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Background: The exploration of genetic signatures within the ovarian cancer

(OC) tumor microenvironment (TME) remains limited. M2-like tumor-associated

macrophages (M2-like TAMs) are pivotal in OC progression and therapy. This

study aims to establish a novel prognostic signature and identify M2-like TAM-

related biomarkers in OC using RNAseq-based transcriptome analysis.

Methods: Prognostic M2-like TAM-related genes were identified through

univariate Cox regression, consensus clustering, and LASSO regression.

Immune landscape analysis was conducted to assess immune cell composition

and immune checkpoint genes in high- and low-risk groups. Subsequently, in

vitro cell experiments and OC cohorts were performed.

Results:Gene set enrichment analysis revealed that GNA15 is involved in immune

responses like leukocyte transendothelial migration and FcgR-mediated

phagocytosis. GNA15 was up-regulated in cisplatin-resistant OC cells, and its

in vitro down-regulation decreased cell proliferation. An eight-gene prognostic

model, including M2-like TAM-related genes, independently predicted poor

outcomes in OC. GNA15 emerged as a hub gene positively correlated with

M2-like TAMs infiltration, predicting unfavorable outcomes across OC cohorts.
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Moreover, GNA15 expression correlated positively with CD163 expression,

suggesting its role in macrophage polarization.

Conclusion: GNA15 plays an immunosuppressive role in OC progression linked

to M2-like TAMs polarization and stands as a potential prognostic marker in OC.
KEYWORDS

ovarian carcinoma, cancer microenvironment, tumor-associated macrophages,
prognostic model, GNA15
Background

Ovarian cancer (OC) is the leading cause of reproductive

cancer-related deaths in women globally (1). Its aggressive nature

results in a low early detection rate, with 60%-70% of patients

diagnosed at advanced stages (2). Treatment typically involves

surgery combined with chemotherapy, and targeted therapies, yet

resistance to chemotherapy remains a significant challenge leading

to treatment failures. Given the modest gains in survival rates with

conventional therapies, there is increasing interest in exploring

immunotherapy as a viable treatment strategy. Thus,

understanding the tumor-immune interactions and identifying

novel therapeutic targets are critical for improving ovarian

cancer outcomes.

The tumor microenvironment (TME) comprises a complex

network involving tumor cells, immune cells, stromal elements,

and various signaling molecules such as cytokines and chemokines.

Extensive research has highlighted the TME’s role in tumorigenesis,

cancer progression, and treatment resistance (3–5). Tumors can

modulate the microenvironment to promote growth, metastasis, or

evade therapies (6, 7). Moreover, the TME plays a pivotal role in

regulating immune responses in cancer, influencing both tumor

suppression and progression (8).

Among the key players in the TME are tumor-associated

macrophages (TAMs), which are highly plastic immune cells within

the tumor microenvironment, capable of adopting distinct M1 or M2

phenotypes in response to local signals (9, 10). M1-type macrophages

exert anti-tumor effects, while M2-type macrophages can promote

tumor progression by enhancing proliferation and invasion (11, 12).

The interactions between TAMs, tumor cells, stromal cells, and

endothelial cells are pivotal in reshaping the TME, thereby

facilitating tumor growth, immune evasion, and metastasis (13, 14).

Due to the dual polarization of TAMs, with distinct pro-tumor (M2)

and anti-tumor (M1) phenotypes, modulating their polarization

presents a promising therapeutic strategy for cancer treatment.

Guanine nucleotide-binding protein subunit alpha-15 (GNA15)

was characterized as one of the hub genes most associated with M2-

like TAMs infiltration in OC. It has been reported that GNA15

mediates a non-classical G protein-coupled receptor (GPCR)

signaling pathway that, through CD312, promotes a suppressive

TME in the onset and progression of pediatric acute lymphoblastic
02
leukemia (15). In macrophages, genetic deletion of GNA15 almost

completely blocked C5a-induced Ca2+ transients, but chemotaxis

and cell spreading were preserved (16). These findings offer insights

into the expression and function of the GNA15 gene in

macrophages, indicating that it may play a crucial role in

macrophage signal transduction and cellular behavior. Previous

studies have also highlighted the involvement of GNA15 in various

tumor types such as liver cancer, pancreatic adenocarcinoma, acute

myeloid leukemia, and ovarian cancer (17–21). Moreover, GNA15

has been implicated in the TME in pancreatic cancer and melanoma

(22, 23). Despite its involvement in other cancers, GNA15’s role in

the OC microenvironment remains poorly understood.

Our study aims to investigate the association between GNA15

and M2-like TAMs in OC. We developed a prognostic model based

on M2-like TAMs to predict OC patient survival rates and have

conducted comparative analyses of immune landscapes across

different risk groups.
Materials and methods

Dataset acquisition and preprocessing

This study included patients from five OC cohorts namely

GSE65986, GSE3149, GSE63885, GSE140082 as well as TCGA-OC.

Gene expression data, corresponding clinical and survival information

of ovarian cancer were download from the Genomic Data Commons

(GDC, https://portal.gdc.cancer.gov/) and Gene Expression Omnibus

(GEO) dataset (https://www.ncbi.nlm.nih.gov/geo/). The mRNA-

seq data were converted to TPM (transcripts per million) values and

normalized by log2(x+1) for following analyses.
Obtainment of prognostic M2-like TAM-
related genes

To identify genes strongly associated with M2 macrophage

infiltration, we employed the R WGCNA package to construct

mRNA co-expression networks based on TCGA-OC gene

expression data (24). Initially, a similarity matrix was generated

by calculating the Pearson correlation coefficient between each pair
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of genes, following transformed to an adjacency matrix by

WGCNA. By selecting a soft thresholding power (b=5) and

setting a network merge height of 0.25 to combine similar gene

modules, a total of 31 gene modules were obtained. Subsequently,

the gene module including 113 hub genes that showed the highest

correlation with M2-like TAM infiltration was extracted for further

analysis by performing Pearson’s correlation analysis. Finally, we

verified 18 M2-like TAM-related genes with prognostic value using

univariate Cox regression analysis on the 113 hub genes.
Consensus clustering analysis based on
M2-like TAM infiltration

We performed consensus clustering based on the 18 prognostic

M2-like TAM-related genes using R Consensus Cluster Plus

package (25) for TCGA-OC datasets. According to the cluster

consensus value, the optimal K value was set as 2 and the

pheatmap tool in R was used to create the cluster map.
Functional enrichment analysis, immune
cell infiltration analysis and genomic
mutations analysis between two clusters

We screened the differentially expressed genes (DEGs)

between C1 and C2 subgroups using the limma package in R

software. Kyoto Encyclopedia of Genes and Genomes (KEGG)

analyses were conducted to explore the biological pathway of the

DEGs. Then, Gene Set Enrichment Analysis (GSEA, https://

www.gsea-msigdb.org/) was performed to analyze functional

pathways enriched between C1 and C2 subgroups. Pathways with

a P value <0.05 and a false discovery rate <0.25 were considered

significantly enriched pathways. To identify differences in the

immune landscape between C1 and C2 subgroups, we loaded the

expression data of TCGA-OC into CIBERSORT (https://

cibersort.stanford.edu/). To compare the genomic mutations

between two clusters, OC somatic mutation data were obtained

from the TCGA Genomic Data Commons Data Portal. The

Maftools package in R software was used to visualize the

mutations between C1 and C2 subgroups.
Development and verification of the M2-
like TAM-related prognostic model

Totally, 18 prognostic M2-like TAM-related genes were

identified. Least absolute shrinkage and selection operator (LASSO)

regression analyses and tenfold cross-validation was used to

determine the penalty regularization parameter lambda to develop

an eight M2-like TAM -related genes (ALOX5AP, CCR1, GNA15,

IL2RG, ITGAM, LPXN, MSR1, and PDCD1LG2) prognostic model.

Based on the best lambda values and the corresponding coefficients,

the riskscore of each patient was calculated by using the score formula

as follows: Riskscore=(0.1245)*ALOX5AP+(-0.1815)*CCR1

+(0.1256)*GNA15+(-0.1901)*IL2RG+(0.0947)*ITGAM+(-0.0654)
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*LPXN+(0.1384)*MSR1+(-0.1126)*PDCD1LG2. Then, patients were

divided into low- and high-risk groups based on the optimal cutoff of

the riskscore. To compare the overall survival (OS) time between high

and low-risk groups, we conducted Kaplan-Meier analysis and the

log-rank test. To further validate the prognostic model, GSE140082

was select as the validation cohort to evaluate the M2-like TAM-

related prognostic model constructed based on TCGA database.
Expression of GNA15 in normal and
tumor samples

Gene Expression Profiling Interactive Analysis 2 (GEPIA2) is

an online tool for analyzing RNA-sequencing expression data

between normal and tumor samples (26). Here, we compared

GNA15 expression in 33 types of tumor by GEPIA2.
TIMER 2.0 analysis

The association between GNA15 expression and the M2-like

TAM infiltration or M2 macrophages gene markers expression was

explored by Tumor Immune Estimation Resource 2.0 (TIMER 2.0;

http://timer.comp-genomics.org/), which is a valuable tool that can

systematically evaluates the infiltration of various immune

cells (27).
In vitro cell experiments

IOSE80, SKOV3, TOV112D, MDAH2774, OVCAR5 and

OVCAR8 cell lines (ATCC, USA) were used for in vitro

experiments. In addition, A2780-cis and SKOV3-cis were

cisplatin-resistant cell lines (ATCC, USA) for validation of

GNA15 involved in drug resistance. All cells were cultured in

RPMI 1640 medium containing 10% FBS at 37°C with 5% CO2.

ShRNA-mediated knockout is a transcriptional-level gene

suppression, while the gRNA-guided CRISPR/Cas9 system is

typically used for permanent gene knockout by introducing

mutations or deletions. To ensure the reliability of the

experimental data following gene knockout, we used both shRNA

and gRNA-guided CRISPR/Cas9 methods to knockout the GNA15

gene. GNA15 was knocked down using both shRNA and CRISPR/

Cas9. The sequences for Sh2, Sh3, and gRNA were as follows:

CCTCGCATTGTTTGGGACTAT, CCATTGTTTCGAGAAC

GTGAT, and CGATCACGTTCTCGAAACAA, respectively. The

Cell Counting Kit-8 (Boster, China) was used to assess cell

proliferation according to the manufacturer’s instructions.
Clinical sample collection

In this study, 60 OC and 30 normal ovarian paraffin embedded

samples, 12 OC and 9 normal control samples (fresh tissue) from

2003 to 2017 were collected. The sample collection procedure and

further studies were approved by the institutional review board.
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Patient clinicopathologic information, including age, clinical stage,

and follow-up data were extracted from the electronic clinical

information system database. Hematoxylin and eosin and

immunohistochemistry (IHC) slides were reviewed by the

gynecological pathologist (F.Z.) and the pathologic diagnosis was

confirmed. The pathological diagnosis for all patients is high-grade

serous carcinoma. Subsequently, IHC and Quantitative real-time

PCR (qRT-PCR) were performed on these samples. All experiments

were conducted following the guidelines and instructions approved

by the manufacturer.
IHC

Paraffin sections (4-µm) were stained with the antibodies using the

2-step Envision method according to the manufacturer’s instructions

and visualized using 3-diaminobenzidine tetrachloride (Sigma, St

Louis, MO). Antibodies against GNA15 (1:350 dilution; NBP2-

16557, Novus), CD163 (1:100 dilution, Gene, China) were used in

this study. The detection kit was obtained from Dako Corporation

(Glostrup, Denmark). The negative control entailed the use of the

same non-specific IgG but omitting the primary antibody. Positive

cells were indicated by the presence of yellow to brown DAB staining

in the nucleus or cytoplasm. GNA15 and CD163 expression were

quantified in IHC by evaluating both the staining intensity and the

percentage of positively stained cells. Staining intensity was scored as

none, weak, moderate, or strong, and the percentage of positive cells

was estimated. The score was then calculated by multiplying the

staining intensity with the percentage of positive cells, providing a

semi-quantitative measure of protein expression.
qRT-PCR

The expression level of GNA15 was evaluated by qRT-PCR.

TRIzol reagent (15596018, Invitrogen) was used to extract total

RNA. The integrity and fragment size of the extracted RNA were

assessed through 1% agarose gel electrophoresis. Additionally, the

quality of the extracted RNA was measured using NanoDrop 2000

(Thermo Scientific, USA). qRT-PCR was performed to detect

GNA15 mRNA expression in cancer cell lines and fresh cancer

tissues. Primers sequences of GNA15 and GAPDH were as follows:

GAPDH, TTCACCACCATGGAGAAGGC and GGCATGG

ACTGTGGTCATGA; and GNA15, CCCTGGTTCAAAAGC

ACATCCG and AACCTCTTGGCTGCCTCAGCAT, respectively.
Statistical analysis

Kaplan-Meier analysis and log-rank tests were conducted to

compare survival differences between different subgroups.

Multivariate and univariate cox regression analyses were applied

to identify prognostic factors. Correlation analysis between GNA15

and other factors were conducted using Pearson or Spearman

correlation analyses. All statistical analyses were conducted using

R software. P<0.05 was considered statistically significant.
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Results

Identification of prognostic M2-like TAM-
related genes by WGCNA in OC

Totally, 22 kinds of immune cell infiltration were calculated by

the CIBERSORT algorithm based on TCGA-OC datasets. Kaplan–

Meier analyses showed that high M2 macrophage infiltration

indicated a poor prognosis (Figure 1A). Based on the results, we

performed WGCNA to detect the modules related to M2

macrophage infiltration. A soft threshold power of b = 5 (scale-

free R2 = 0.90) was selected to build a scale-free network

(Supplementary Figures S1A–E). As a result, 31 modules were

generated by WGCNA. Among all the modules, the darkmagenta

module was the most significantly related to M2 macrophages

according to correlation analysis (correlation = 0.21, P<0.001,

Figure 1B). Then, univariate cox regression analyses identified 18

prognostic M2-like TAM-related genes from the darkmagenta

module (Figure 1C).
Consensus clustering based on prognostic
M2-like TAM-related genes and following
pathway analysis

Two clusters were identified by R Consensus Cluster Plus package

for Consensus Clustering in TCGA-OC dataset based on the 18

prognostic M2-like TAM-related genes: Cluster1 (222 cases) and

Cluster2 (151 cases) (Figure 1D). A total of 123 DEGs were

visualized with the R package “heatmap” and the volcano maps

(Figures 1E, F). Compared to Cluster1, Cluster2 showed a

significantly worse prognosis (log-rank P<0.0001, Figure 2A). KEGG

showed that DEGs between Cluster1 and Cluster2 were mainly

enriched in Cytokine-cytokine receptor interaction, Osteoclast

differentiation, Phagosome, B cell receptor signaling pathway, Toll-

like receptor signaling pathway and Fc epsilon RI signaling pathway

(Figure 2B). GSEA results showed that immune related pathways were

mainly enriched in Cluster2 (Figure 2C). Accordingly, the infiltration

of M2 macrophage is significantly higher while infiltration of B cells

naive, plasma cells, T cells CD8, T cells CD4 memory activated and T

cells follicular helper is significantly lower in Cluster2 than that in

Cluster1 (Figures 2D–F). In addition, somatic mutations analysis

showed that mutations frequency in Cluster2 is significantly higher

than that in Cluster1 (Figures 3A, B).
Construction of prognostic model based
on prognostic M2-like TAM-related genes

A LASSO analysis was performed to develop a prognostic

model, and an 8-M2-like TAM-related gene signature was

established (Figures 4A, B). Based on the optimal cut-off of

riskscores, the patients were classified into the high and low-risk

groups. Kaplan-Meier analysis showed that patients in the high-risk

group had a worse prognosis than that in the low-risk group

(Figure 4C). Furthermore, GSE140082 was used as the
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independent cohort and verified the reliability of the prognostic

model (Figure 4D). Using the riskscore from our prognostic

signature along with other clinicopathological factors, we

developed a nomogram to provide a more comprehensive

prediction of patient survival (Figure 4E).
High-and low-risk groups exhibit different
immune cell infiltration and immune
gene expression

To explore the underlying immune-related factors difference

between high- and low-risk groups, we compared immune cell
Frontiers in Immunology 05
infiltration and immune gene expression in the two groups.

Compared to the low-risk group, the high-risk group exhibited

significantly higher M2-like TAM infiltration (Figure 5A).

Accordingly, the low-risk group had marked increased expression of

immune checkpoint genes than the high-risk group (Figures 5B, C).
High GNA15 expression contributes poor
OC prognosis

GNA15 was characterized as one of the hub genes most

associated with M2-like TAM infiltration in OC, compared to the

other genes. In addition, differential gene expression analysis of the
FIGURE 1

Identification of prognostic M2-like TAMs related genes. (A) Kaplan–Meier analysis showing the correlations between M2-like TAMs infiltration and
overall survival (OS) in TCGA OC cohorts. Patients were grouped into “high” or “low” groups based on the median CIBERSORT-based M2
macrophages score. (B) Weighted correlation network analysis (WGCNA) identifies M2-like TAMs infiltration correlated modules. (C) Univariate COX
regression analysis for the 18 genes associated with the infiltration of M2 macrophages. (D) Consensus clustering showed that 2 clusters were most
stable. (E) Heatmap plot exhibiting the up-regulated and down-regulated genes in OC tissues between Cluster1 and Cluster2. (F) Volcano plot
showing differential expressed genes in two clusters.
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GSE33482 database, profiling cisplatin resistance in OC, revealed

GNA15 as a differentially expressed gene linked to drug resistance

through the intersection of 1598 drug resistance-related DEGs and 18

M2-like TAM-related genes (Figures 6A, B). qRT-PCR confirmed

GNA15 upregulation in cisplatin-resistant cells (Figures 6C, D).

To further investigate the function of GNA15 in OC, we

analyzed data from both the TCGA dataset and the GEPIA tool.

Our analysis revealed that GNA15 expression was elevated in 10 out

of 33 cancer types compared to normal samples (Supplementary

Figure S2A). Notably, GNA15 expression was significantly higher in

OC than in normal tissues (P<0.0001) (Figure 7A) and exhibited

high sensitivity (Figure 7B).

To further verify the results, qRT-PCR and Immunohistochemistry

(IHC) assay were used to test GNA15 expression in tumor cell lines

and clinical tumor samples including 12 OC and 9 normal control

tissues (fresh tissue frozen in liquid nitrogen), and 60 OC samples (the
Frontiers in Immunology 06
median age of these patients was 52 years and the median follow-up

duration for the cohort was 92 months) and 30 normal ovarian

samples (paraffin embedded) (Figures 7C–E). Consistent with the

result from TCGA dataset and GEPIA tool, our results demonstrated

that GNA15 was highly expressed in OC than normal samples

(P<0.05), indicating that GNA15 might have potential functions

in carcinogenesis.

The prognostic role of GNA15 was explored based on TCGA-

OC database and our clinical samples. The results showed that high

GNA15 expression was associated with worse OS [HR=1.33 (1.02-

1.74), P=0.03] in TCGA-OC database (Figure 7F). In addition, we

assessed another two OC datasets from GEO database (GSE3149,

and GSE63885) to validate the prognostic role of GNA15. Similarly,

the results showed high GNA15 expression was associated with

worse OS [HR=1.8(1.1-2.95), P=0.018] and [HR=1.73 (1.04-2.89),

P=0.03], respectively (Figures 7G, H). While in our clinical samples,
FIGURE 2

Identification of M2-like TAMs related cluster. (A) Kaplan–Meier analysis showing overall survival (OS) of two clusters. (B) KEGG analysis for the
differential expressed genes in two clusters. (C) GSEA analysis for the two clusters. (D-F) The comparison of the immune cells infiltration between
the two clusters. *p < 0.05; **: p < 0.01; *** p < 0.001; ****p < 0.0001.
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FIGURE 3

The mutation analysis of two clusters. The waterfall plot shows the top 20 genes with mutation frequency of Cluster1 (A) and Cluster2 (B).
FIGURE 4

Construction of a risk model. (A–C) LASSO analysis for M2-like TAMs related genes associated with the survival rate of OS. (D) Validation of the
prognostic model in GSE140082. (E) Age, Stage, riskscore, grade, cancer status and anatomic neoplasm subdivision were used to construct
the nomogram.
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GNA15 showed a consistent effect in prognosis, elevated GNA15

expression was significantly correlated with a poor prognosis in OC

[HR=3.06 (1.06-8.83), P=0.03] (Figure 7I).
The relationship between GNA15 and
macrophage polarization

In this study, we found a strong correlation between GNA15 and

M2 macrophage infiltration abundances using the CIBERSORT

algorithm (Spearman r=0.609, P<0.001, Supplementary Figure

S3A). In addition, we investigated the relationship between GNA15

and M2 macrophage biomarkers (MS4A4A, CD163, and VSIG4),

demonstrating that elevated GNA15 expression was positively

associated with M2 macrophage polarization (Supplementary

Figures S3B–D). Further, in our clinical samples, we found GNA15

expression was positively related to CD163 expression
Frontiers in Immunology 08
(Supplementary Figure S3E), which suggest GNA15 may related to

macrophage polarization.
Enrichment analysis and tumor
heterogeneity analysis of
GNA15 expression

Gene set enrichment analysis (GSEA) was performed to explore

pathway enrichment between high and low GNA15 expression group.

The results showed that immune-associated pathways were more

enriched in the high GNA15 expression group, including Chemokine

signaling pathway, Leukocyte transendothelial migration, Lysosome,

Natural killer, B cell receptor signaling pathway and FcgR mediated

phagocytosis (Supplementary Figure S4A). The results demonstrated

that GNA15 is associated with immune-regulation in tumor

microenvironment of OC.
FIGURE 5

High-and low-risk groups exhibit different immune cell infiltration and immune gene expression. (A–C) The comparison of the immune cells
infiltration and expression of immune checkpoint-related genes between the high-and low-risk group. *p < 0.05; **: p < 0.01; *** p < 0.001; ****p
< 0.0001.
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Next, we explored the association between GNA15 expression and

tumor heterogeneity. The results demonstrated that GNA15 expression

showed a remarkably positive relation with LOH and TMB, while a

negative relation with purity (Supplementary Figures S4B–D).
Down-regulating GNA15 in vitro decreased
OC cell proliferation

To determine whether GNA15 plays an important role in cell

proliferation, GNA15 was knocked down in OVCAR5 and

OVCAR8 using ShRNA and CRISRP-Cas9 (Figure 8A). Our data

showed that down-regulating GNA15 significantly decreased

ovarian cancer cell proliferation (P < 0.0001) (Figure 8B).
Discussion

In the OCmicroenvironment, TAMs typically adopt an M2-like

phenotype, promoting tumor progression by suppressing antitumor

immunity and facilitating invasion and metastasis through cytokine

and chemokine secretion (28–30). Moreover, TAMs are implicated

in OC chemoresistance, as evidenced by their ability to polarize M1-

like to M2-like phenotypes upon exposure to cisplatin or

carboplatin (31). Therefore, identifying biomarkers associated

with M2-like TAMs polarization shows potential for OC
Frontiers in Immunology 09
treatment strategies. In the present study, we constructed a

prognostic model for OC based on an M2-like TAMs gene

signature and highlights the initial role of GNA15 in M2-like

TAMs polarization. We found: 1) a positive correlation between

GNA15 expression and M2-like TAMs infiltration; 2) GNA15 as a

predictor of poor prognosis in OC across multiple patient cohorts.

Initially, we employed CIBERSORT (32) to quantify M2-like

TAMs infiltration in the TCGA-OC dataset, confirming that high

M2-TAMs levels correlate with poorer prognosis in OC. Given M2-

like TAMs’ critical roles in prognosis, TME immune modulation,

and drug resistance in OC, we conducted a comprehensive analysis.

Using WGCNA, we identified genes associated with M2-like TAMs

in OC and performed consensus clustering based on 18 prognostic

genes. Cluster2 exhibited significantly worse outcomes than

Cluster1, with enrichment in pathways such as Fcg-mediated

phagocytosis, Toll-like receptor signaling, B cell receptor

signaling, Nod-like receptor signaling, and cancer-related

pathways. These pathways are typically associated with

unfavorable clinical outcomes. For example, Toll-like receptor

activation can promote tumor cell proliferation, inhibit apoptosis

(33), and enhance invasion and migration (34), while Fcg receptors
can dampen the efficacy of PD-1 antibodies (35). NOD-like receptor

thermal protein domain associated protein 3 (NLRP3)-mediated

immune checkpoint regulation also contributes to immune escape

in cancers like liver hepatocellular carcinoma and OC, correlating

with worse overall survival (36). Immune cell infiltration analysis
FIGURE 6

GNA15 is a differentially expressed gene for drug resistance. (A) Differential gene expression analysis on the GSE33482 database, red points represent
upregulated genes, and green points represent downregulated genes. (B) The intersection of 1598 drug resistance related DEGs and 18 prognostic
M2-like TAM-related genes. (C, D) GNA15 expression between cisplatin-resistant cells of ovarian cancer cell and corresponding OC cells by qRT-
PCR analysis. *p < 0.05; **: p < 0.01.
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revealed significantly higher M2 macrophage levels in Cluster2

compared to Cluster1.

Next, we developed an 8-gene signature related to M2-like

TAMs. To validate our prognostic model, multivariate regression

confirmed the riskscore as an independent prognostic factor in OC.

Validation using the GSE140082 dataset further supported the

reliability of our signature. Notably, the low-risk group exhibited

reduced M2-like TAM infiltration but higher expression of immune

checkpoint genes compared to the high-risk group, indicating

potential implications for immunotherapy response in OC.

Immunotherapy in OC faces chal l enges due to the

immunosuppressive tumor microenvironment, which includes

regulatory T cells (Tregs), myeloid-derived suppressor cells

(MDSCs), and TAMs. To improve immunotherapy outcomes,

identifying TAM-related biomarkers using multi-omics

approaches is essential for understanding the immune landscape

of OC and developing personalized treatment strategies.

To identify the functions of biomarkers associated with OS and

M2-like TAMs infiltration in the OC microenvironment, we
Frontiers in Immunology 10
investigated 18 prognostic genes intersecting with drug resistance

data from GSE33482. We found GNA15 is significantly upregulated

in platinum-resistant OC cell lines (A2780-Cis, SKVO3-Cis) and

was highly expressed in OC, correlating with poor OS in both

TCGA-OC and clinical samples. The following findings highlight

the diverse roles of GNA15 across different cellular pathways. It is

reported that GNA15 was involved in multiple tumor types by

promoting cellular proliferation and inhibiting cellular apoptosis,

including liver cancer, pancreatic adenocarcinoma, acute myeloid

leukemia, and OC (17–21, 37, 38).

Exploring the role of GNA15 in OC, we confirmed its high

expression in OC cells and tissues, consistent with bioinformatics

analyses linking GNA15 to poor clinical outcomes. In vitro studies

demonstrated that knockdown of GNA15 reduced proliferation in

OVCAR5 and OVCAR8 cells, suggesting its involvement in OC

progression. Existing literature reported that GNA15 is expressed in

all myeloid cell lines, suggesting that it may be involved in the

regulation of hematopoietic cell differentiation and function (39).

Another study reported that GNA demonstrated a high correlation
FIGURE 7

GNA15 expression in normal and cancer tissues. (A) RNA-Seq analysis using TCGA-OV samples and matched normal control samples from the GTEx
project. (B) ROC analysis of GNA15 expression for the discrimination between OC and normal controls using TCGA-OC samples and matched
normal control samples from the GTEx project. (C) qRT-PCR analysis using OC cells and normal ovarian cells. (D) qRT-PCR analysis using clinical OC
and normal control samples. (E) IHC was performed to detect the expression of GNA15 in OC and normal tissues. (F–I) Survival analysis comparing
the high and low expression of GNA15 in OC patients based on TCGA-OC database, GSE3149, GSE63885 and our clinical samples. *p < 0.05; **: p <
0.01; *** p < 0.001.
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with all identified immune cell subtypes in the ssGSEA algorithm

(40). In our study, GSEA analysis revealed enrichment of immune-

related pathways, such as the chemokine signaling and FcgR-
mediated phagocytosis pathways, in OC samples with high

GNA15 expression. Our research has revealed that GNA15 may

promote carcinogenesis in OC by modulating TME and enhancing

tumor cell proliferation. Specifically, we observed increased
Frontiers in Immunology 11
infiltration of M2-like TAMs, a key immunosuppressive cell type

in the tumor microenvironment, validated by CIBERSORT analysis

and confirmed with CD163 immunohistochemical staining

(P<0.001). There have also been investigations into the role of

GNA15 in regulating cell function. For example, GNA15

downregulation inhibits cell proliferation through the P38 MAPK

pathway, a critical regulator of cell survival and growth (21).
FIGURE 8

Down-regulating GNA15 in vitro decreased ovarian cancer cell proliferation. (A) knock down of GNA15 in OVCAR5 and OVCAR8 using ShRNA and
CRISRP-Cas9. (B) Down-regulating GNA15 significantly decreased ovarian cancer cell proliferation. The protein data were normalized to b-actin.
*** p < 0.001.
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Moreover, GNA15 has been implicated in the regulation of

exosome function, which plays a pivotal role in cell-to-cell

communication and shaping the immune microenvironment (22).

These findings suggest GNA15 acts as an immunosuppressive factor

in OC, potentially influencing M2-like TAM polarization and

serving as a prognostic marker.
Conclusions

Our study has established a prognostic model based on M2-like

TAMs to predict survival rates in OC patients, offering valuable

insights into the molecular underpinnings of disease progression.

Furthermore, we have identified and investigated the potential role

of GNA15 within OC cells and the TME, suggesting GNA15 may

play a crucial role in immune cell infiltration, macrophage

polarization, and tumor progression. This understanding could

not only reveal new biomarkers for prognosis but also offer

innovative therapeutic targets for immune-based treatments in

OC. Moving forward, it is imperative to conduct additional

animal experiments and mechanistic studies to elucidate how

GNA15 influences macrophage transformation within the OC

microenvironment. These endeavors will furnish more robust

insights that can be translated into clinical applications.
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GNA15 expression in normal and cancer tissues. Comparison of GNA15

mRNA levels across 33 TCGA cancer types and matched normal controls

using GEPIA.
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Correlation of GNA15 expression and M2 macrophages polarization. (A)
Purity‐corrected Spearman’s correlation between GNA15 expression in OC
and M2 macrophages infiltration. (B-D) The correlation between GNA15 and

molecular biomarkers of M2 macrophages. (E) GNA15 expression was

positively related to CD163 expression by IHC.

SUPPLEMENTARY FIGURE 4

The gene enrichment analysis of GNA15 in OC. (A) GSEA analysis in GNA15

high and low expressed samples. (B-D) Correlation of GNA15 expression and
LOH (B), Purity (C), TMB (D).
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