk model was constructed based on CD8+ T cell

genes and verified using the immunotherapy dataset IMvigor210.
02
2 Materials and methods

2.1 Data source and processing

The gene expression profile, tumor mutation burden (TMB),

and clinical follow-up information data of the 160 ESCA cancer

samples were downloaded from The Cancer Genome Atlas (TCGA)

database (https://portal.gdc.cancer.gov). The validation cohort (n =

70) was obtained from the GEO database (GSE54993). The clinical

characteristics of TCGA-ESCA and GSE54993 are presented in

Table 1 and Supplementary Table S1, and TCGA training and

validation sets are shown in Supplementary Table S2. The

IMvigor210 cohort containing transcriptome data was

downloaded from the website (http://research‐pub.gene.com/

IMvigor210CoreBiologies). The immune cell-related datasets were

derived from the NCBI Gene Expression Omnibus (GEO) data

portal (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi), including

GSE13906, GSE23371, GSE27291, GSE27838, GSE28490,

GSE28726, GSE37750, GSE39889, GSE42058, GSE49910,

GSE59237, GSE6863, and GSE8059. These datasets included gene

expression data for 14 immune cells (Supplementary Table S3). The

data were processed using the “RMA” function in the R package

“affy” (12), followed by the application of the function

“removeBatchEffect” in the R package “limma” (13). The flow

chart of this article is shown in Figure 1.
2.2 Analytical methods

The WGCNA (14) package in R software was applied to

construct an immune-related gene co-expression network to

identify significant gene modules. The clusterProfiler (15) package

in R software was used to implement the Kyoto Encyclopedia of

Gene and Genomes (KEGG) pathway and gene ontology (GO)

analysis. The ConsensusClusterPlus (16) package in R software was

used for consensus cluster analysis to determine the number of

subtypes in ESCA samples. The rationality of clustering was verified

through the resampling method. We finally determined the optimal

number of clusters by considering the cumulative distribution

function (CDF) and delta region graphs. The ssGSEA method

was performed to quantify the infiltration levels of immune cell

types, functions, and pathways in the cancer samples, using the
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GSVA package (17) in R software. Additionally, the Cell-type

Identification by Estimating Relative Subsets of RNA Transcripts

(CIBERSORT) algorithm was applied to explore the infiltration

degrees of 22 immune cell types in esophageal carcinoma (18). The

microenvironment cell populations counter (MCPcounter) analysis

method was used to determine the level of tumor-infiltrating

immune cells with the MCPcount package (19) in R software

(20). The correlation analysis used the corr.test() function in R,

when adjust=“bonferroni”, output the validated P value.
Frontiers in Immunology 03
2.3 Construction and validation of a
prognostic risk model

The tumor immune dysfunction and exclusion (TIDE) score

was computed online (http://tide.dfci.harvard.edu/). The two main

mechanisms of tumor immune evasion were the induction of T cell

dysfunction in tumors with high cytotoxic T lymphocyte (CTL)

infiltration, and the prevention of T cell infiltration in tumors with

low CTL levels. Identify genes that affect cytotoxic T cell function on

patient survival outcomes based on immune escape mechanisms.

The z-score for each gene was the interaction coefficient d divided

by its standard error. The accessible data from patients in GSE78220

treated with immunotherapies was used to predict the clinical

response using the subclass mapping method. Additionally, the

Genomics of Drug Sensitivity in Cancer (GDSC; https://

www.cancerrxgene.org/) was used to predict the efficacy of the

three subtypes with chemotherapeutic drugs. The univariate Cox

regression analysis was used to screen for prognostic differential

genes with a significance level of p<0.05, employing the “coxph”

function of the “survival” package in R. Subsequently, a multivariate

Cox regression analysis, utilizing stepwise regression in our study,

was applied to further select significant genes using the “stepAIC”

function of MASS package (21) in R. This process started with the

most complex model and then successively deleted variables to

reduce AIC based on AIC Akaike information guidelines. The

Kaplan–Meier survival curve was used to analyze the survival

difference between the low- and high-risk groups using the

“survminer” R package. The predictive accuracy of the risk model

was evaluated using the “timeROC” package in R. The “timeROC”

package had a built-in function, when adjusted=TRUE, output the

validated P value (22). TIMER2.0 (http://timer.cistrome.org/) was

used to explore the correlation of CHMP7 with immune invasion in

esophageal cancer.
2.4 Cell culture

Normal esophageal epithelial (HEEC cells) and ESCA

(KYSE150 and TE-1 cells) cell lines were purchased from the cell

bank of the Chinese Academy of Sciences (Shanghai, China). They

were cultured in RPMI1640 medium containing 10% FBS and 1%

penicillin-streptomycin, maintained in a humidified incubator

containing 5% CO2 at 37°C. For each experiment, cells in the

logarithmic phase were used.
2.5 Cell transfection

We used Lipofectamine2000 (Invitrogen, USA) to transfect

CHMP7-siRNA (Si-CHMP7#1: GGAGGTGTATCGTCTGTAT;

Si-CHMP7#2: CAAGGTCTCTCCAGTCAAT; Si-CHMP7#3:

GAGTGAACAGCTTCTCTCA); pcDNA3.1-CHMP7(RiboBio,

China) and NC-siRNA (RiboBio, China) into cells. The

transfection efficiency was assessed using RT-qPCR 48 h

after transfection.
TABLE 1 Detail clinical pathological features for TCGA-ESCA and
GSE54993 cohorts.

Clinical Features TCGA-ESCA GSE54993

OS

0 97 34

1 63 36

T Stage

T1 25 4

T2 41 2

T3 87 64

T4 5

TX 2

N Stage

N0 64 32

N1 70 24

N2 9 11

N3 5 3

NX 12

M Stage

M0 128 70

M1 15

MX 17

Stage

I 16 5

II 71 29

III 55 36

IV 14

X 4

Gender

Male 137 57

Female 23 13

Age

≤ 60 82 44

>60 78 26
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2.6 RT-qPCR

The cells were collected, and the total RNA was extracted using

Trizol (Invitrogen, USA). Subsequently, 1 µg of total RNA was

reverse transcribed into cDNA using the HiScript II Q RT SuperMix

for qPCR kit (Vazyme, China). RT-qPCR reaction was conducted

on different samples using the Taq Pro Universal SYBR qPCR

Master Mix kit (Vazyme) for a total of 40 cycles. The reaction

conditions included a 95°C initial denaturation for 10 s, followed by

30 s at 10°C, using the QuantStudio5 real-time fluorescence

quantitative PCR detection system. The sequences of all primers

are listed in Table 2.
2.7 Scratch test

When the cell fusion degree reached 90%, a straight line was

drawn in the cell petri dish with the 1000 µl pipette. It was rinsed

with PBS, and 1640 medium containing 2% FBS was added. Images

under the microscope were observed and captured at 0 and 24 h.
2.8 Transwell assay

The cells were collected, and 300 µl serum-free medium was

added to the upper chamber with matrix glue. Medium containing

10% FBS was added to the lower chamber, with 50,000 cells in each
Frontiers in Immunology 04
well. After 24 h of culture, the medium was discarded, and the cells

were fixed with 4% paraformaldehyde for 30 min. They were stained

with 2% crystal violet for 10 min, followed by rinsing with PBS

several times, drying, observing under a microscope, and capturing

the images.
2.9 CCK8 assay

After collecting cells, 1000 cells were added to each well of four

96-well plates. At 0, 24, 48, and 72 h after cell attachment, 10 ml of
CCK8 reagent was added. After 4 h of incubation, the OD value was

measured using an enzyme labeling instrument. The daily OD

values were compared with the OD value obtained at 0 h, and the

curve was obtained to evaluate the cell proliferation rate.
2.10 Western blot analysis

The total cell protein was extracted, and the protein

concentration was determined. The protein was separated using

10% SDS-PAGE and transferred to a PVDF membrane. After 2 h of

incubation at room temperature, diluted antibody was added and

allowed to incubate overnight at 4°C. Following the removal of the

primary antibody and washing the next day, the corresponding

secondary antibody was added and incubated at room temperature

for 1 h. The protein band images were captured using a gel imaging
FIGURE 1

Technology roadmap of this study.
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system with ECL, and ImageJ was used for quantitative analysis.

The protein indicators tested were BCL2 (Proteintech, China), BAX

(Proteintech), and b-actin (Proteintech).
2.11 Statistical analysis

The statistical analysis was primarily conducted using the R

programming language. The chi-squared test was used to compare

differences between groups for categorical variables. For non-

normally distributed variables, the Wilcoxon rank-sum test was

conducted. ANOVA and Kruskal–Wallis test were selected for

comparing more than two groups. The log-rank test was

performed to evaluate the statistical differences in overall survival

among different groups in the Kaplan–Meier survival analysis. The

statistical significance was set at p<0.05 or p<0.01.
3 Results

3.1 Identification of marker genes for CD8
+ T cells

Given the expression of CD8+ T cells may influence the survival

of esophageal carcinoma patients, we investigated the CD8+ T cell-

related prognosis in esophageal carcinoma. Thirteen immune cell

datasets were merged to form a single dataset with batch effects

eliminated. Data before and after normalization were explored

using principal component analysis (PCA). The transition from

scattered datasets to a mixed state indicated the successful

application of the “removeBatchEffect” function (Figure 2A, B).

Following the normalization of the gene expression profile,

hierarchical clustering was performed on samples based on the

179 expression profile data of the immune cell datasets (Figure 2C).

The Pearson correlation coefficient was then used to calculate the

distance between each gene. Using the aforementioned WGCNA

method, we constructed a scale-free network with a determined soft

threshold of 9 (Figure 2D), resulting in the identification of 13 gene

modules (Figure 2E). The grey module comprised genes that could

not be aggregated into other modules. We further analyzed the

correlations between each module and immune cells (Figure 2F).
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The results indicated that the purple module, containing 346 genes,

was the most positively correlated with CD8+ T cells and had little

correlation with other immune cells. The genes of all the modules

are listed in Supplementary Table S2.

Subsequently, we performed functional enrichment analysis on

CD8+ T cell-related genes belonging to the purple module. For GO

analysis, 103 biological processes (BP) showed significant

differences (FDR<0.05; Supplementary Table S3), with the top ten

BP displayed in Supplementary Figure S1A. Eight cellular

components (CC) demonstrated significant differential

enr i chment (FDR<0 .05 ; Supp lementary Figure S1B ,

Supplementary Table S3), and 12 molecular function (MF)

signatures were significantly differentially enriched (FDR<0.05;

Supplementary Table S3), with the top ten presented in

Supplementary Figure S1C. In KEGG analysis, eight pathways

were s ignificant ly di fferentia l ly enriched (FDR<0.05;

Supplementary Figure S1D, Supplementary Table S3). The

findings suggested that these genes were closely related to

immune functions and pathways.
3.2 Molecular subtyping based on CD8+ T
cell-related genes

We conducted univariate analysis separately on genes related to

CD8+ T cells in TCGA-ESCA and GSE54993 datasets. The results

revealed 16 and 41 genes related to prognosis in TCGA

(Supplementary Table S4) and GSE54993 (Supplementary Table

S5), respectively. Only two genes were common to both cohorts

(Figure 3A), indicating limited consistency in CD8+ T cell-related

genes among datasets of different platforms. Therefore, we selected

55 CD8+ T cell-related genes, identified as prognostic genes in two

datasets, for further analysis (p<0.05).

We applied consensus clustering to categorize 160 patients from

TCGA-ESCA cohort. The clustering results remained relatively stable

with three clusters (Figure 3B). We selected k = 3 as the optimal

number, leading to three CD8+ T cell-related immune clusters (ICs;

Figure 3C, Supplementary Table S6). Analyzing the prognostic

signature of these three subtypes revealed significant differences

(Figure 3D), with IC2 displaying the poorest outcomes and IC3

demonstrating generally favorable outcomes. Similar results were
TABLE 2 Sequences of all primers.

Genes Primer Sequences (5’-3’)

GAPDH Sense GGTGGTCTCCTGTGACTTCAA

Antisense CCACCCTGTTGCTGTAGCC

PIK3R1 Sense TGGAAGCAGCAACCGAAACAAAG

Antisense CCACCACTACAGAGCAGGCATAG

RCAN3 Sense GCGAATAGAACTCCACGAAACAGAC

Antisense GCGGCAGGAGATAGGACTTGTC

CHMP7 Sense TGAAGCCTCTCAAGTGGACTCTTTC

Antisense GATACAGACGATACACCTCCTCAGC
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observed in the GSE54993 cohort (Figure 3E, Supplementary Table

S7), suggesting the transplantability of the three molecular subtypes

based on CD8+ T cell-related genes across different cohorts.

We compared the distribution of various clinical features

(survival events, TNM stages, stage, age, and gender) among the

three immune subtypes in TCGA-ESCA cohort to investigate the
Frontiers in Immunology 06
differences among them during analysis. The results indicated a

significant difference in the proportion of T stages among the three

subtypes, with the IC2 group having the highest proportion of T3,

indicating a poor prognosis. No other significant clinical differences

were observed among the three immune subtypes (Supplementary

Figure S2A-G).
FIGURE 2

Identification of the marker genes of CD8+ T cells in ESCA (A) PCA scatter plot of immune datasets before removing batch effects. (B) PCA scatter
plot of immune datasets after removing batch effects. (C) Cluster analysis on 179 expression profiles of immune cell dataset. (D) Analysis of network
topology for various soft-thresholding powers. (E) Gene dendrogram and corresponding module colors. (F) Correlation heatmap of 13 modules and
various clinical phenotypes.
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3.3 Comparative genomic profiling of
immune subtypes

No significant difference was observed in TMB and the number

of mutated genes among the three subgroups (Supplementary

Figure S3A, B). Furthermore, we screened 1224 genes with a

mutation frequency greater than three (Supplementary Table S8).

Then, 124 genes with high mutation frequency in each subtype were

identified (p<0.05; Supplementary Table S9). The mutation

signatures of the top 15 genes are depicted in the mutation

heatmap in Figure 4A.

Previous research has suggested that chemokines play a pivotal

role in tumorigenesis and tumor development (23). Chemokines

can attract various immune cells into the tumor microenvironment,

providing T cells access to the tumor and influencing both tumor

immunity and therapeutic effects. In this study, we analyzed

whether there were differences in the expression distribution of

chemokines among immune subtypes based on TCGA-ESCA

cohort. Thirty-eight out of 41 chemokines significantly differed in

expression among subtypes (Figure 4B), indicating variations in the

level of immune cell infiltration among different immune subtypes.
Frontiers in Immunology 07
These differences could contribute to distinctions in tumor

progression and immunotherapy efficacy. Additionally, the

expression of chemokine receptor genes was compared, and 15

out of 18 (83.88%) significantly differed among immune

subtypes (Figure 4C).

CD8+ T cells in the tumor microenvironment can produce

interferon-g (IFN-g), which stimulates the upregulation of PD-1/

PD-L1 and IDO1 (24). We obtained the Th1/IFN-g gene signatures
from previous research (25) and calculated the IFN-g score of each
patient using the ssGSEA method. We found significant differences

among immune subtypes in IFN-g scores. IC3 subtype exhibited a

relatively high IFN-g score, whereas the opposite trend was observed

for IC1 and IC2 groups (Figure 4D). Moreover, intra-tumoral

immune T cell lysis activity was assessed using the average of

GZMA and PRF1 expression values, according to a previous study

(26). Significant differences were observed among the three subgroups

(Figure 4E). IC1 and IC2 exhibited relatively lower immune T cell

lysis activity, whereas IC3 displayed the opposite trend.

Similarly, the angiogenesis score of each patient was evaluated

based on an angiogenesis-related dataset derived from a previous

study (27). The results suggested that different immune subtypes
FIGURE 3

Immune cluster in ESCA (A) Intersectional Venn diagram of CD8+ T cell-related genes with significant prognosis in two cohorts (TCGA and GEO). (B)
CDF curve and CDF Delta area curve of consensus clustering in TCGA cohort. The CDF Delta area curve indicates the relative change in the area
under the CDF curve for each category number k compared with that for k-1. (C) Sample clustering heatmap when consensus k = 3. (D) Kaplan–
Meier survival curve of the three immune subtypes in TCGA cohort. (E) Kaplan–Meier survival curve of the three immune subtypes in the
GSE54993 cohort.
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differed in angiogenesis score, with IC2 and IC3 exhibiting higher

scores than IC1 (Figure 4F). Moreover, we obtained 47 immune

checkpoint-related genes from prior research, and a significant

difference was observed in 41 genes (Figure 4G) through further
Frontiers in Immunology 08
exploration. Immune checkpoint-related genes such as LAG3,

CTLA4, PDCD1, PDCD1LG2, and IDO1 were highly expressed in

IC3. These results indicated that different subgroups may exhibit

varying responses to immunotherapy.
FIGURE 4

Comparison of mutational analysis of ESCA immune subtypes (A) Mutational landscape of the top 15 significantly mutated genes in samples of
various immune subtypes. (B, C) Distribution of expression levels of chemokines and chemokine receptors across three immune subtypes in TCGA
cohort, respectively. (D–F) Distribution of IFN-g score, immune T cell lysis activity, and angiogenesis score in three ICs, respectively. (G) Differences
in the expression levels of immune checkpoint genes in TCGA cohort. The significance was statistically tested through ANOVA analysis; *p<0.05,
**p<0.01, ***p<0.001, ****p<0.0001. ns, no significance.
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3.4 Immune and pathway signatures in
different immunotypes

The CIBERSORT method was used to evaluate the infiltration

scores of 22 immune cells in each TCGA-ESCA dataset sample.

Overall, significant differences in immune signatures were observed
Frontiers in Immunology 09
among different subgroups. Additionally, CD8+ T cells, resting

memory CD4+ T cells, and M0, M1, and M2 macrophages were

highly expressed in each subtype, suggesting their potential role in

ESCA (Figure 5A, B). By analyzing the differences in ten oncogenic

pathways proposed in a previous study (28), six pathways were found

to be significantly different between immune subtypes (Figure 5C).
FIGURE 5

Immune and pathway signatures in different immune subtypes (A) Proportion of 22 immune cells in samples of different subtypes. (B) Differences in
22 immune cell components among different immune subgroups. (C) Comparison of enrichment scores of ten oncogenic pathways among immune
subtypes. (D) Difference in immune infiltration scores among different subgroups. (F) Comparison of our molecular subtypes with the previous six
pan-cancer immune subtypes. (F) Kaplan–Meier survival curve of the six pan-cancer immune subtypes. *p<0.05, **p<0.01, ***p<0.001,
****p<0.0001. ns, no significance.
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Subsequently, the immune infiltration analysis revealed that IC3

exhibited the highest immune microenvironment infiltration score,

whereas IC1 had the lowest score (Figure 5D). Moreover, most of the

immune checkpoint-related genes had the highest expression in IC3,

possibly contributing to the favorable outcome of IC3.

To explore the relationship between our immune subtypes and

the six pan-cancer immunotypes studied previously, we collected

the data of molecular subtypes from previous research (29) for

comparison. Our subgroups significantly differed from the six

immunophenotype groups in the previous study (Figure 5E, F).

The three subtypes we defined could serve as a supplement to the

existing six subtypes.
3.5 Comparative response of immune
subtypes to immunotherapy
or chemotherapy

Here, we applied the TIDE software to evaluate the potential

clinical effects of immunotherapy. In TCGA dataset, the TIDE score

of IC1 or IC3 was significantly higher than that of IC2 (Figure 6A),

suggesting that immunotherapy had a greater impact on IC2 than

on IC1 or IC3. The predictive T cell dysfunction scores of IC1 were

relatively lower, whereas those of IC3 were higher (Figure 6B).

However, for the predictive T cell rejection scores, the score of IC1

was significantly higher than that of IC3 (Figure 6C), potentially

explaining why IC1 exhibited a poor prognosis while IC3

demonstrated a better outcome.

Subsequently, the subclass mapping method was applied to

compare the similarity of the three defined subtypes with patients

treated with immunotherapy from the available dataset, GSE78220.

A lower p-value indicated a higher similarity. The IC3 subtype

showed similarity to anti-PD-1 non-resistance (anti-PD-1 NR) in

TCGA dataset (Figure 6D), indicating that the IC3 group patients

were more likely to respond to anti-PD-1 agents.

We investigated the sensitivity of different subtypes to

conventional chemotherapy drugs using the same approach. A

lower IC50 value indicated a higher sensitivity. The results

revealed that IC1 was more sensitive than other subtypes to these

chemotherapeutic drugs (Figure 6E-I).
3.6 Construction and validation of a
prognostic risk model based on CD8+ T
cell-related genes

Ninety-six samples were eventually included in the training

cohort, and 64 samples were included in the validation cohort, with

the clinicopathological characteristics of patients listed in Table 3.

The grouped results were tested for rationality, and no significant

difference existed between them (p>0.05). By applying univariate

Cox regression on the training set, we identified ten genes with

prognostic significance (p<0.05; Supplementary Table S10). Based

on multivariate Cox regression, six genes were selected to construct

a prognostic risk model to avoid overfitting (Figure 7A).
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The following six genes were selected: CHMP7, DNAJB1,

KLRB1, PIK3R1, RCAN3, and RNF157. The coefficients of these

genes were -0.691, 0.550, 0.638, -0.314, -0.829, and 0.273,

respectively. Ultimately, the complete risk score was calculated

using the following formula: Risk score = (-0.691 * gene

expression value of CHMP7) + (-0.550 * gene expression value of

DNAJB1) + (-0.638 * gene expression value of KLRB1) + (-0.314 *

gene expression value of PIK3R1) + (-0.829 * gene expression value

of RCAN3) + (0.273 * gene expression value of RNF157).

We determined the risk score of each sample derived from TCGA

training set based on their gene expression level and plotted the risk

score distribution. The distribution showed that the risk scores and

mortality of the sample in the low-risk cohort were lower than those

in the high-risk cohort (Figure 7B). A time-dependent ROC analysis

was conducted to assess the predictive power of the 6-gene-based

model. The area under the curve (AUC) of 1-, 2-, and 3-year

predictions were 0.83, 0.87, and 0.81, respectively, indicating the

high prognostic diagnostic competence of the 6-gene signature

(Figure 7C). Additionally, the Kaplan–Meier plots indicated that

the overall survival probability in the low-risk group was significantly

better than that in the high-risk group (p<0.0001; Figure 7D).

Based on the risk score formula, similar results were obtained using

the aforementioned validation methods on TCGA validation cohort

(Supplementary Figure S4A-C). Furthermore, the conclusion drawn

from the entire TCGA-ESCA cohort suggested these six genes were

prognostic for ESCA and that the 6-gene-based model was effective

(Supplementary Figure S4D-F). To further examine the extrapolation

capability of the 6-gene-based model to external populations, we

validated its predictive power using the independent validation

cohort, GSE54993 (Supplementary Figure S4G-I).
3.7 Correlation between risk score model
and clinical features

When comparing the distribution of risk scores in TCGA-ESCA

dataset among different groups based on clinical features (age,

gender, TNM stage, and stage), the results indicated the

following: (1) Significant differences were observed in terms of

risk scores among the different N staging groups and immune

subtypes (p<0.05). The risk score increased with a higher N stage.

Particularly, the IC2 subtype, associated with the worst prognosis in

various subtypes, exhibited the highest risk score, whereas the IC3

subtype, associated with the best prognosis, showed the opposite

trend. (2) Additionally, no significant differences in risk scores were

observed among the different groups based on the clinical

characteristics (Figure 8A-G).

To identify the 6-gene signature as an independent prognostic

factor for clinical features, both univariate and multivariate Cox

regression were performed. The results from the univariable

analysis indicated that the risk type was of prognostic

significance, with a hazard ratio (95% CI) of 2.89 (1.71, 4.89) and

p<0.0001 (Figure 8H). Similarly, the corresponding hazard ratio

(95% CI) in the multivariable analysis was 2.36 (1.71, 4.89; p =

0.006; Figure 8I), suggesting that the risk type was significantly
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related to survival. Overall, these results revealed the independent

prognostic value of the 6-gene-based risk type for patients

with ESCA.
3.8 Efficacy prediction of immunotherapy
using our risk model

Currently, constrained by the lack of effective biomarkers for

predicting the clinical benefits of immunotherapy, the identification
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of new predictive biomarkers is essential for advancing precision

immunotherapy. The immunotherapy dataset (Imvigor210) was used

to explore whether the 6-gene model can predict the efficacy of

immunotherapy. The Kaplan–Meier curve showed that in metastatic

urothelial carcinoma (mUC) patients treated with immunotherapy,

higher risk scores corresponded to worse survival rates (Figure 9A).

The AUC curves indicated the AUC of our risk model was greater

than that of previously published signatures, including TMB and

immunogenic neoantigen (NEO; Figure 9B). The high- and low-risk

groups were assigned as previously mentioned. Significant differences
FIGURE 6

Differences in TIDE scores and therapeutic treatments in immune subtypes (A–C) Differences in TIDE, T cell dysfunction, and T cell rejection scores
among different immune subtypes of TCGA dataset, respectively. (D) TCGA submap analysis revealed that IC3 could be more sensitive to anti-PD-1
(Bonferroni-corrected p<0.05). (E–I) Box plots of the estimated IC50 for cisplatin, erlotinib, sorafenib, paclitaxel, and crizotinib, respectively. *p<0.05,
**p<0.01, ***p<0.001, ****p<0.0001. ns, no significance.
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between the two groups were observed in responders and non-

responders to immunotherapy (Figure 9C). The MCPcounter

analysis method was applied to calculate the immune-cell

infiltrating level, followed by determining the correlation between

the risk score and TMB, NEO, and immune cells. The results

suggested a negative correlation between the risk score and

immune cell score (Figure 9D).

Additionally, we compared the differences in the risk scores

among different groups and found significant differences in risk
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scores among the effectiveness of immunotherapy groups. However,

no significant difference in risk score was observed among other

immune characteristics grouping, including immune cells, tumor

cells, and immunophenotypic grouping (Figure 9E-H).
3.9 Effect of CHMP7 on phenotype and
apoptosis in ESCA cells

Based on the aforementioned results, we can conclude that the 6-

gene prognostic risk model exhibits a strong ability to predict

prognostic risk. Further analysis of the related genes in the 6-gene

prognostic risk model revealed that PIK3R1, RCAN3, and CHMP7

were associated with poor prognosis in patients with ESCA.

Subsequently, we conducted RT-qPCR analysis, revealing that only

CHMP7 was overexpressed in both TE-1 and KYSE150 cells

(Figure 10A). Given that upregulated genes are easier to

manipulate than downregulated genes in biological and therapeutic

systems, we focused on the function of CHMP7 in ESCA. After the

transfection of Si-CHMP7 into TE-1 and KYSE150 cells to inhibit its

expression (Supplementary Figure S5A, B), we observed a significant

inhibition in terms of cell migration, invasion, and proliferation

(Figure 10B-F). Western blot analysis indicated a downregulation

of BCL2 and an upregulation of BAX (Figure 10G). In addition, we

upregulated the expression of CHMP7 in esophageal cancer cells by

transfecting overexpressing plasmids (Supplementary Figure S5C, D),

and subsequently observed a significant increase in cell proliferation

(Figure 10H). At the same time, in order to further explore the

relevant mechanism of CHMP7 regulating tumor growth, we also

obtained the signaling pathways that interact with CHMP7 through

online analysis software (https://www.genecards.org/) (Table 4).

From these findings, we infer that CHMP7 possesses the ability to

influence the phenotype and apoptosis of ESCA cells.
3.10 Correlation of CHMP7 with
immune invasion

Further investigating the role of CHMP7 in immune invasion of

esophageal cancer, we ultimately found a positive correlation with

Treg cells (0.393;p=4.97e-08; Figure 11A) and CD8+ T cells (0.147;

p=4.97e-2; Figure 11B), when CHMP7 was analyzed for correlation

with different immune cells. Subsequent analysis showed that

CHMP7 was negatively correlated with naive CD8+ Tcells

(-0.124; p=4.01e-03; Figure 11C) and positively correlated with

central memory CD8+ Tcells (0.154; P=3.89e-02; Figure 11D). In

addition, CHMP7 was not significantly correlated with effector

memory CD8+ Tcells (-0.003; P=9.73e-01). It indicating that

CHMP7 may interact with immune cells to affect the occurrence

and development of esophageal cancer.
4 Discussion

To enhance the treatment effect and prognosis of ESCA

patients, we investigated the role of CD8+ T cells in treatment
TABLE 3 Details of TCGA training and validation sets.

Clinical
Features

TCGA-
ESCA train

TCGA-
ESCA test

P

OS

0 53 44 0.1206

1 43 20

T Stage

T1 17 8 0.4644

T2 22 19

T3 51 36

T4 4 1

TX 2 0

N Stage

N0 39 25 0.9841

N1 41 29

N2 5 4

N3 3 2

NX 8 4

M Stage

M0 82 46 0.1053

M1 7 8

MX 7 10

Stage

I 11 5 0.1148

II 45 26

III 33 22

IV 7 7

X 0 4

Gender

Male 80 57 0.4342

Female 16 7

Age

≤ 60 50 32 0.9228

>60 46 32
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response and its predictive value for prognosis in the present study.

The evidence supporting the role of the CD8+ T cell subset in tumor

control is compelling (30). A high number of CD8+ T cells could

indicate a good clinical prognosis for most tumors, whereas it

correlated with a poor prognosis in a small number of tumors

such as melanoma (31, 32). There was a correlation between pre-

treatment infiltrating CD8+ T cell numbers and the response to PD-

1 blockade (33). These findings indicate the vital role of CD8+ T

cells in anti-tumor immunotherapy. However, multiple immune

escape mechanisms and the complex tumor microenvironment
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inhibit the anti-tumor effect of CD8+ T cells (34). Thus, studying

the regulation of CD8+ T cells and the mechanism of killing tumor

cells is crucial to improving the immunotherapy effect of ESCA. We

identified marker genes related to CD8+ T cells in ESCA,

constructed molecular subtypes based on these marker genes, and

successfully constructed a prognostic risk model, which holds

clinical significance.

In this study, the clustering of CD8+ T cell-related genes

revealed significant differences in the immune characteristics of

ESCA, providing new treatment ideas. Thorsson V et al.
FIGURE 7

Construction of the prognostic risk score model (A) Forest diagram of multivariate Cox analysis showed six prognostic immune-related genes.
(B) Distribution of risk score, survival time, and expression of six genes for each patient in the training cohort. (C) ROC curve based on the 6-gene
signature for 1-, 2-, and 3-year OS predictions in TCGA training cohort. (D) Kaplan–Meier survival curve based on the risk score of the 6-gene
signature in TCGA training cohort. *p<0.05, **p<0.01, ***p<0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1512230
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2025.1512230
implemented a pan-cancer classification identifying six immune

subtypes: wound healing, IFN-g dominant, inflammatory,

lymphocyte depleted, immunologically quiet, and TGF-b
dominant. These subtypes might play a critical role in predicting

disease outcomes, as opposed to relying solely on features specific to

individual cancer types (29). Two main strategies exist for

improving anti-tumor immunity in ESCA: those designed to

increase the initiation of tumor-killing immune responses (e.g.,

vaccination and adoptive T cell therapies) and those aimed at
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rescuing existing anti-tumor immune responses suppressed in

tumors (e.g., immune checkpoint blockade) (35). In recent

preclinical studies, neoantigen-targeted cancer vaccines have

shown anti-tumor efficacy against ESCA, but clinical trials are

limited (36). In a clinical trial involving ten patients with

recurrent ESCA who received MAGEA4 with TCR-T cell transfer,

seven patients exhibited tumor progression within 2 months after

treatment. Three patients with minimal tumor lesions at baseline

survived for over 27 months (37). Some immune checkpoint
FIGURE 8

Correlation between risk score model and clinical features (A–G) Comparison of the distribution of risk score among T stage, N stage, M stage,
stage, immune cluster, gender, and age grouping, respectively. (H) Univariate Cox analysis showed that the risk type and clinical features, including N
stage, M stage, and stage, were significantly related to OS in TCGA cohort. (I) Multivariate Cox analysis demonstrated that the 6-gene signature was
an independent prognostic factor in TCGA-ESCA cohort.
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inhibitors have achieved promising results in ESCA patients, but

others have caused serious adverse events (38, 39). These results

indicate that the existing ESCA immune subtypes may not

sufficiently predict immunotherapy response. Compared with the
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six subtypes identified in the previous study, three new immune

subtypes of ESCA were identified in our study.

The subtype analysis of ESCA revealed distinct patterns of

chemokines and immune checkpoint genes. IC2 displayed the
FIGURE 9

Efficacy prediction of immunotherapy using our risk model (A) Kaplan–Meier survival curve based on the 6-gene model in the Imvigor210 dataset.
(B) ROC curve of the Imvigor210 dataset was used to evaluate the predictive value of the risk model based on the 6-gene signature for
immunotherapy efficacy, compared with NEO and TMB. (C) Stacked graphs of the proportion of clinical response statuses (CR, complete response;
PR, partial response; PD, progressive disease; SD, stable disease) to immunotherapy in high- and low-risk groups of the Imvigor210 dataset.
(D) Correlations between the risk score and immune cells, TMB, and NEO in the Imvigor210 dataset. (E–H) Differences in risk scores among different
immunotherapy clinical response statuses, immune cell levels, tumor cell levels, and immune phenotypes, respectively. *p<0.05. ns, no significance.
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poorest survival, whereas IC3 demonstrated the best survival. The

IFN-g score in the IC3 subgroup was higher than that of other

groups. CD8+ T cells in the tumor microenvironment can produce

IFN-g, stimulating the upregulation of PD-1/PD-L1 and IDO1 (40).

IDO1, an immune checkpoint-related gene, is positively correlated

with poor prognosis and tumor progression and metastasis (41).
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Activation of the aryl hydrocarbon receptor (AhR) by the IDO1

product kynurenine (KYN) through the metabolic pathway led to

the generation of immune-tolerant dendritic and regulatory T cells,

resulting in immune cell dysfunction (42, 43). We observed that

IDO1, LAG3, CTLA4, PDCD1, PDCD1LG2, and other immune

checkpoint-related genes were highly expressed in IC3, indicating
FIGURE 10

CHMP7 can affect the phenotype and apoptosis process of ESCA cells (A) Expression of CHMP7, PIK3R1, and RCAN3 in TE-1 and KYSE150 cells.
(B) After transfection of Si-CHMP7, the cell proliferation ability of TE-1 and KYSE150 cells was evaluated. (C–F) After transfection of Si-CHMP7, the
migration and invasion ability of TE-1 and KYSE150 cells was evaluated. (G) Expression of apoptosis-related proteins after Si-CHMP7 transfection.
(H) Assessment of cell proliferation activity after overexpressing CHMP7 *p<0.05, **p<0.01, ***p<0.001 vs. HEEC; #p<0.05, #p<0.01, ###p<0.001,
####p<0.0001 vs. NC. ns, no significance.
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that IC3 may respond favorably to ICBs. Additionally, IC3

exhibited the highest immune T cell lysis activity. Cytolytic

(CYT) activity was associated with counter-regulatory immune

responses and improved prognosis, as evaluated using the average

expression levels of GZMA and PRF1 (26). CYT serves as a new

immunotherapy biomarker indicative of anti-tumor immune

activity involving cytotoxic T cells and macrophages (44).
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Approximately 63% of ESCA patients expressed MAGEA4,

contributing to tumor cell lysis when recognized by cytolytic T

lymphocytes (45). Moreover, significant differences in the

expression of genes related to chemokines, chemokine receptors,

and angiogenesis scores were observed among the three subtypes,

with IC3 exhibiting the highest expression. Chemokines and

chemokine receptors can mediate T cell infiltration into tumors,

influencing tumor immunity and therapeutic effects (46).

Lymphotoxin-a (LT-a) secreted by activated T cells promotes

abnormal angiogenesis of head and neck squamous cell

carcinoma through the NF-kB pathway (47). Both approaches

were beneficial in increasing the number of tumor-infiltrating T

cells, and chemokines were implicated in inducing angiogenesis and

lymphangiogenesis (48, 49). These findings collectively support the

notion that IC3 maintains high immune activity, suggesting a

favorable response to immunotherapy.

Furthermore, these immune subgroups exhibit diverse immune

and pathway characteristics. Immune cell groups, including CD8+

T cells, resting memory CD4+ T cells, and M0, M1, and M2

macrophages were significantly highly expressed in ESCA.

Multivariate analysis indicated that CD8+ T cell infiltration was

an independent prognostic factor, and the presence of CD8+ T cell

infiltration in ESCA was identified as a favorable prognostic factor

(50). Animal studies have shown that blocking the CCL2-CCR2 axis

greatly reduces the incidence of tumors by hindering the

recruitment of tumor-associated macrophages. M2 macrophage

polarization led to immune evasion and tumor promotion

through the PD-1 signaling pathway (51). Consistent with these

results, IC3 exhibited a higher proportion of CD8+ T cells and a

lower proportion of macrophages. Among the ten oncogenic

signaling pathways, six showed significant differences in various

subtypes, indicating variations in infiltrating immune cell

components, tumorigenesis, and distinct escape mechanisms (52).

We examined the correlation between immune subtypes and

the response to immunotherapy and chemotherapy. The IC1

subtype exhibited greater sensitivity to chemotherapy drugs

(cisplatin, erlotinib, sorafenib, paclitaxel, and crizotinib).

Moreover, the IC3 subtype demonstrated similarity to anti-PD-1

NR, suggesting a more favorable immunotherapy effect. Studies

have shown that innate anti-PD-1 resistance weakens the effect of

PD-1/PD-L1 inhibitors in melanoma (53). However, despite the

TIDE score, IC3 demonstrated the least benefit from

immunotherapy. Upon further comparing the differences between

T cell dysfunction and exclusion scores, we found that IC3 exhibited

lower T cell exclusion scores, potentially contributing to the better

prognosis of IC3. Immunosuppressive factors may impede T cells

from infiltrating tumors (54). Studies have indicated that tumor-

intrinsic Wnt/b-catenin pathway activation primarily causes T cell

exclusion, resulting in non-T cell inflammation in the tumor

microenvironment in melanoma (55). These findings provide a

strong basis for ESCA patients who opt for systemic treatment

options. Additionally, there was no significant difference in the

number of mutant genes among the three subtypes.

We successfully constructed an ESCA risk model based on

CD8+ T cell-related genes, comparing clinical characteristics and

molecular subtypes between groups with high and low scores. The
TABLE 4 Signal pathways related to CHMP7.

GENE_ID Reactome pathways

CHMP7

Autophagy

Budding and maturation of HIV virion

Cell Cycle

Cell Cycle, Mitotic

Disease

Early SARS-CoV-2 Infection Events

Endosomal Sorting Complex Required For
Transport (ESCRT)

HCMV Infection

HCMV Late Events

HIV Infection

HIV Life Cycle

Infectious disease

Late endosomal microautophagy

Late Phase of HIV Life Cycle

M Phase

Macroautophagy

Membrane Trafficking

Mitotic Anaphase

Mitotic Metaphase and Anaphase

Nuclear Envelope (NE) Reassembly

Programmed Cell Death

Pyroptosis

Regulated Necrosis

SARS-CoV Infections

SARS-CoV-1 Infection

SARS-CoV-2 Infection

Sealing of the nuclear envelope (NE) by
ESCRT-III

Translation of Replicase and Assembly of the
Replication Transcription Complex

Translation of Replicase and Assembly of the
Replication Transcription Complex

Vesicle-mediated transport

Viral Infection Pathways
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IC3 subtype, associated with the best prognosis, exhibited a lower

risk score. In the N stage, higher risk scores were observed in the late

stage, with the IC2 subtype associated with the worst prognosis

having the highest risk score. Conversely, the IC3 subtype with a

lower risk score demonstrated the best prognosis. The 6-gene

signature model was independent in clinical applications. Single-

factor Cox regression analysis identified the RiskScore model, and

multi-factor Cox regression analysis found that RiskType (hazard

ratio = 2.36, 95% CI = 1.27–4.35, p = 0.006) significantly correlated

with survival. These results validate the predictive performance and

clinical application value of our 6-gene signature model. A negative

correlation was observed between risk score and immune cell

scores. Significant differences were noted in the effectiveness of

risk score and immunotherapy groups as well as differences between

risk score and tumor cells.

Finally, we identified six gene signatures; PIK3R1, RCAN3, and

CHMP7 were negatively correlated with the prognosis of patients

with ESCA, whereas DNAJB1, KLRB1, and RNF157 showed positive

correlations. We selected the genes PIK3R1, RCAN3, and CHMP7,

negatively associated with prognosis, for further investigation. The

experimental results of RT-qPCR indicated that compared with that

in HEEC cells, only CHMP7 was upregulated in both KYSE150 and

TE-1 cells. Furthermore, upon knocking down the expression of

CHMP7, we observed reduced migration, invasion, and

proliferation of ESCA cells, along with an accelerated apoptosis

process. Therefore, we posit that CHMP7 serves not only as a risk

factor associated with the immune index but also as a potential

molecular target for immunotherapy in ESCA.
5 Conclusion

In this study, we identified three immune subtypes of ESCA

based on CD8+ T cell-related genes, established a 6-gene model

associated with prognosis, and conducted in vitro functional
Frontiers in Immunology 18
experiments to identify CHMP7 as a prognostic potential

biomarker. Overall, our research contributes valuable insights for

personalized ESCA treatment.
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