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Epithelial and immune
transcriptomic characteristics
and possible regulatory
mechanisms in asthma
exacerbation: insights from
integrated studies
Ye Liu †, Yue Li †, Ruhao Wu, Yu Wang, Pengfei Li , Tianci Jiang,
Ke Wang, Yize Liu and Zhe Cheng*

Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou
University, Zhengzhou, He’nan, China
Background: Asthma exacerbation significantly contribute to disease mortality and

result in heightened health care expenditures. This study was aimed at gaining

important new insights into the heterogeneity of epithelial and immune cells and

elucidating key regulatory genes involved in the pathogenesis of asthma exacerbation.

Methods: Functional enrichment, pseudotime, metabolism and cell-cell

communication analyses of epithelial cells and immune cells in single-cell RNA

sequencing (scRNA-seq) dataset were applied. Immune infiltration analysis was

performed in bulk RNA sequencing (bulk RNA-seq) dataset. Key regulatory genes

were obtained by taking the intersection of the differentially expressed genes

(DEGs) between control and asthma group in epithelial cells, immune cells and

bulk RNA-seq data. Asthma animal and in vitro cell line models were established

to verify the key regulatory genes expression by employing quantitative reverse

transcription polymerase chain reaction (qRT-PCR).

Results: ScRNA-seq analysis identified 7 epithelial subpopulations and 14 distinct

immune cell types based on gene expression profiles. Further analysis

demonstrated that these cells manifested high heterogeneity at the levels of

functional variations, dynamics, communication patterns and metabolic changes.

Notably, TMPRSS11A, TUBA1A, SCEL, ICAM4, TMPRSS11B, IGFBP2, CLC, NFAM1

and F13A1 were identified as key regulatory genes of asthma. The results of the

qRT-PCR demonstrated that the 9 key regulatory genes were involved in asthma.

Conclusions: We systematically explored epithelial and immune characteristics

in asthma exacerbation and identified 9 key regulatory genes underlying asthma

occurrence and progression, which may be valuable for providing new insights

into the cellular and molecular mechanisms driving asthma exacerbations.
KEYWORDS

asthma exacerbation, single-cell RNA sequencing, bulk RNA sequencing, epithelial cells,
immune cells, key regulatory genes
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1 Introduction

Patients with asthma exacerbation bear a substantial burden of

disability, economic costs, and healthcare utilization (1, 2). The

clinical management of allergic asthma is challenging due to

phenotypic heterogeneity, as some patients exhibit mild disease

that responds well to therapy, while others suffer from severe,

progressive disease that does not respond effectively to

conventional treatments. This variability indicates that allergic

disease populations consist of various subgroups, each with

unique underlying mechanisms (3, 4). Therefore, the underlying

mechanisms of asthma are still insufficiently elucidated.

Advances in genomics have made bulk RNA sequencing (bulk

RNA-seq) a key tool for studying gene alterations in asthma. This

methodology enables a meticulous analysis of gene expression

patterns within complete cell populations during diseased

conditions (5). For instance, Jiang Yong with colleagues revealed

key genes and immune cell infiltration patterns associated with

severe asthma progression via bulk RNA-seq analysis (6). Key genes

and pathways in mild−moderate, steroid−resistant asthma or

neutrophilic asthma were also identified (7–9). Nowadays, more

and more researchers have realized that bulk RNA-seq are limited

in resolving cellular heterogeneity in disease and single-cell RNA

sequencing (scRNA-seq) analysis in asthma has increased rapidly

(10). This powerful technique offers the potential to elucidate the

complex interactions between diverse cell types and their roles in

the pathogenesis of asthma. Jehan Alladina’s study revealed unique

transcriptional programs and cell circuits by comparing allergic

asthma to allergic individuals without asthma (11). Felipe A. Vieira

Braga et al. reported the cellular census and intercellular

communications in healthy and asthmatic airway walls, which

was the most comprehensive analysis of asthma scRNA-seq data

to date (12). However, the combined single-cell and bulk RNA-seq

data analysis in asthma exacerbation remains an underexplored

approach, which could yield deeper insights into the

molecular mechanisms.

The incorporation of bioinformatics analysis techniques can

synergize the advantages of single-cell and bulk RNA-seq

methodologies, thereby improving the robustness of results and

enhancing the depth of insights derived from the data (13). In this

study, we aimed to provide a comprehensive characterization

of the epithelial and immune transcriptomic landscape and

potential mechanisms in asthma exacerbation pathogenesis by

combining scRNA-seq and bulk RNA-seq data. By leveraging

the single-cell resolution of scRNA-seq, we identified the

diverse cellular subtypes, functional variations, cell-type

dynamics, metabolic changes and communication netwoks

that underlie the heterogeneity of epithelial and immune

cells, while the incorporation of bulk RNA-seq data will enable

the identification of key regulatory genes. Additionally, we

further verified these key regulatory genes in the asthma

model. This study will offer new insights into the cellular and

molecular mechanisms driving asthma exacerbations, potentially
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paving the way for the development of more effective

therapeutic interventions.
2 Materials and methods

2.1 Data acquisition

The scRNA-seq dataset was obtained from GSE164015 (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE164015) in the

Gene Expression Omnibus (GEO) database at the National

Center for Biotechnology Information (NCBI) (14). Dataset

GSE164015 contained 8 bronchoalveolar lavage fluid (BALF)

samples collected at bronchoscopy in 4 independent participants

with asthma. They were sampled 1 day after the right middle lobe

was challenged with an allergen to which they were allergic (dust,

mite, or cat) or the right upper lobe was challenged with diluent as a

control. We took the former as the asthma group (A) and the latter

as the control group (C) (14).

Because we utilized Bulk RNA-seq of BALF to intersect key

regulatory genes, GSE136587 was one of the few datasets of BALF

samples tested from patients with varying degrees of asthma

( h t t p s : / /www . n c b i . n lm . n i h . g o v / g e o / q u e r y / a c c . c g i ?

acc=GSE136587) (15, 16). GSE136587 was based on the GPL18573

platform and included 39 BALF samples comparing healthy (6

samples), mild (17 samples) or severe asthma (16 samples) patients.

We combined the data of healthy individuals as the control group

(C) and patients with moderate and severe asthma as the asthma

group (A) (15). The workflow of this study was demonstrated

in Figure 1.
2.2 Data processing and analysis

We performed scRNA-seq analysis by transforming the raw

gene expression matrix into a Seurat object using Seurat package

(v4.3.0.1) of RStudio (v2023.6.0.421) (17, 18). Cells with > 200

and < 2500 features per cell, < 25% mitochondrial genes, and

genes expressed in at least 3 cells were retained for further

analysis. 33,388 filtered cells were selected for analysis. Each

sample was characterized with 2000 highly variable genes

(HVGs) through the “vst” selection method. Principal

component analysis (PCA) was then employed to identify

significant principal components (PCs), and the p value

distribution was visualized using the “JackStraw” and

“ScoreJackStraw” functions (19). Batch correction was

conducted using the “harmony” package (v1.2.0) to mitigate

batch effects due to sample identity (20). In data clustering, we

used the package ‘clustree’ (v0.5.1) from Seurat (21). In brief, this

method can visualize how clusters break down and display the

classification results from one resolution to another, so that we

can refer to which resolution is more appropriate. Cells were

classified into different clusters by using “FindClusters” with 0.1
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resolution (all cells), 0.1 resolution (epithelial cells), and 0.5

r e so lu t i on ( immune ce l l s ) . The Uni fo rm Mani fo ld

Approximation and Projection (UMAP) analysis was used for

the visualization plot with the two-dimensional UMAP model

(22). In each cluster, the marker genes of cell populations were

identified using the “FindMarkers” or “FindAllMarkers” function

with the Wilcoxon rank-sum test. We integrated this information

with online databases, including the Annotation of Cell Types

(ACT) Database (http://xteam.xbio.top/ACT/) (23), the

CellMarker 2.0 database (http://117.50.127.228/CellMarker/

index.html) (24) and Human Transcriptome Cell Atlas (HTCA)

database (https://www.htcatlas.org/) (25). Ultimately, canonical

markers from the existing literature were utilized to arrive at a

comprehensive determination of the final cell type (11, 12, 26, 27).

Based on the evaluation of cluster-specific cell markers, we clustered

the data into epithelial and immune cell groups at first. Then we

analyzed the epithelial cells and immune cells respectively. For a

second clustering of the cell populations, the same procedures were

repeated. Epithelial cells were classified into 7 different clusters and

a total of 14 clusters of immune cells were defined.

In RNA-seq data, raw data was downloaded using the

“GEOquery” package (v2.70.0) (28). We performed differentially

expressed genes (DEGs) analysis of bulk RNA-seq data using the R

package “DEseq2” (v1.42.1) (29). P value < 0.05 and an absolute
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log2FoldChange (|log2FC|) > 0.5 were considered statistically

significant. Volcano and heatmap plots were drawn using the

“ggplot2” package (v3.5.0) and “pheatmap” package (v1.0.12)

(30, 31).
2.3 Heterogeneity and
correlation assessment

ROGUE (v1.0) was employed using default parameter settings

for recommended pipelines to effectively evaluate the purity of

identified cell clusters (32). Spearman’s correlation was used to

analyze the correlation between the cell types.
2.4 Distribution of cell types across groups

The group preference of individual cell types was evaluated by

calculating the ratio of observed to expected cell numbers (Ro/e)

for each cluster (33). Ro/e represents the ratio of observed cell

count to expected cell count within a specific grouping of cell

clusters and distinct groups. The expected cell count for each

grouping was determined through the utilization of the chi-

squared test.
FIGURE 1

Flow diagram of the overall study design.
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2.5 Supervised analyses using genome-
wide association study genes

The asthma-associated GWAS gene list was obtained from the

GWAS Catalog of EMBL-EBI by searching for “asthma” (https://

www.ebi.ac.uk/gwas/). This list was retrieved on December 14,

2023. Subsequently, we identified the genes that were common

between our single-cell DEGs list and the asthma-associated GWAS

list. Normalized average expression levels of intersecting genes were

subjected to hierarchical clustering analysis, arranging genes in

rows and single cells in columns.
2.6 Functional enrichment analysis

The “FindMarkers” function was employed to identify the

DEGs for each cluster, facilitating the exploration of group

functions. DEGs were identified using a cutoff of p value < 0.05

and |Log2FC|> 0.5. By using the “enrichKEGG” and “enrichGo”

functions in the R package “clusterProfiler” (v4.10.1), the biological

function analysis of DEGs was conducted to analyze the biological

pathways based on Gene Ontology (GO) (http://geneontology.org/)

and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

database (https://www.genome.jp/kegg/pathway.html) (34). P value

< 0.05, adjusted using the Benjamini–Hochberg method, was

established as the cut-off criterion. The enrichment results were

visualized by R packages “fmsb” (v0.7.6), “enrichplot” (v1.22.0),

“ggplot2” (v3.5.0), and OmicShare tools (https://www.omicshare.

com/tools).

Gene set enrichment analysis (GSEA) evaluates the enrichment

of genes within a set at the extremes of a ranked list (35). We used

the “clusterProfiler” (v4.10.1) package and “gseKEGG” or “gseGO”

function to identify GO terms and KEGG pathways. The GSEA

analysis was performed according to default parameters.

Furthermore, GSEA was utilized to assess the presence of

significant differences in predefined gene sets between two groups.

The hallmark gene set was derived from the molecular signature

database (MSigDB, http://www.gsea-msigdb.org/gsea/msigdb/

index.jsp) (36). Annotation clusters with p value <0.05 were

considered statistically significant.
2.7 Trajectory analysis

The Monocle2 algorithm was employed to infer the

differentiation trajectories of the selected clusters with the

“monocle” package (v2.30.0) (37). Cells were arranged along a

pseudotime trajectory using the combined set of HVGs from the

cells. Low-quality cells and genes were identified and removed using

the “detectGenes” and “subset” functions, respectively, with the

“min_expr” parameter set to 0.1. The “differentialGeneTest”

function was utilized to identify DEGs among clusters along the

trajectory. For branch site differential genes analysis, the “BEAM”

package (v2.0.2) was employed to identify the genes most significantly

contributing to cell branching in the branch site differential genes
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analysis. Genes identified by the Branch Expression Analysis

Modeling (BEAM) analysis with a q-value ≤ 0.01 were

hierarchically clustered using the “plot_genes_branched_heatmap”

function with num_clusters = 4. The heat map showed the first 50

critical branch differential genes. Genes from each respective

hierarchical cluster were input into GO or KEGG analysis to

further investigate enrichment functions.
2.8 Cell-cell communication analysis

CellChat (v1.6.1) with default recommended settings was

employed to evaluate cell-cell interactions among various cell

types (38). We loaded the CellChatDB.human database into

RStudio and selected the signal path of Secreted Signaling, ECM-

Receptor, and Cell-Cell Contact in the database. Cell groups with

fewer than 10 cells were filtered using the “filterCommunication”

function with the “min.cells” parameter. The “mergeCellChat” was

used to merge the two CellChat objects so that we could further

analyze the communication characteristics of the two groups.
2.9 Evaluation of metabolic activity at
single-cell resolution

The method for analyzing the activity of metabolic pathways of

individual cells within each cell population was AUCell (v1.24.0)

algorithm from scMetabolism package (v0.2.1) in RStudio (39).

This study utilized KEGG metabolic gene sets for analysis.
2.10 Immune infiltration analysis

CIBERSORTx (v0.1.0) algorithm was applied to creat a

reference matrix for deconvoluting immune cell abundances in

each bulk RNA-seq sample (40). Gene expression data with

standard annotations were analyzed using LM22 signatures and

1000 permutations in RStudio.
2.11 Regulatory mechanisms of key genes
and transcription factors

To explore the critical regulatory genes involved in both the

exacerbation and pathogenesis of asthma, we intersected the DEGs

with the most significant difference (p value <0.05 and |log2FC| >

0.5) between C and A in epithelial cells, immune cells, and bulk

RNA-seq data. To avoid the bias effects of different statistical

methods, “DEseq2” (v1.42.1) package was employed to analyze

the DEGs in the two datasets. Upstream transcription factors (TFs)

and miRNA of key regulated genes were predicted through the

NetworkAnalyst database (https://www.networkanalyst.ca/) (41).

mRNA-TFs pairs were predicted via JASPAR algorithms and

miRNA-mRNA pairs were predicted through the mirTarBase v8.0

(42, 43). Finally, the mRNA-TFs-miRNA interaction network
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analysis was visualized using Cytoscape (v3.10.2) to explore

regulatory mechanisms (44).
2.12 Establishment of asthma animal model

Female C57/BL6N wild-type (WT) mice (4-6weeks; weight 19-

21g; n=12), purchased from Beijing Vital River Laboratory Animal

Technology Co., Ltd., were kept in specific pathogen-free conditions

with inrestricted access to food and water. Mice were raised at a

constant temperature of 23 ± 2°C rooms. Room lighting was

automatically controlled on a 12 h light/dark cycle. The mice

were acclimatized for one week prior to the experiment. Mice

were randomly distributed into asthma (A) and control (C)

groups (n = 6 for each group). Mouse models of asthma were

established as previously described (45). Briefly, 100mg house dust

mite (HDM) (Dermatophagoides Pteronyssinus, Greer

Laboratories, USA) in 50 ml phosphate buffered saline (PBS,

Solarbio, China) were intranasally delivered to the mice in asthma

group for sensitization (day 0). In control group, mice were

intranasally delivered with an equal volume of PBS. Beginning 1

week after the sensitization, mice were challenged daily with 10mg
HDM in 50ml PBS by intranasal administration (day 7-11). The

control group was challenged with the same amount of PBS

intranasal instillations on day 7-11. During excitation, the mice

exhibited symptoms indicative of an asthmatic attack, including

agitation, cyanosis, tachypnea, and bucking. The mice were

sacrificed 72 hours after the last intranasal instillation.

BALF cells were collected by inserting a catheter into the trachea

through a cervical incision and flushing the lungs with 0.7ml of ice-cold

PBS. Then mice were perfused with ice-cold PBS via the right ventricle

to clear blood from lung tissue. The left lung tissues were harvested for

hematoxylin and eosin (HE) and periodic acid-Schiff (PAS) staining.

Right lung tissues were analyzed for gene expression using quantitative

reverse transcription polymerase chain reaction (qRT-PCR).
2.13 BALF cell counts and histological
examination of lungs in mice

BALF cell pellets were stained with Wright-Giemsa staining

solution (BaSO, China) and counted by two independent blinded

investigators. The corresponding lung tissue sections were

prepared, including pathological tissue sampling and fixation,

embedding, paraffin section, and frozen section. The lung sections

were stained using HE and PAS staining kit (Servicebio, China)

following the provided instructions. The staining characteristics

were observed with an optical microscope. HE and PAS staining

were scored by a blinded observer and based on previously

described methods (46). Briefly, the severity of peribronchial

inflammation was evaluated on a scale from 0 to 4: 0, normal; 1,

few cells; 2, a single layer of inflammatory cells 1 cell layer deep; 3, a

ring 2–4 inflammatory cells deep; 4, a ring more than 4

inflammatory cells deep. The abundance of PAS-positive mucus-
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containing cells in each airway was scored as follows: 0 for no visible

hyperplasia or mucus production, 1 for PAS-positive cells in 0–25%

of bronchioles, 2 for 25–50%, 3 for 50–75%, and 4 for 75–100%.
2.14 Cell culture and treatments

Human normal bronchial epithelial BEAS-2B (catalog number:

CRL-3588) cells from the American Type Culture Collection

(ATCC) were cultured in RPMI-1640 medium (Solarbio, China)

with 10% fetal bovine serum (FBS, Sigma-Aldrich, USA) and 1%

penicillin/streptomycin (Solarbio, China). Cells were cultured at 37°

C in a humidified atmosphere containing 5% CO2 at 37°C. In

addition, BEAS-2B cells were passaged every 2 days following

trypsin (TrypLE™ Express, gibco, Thermo Fisher Scientific, USA)

digestion. Cells were seeded in a complete medium for 24h and

subsequently treated with HDM (100µg/ml, Dermatophagoides

Pteronyssinus, Greer Laboratories, USA) or PBS with the same

amount, and the cells were harvested for qRT-PCR after 24h.
2.15 Quantitative reverse transcription-
polymerase chain reaction

Total RNA from the right lung tissues of mice and BEAS-2B

cells was extracted by AG RNAex Pro Reagent (Accurate Biology,

China) according to manufacturer manual. RNA concentration was

quantified and measured by absorbance at 260 nm and 280nm

using a spectrophotometer (Nanodrop 2000, Thermo Fisher

Scientific, USA). Then cDNA was reversely transcribed with

SweScript All-in-One RT SuperMix for qPCR (One-Step gDNA

Remover) (Servicebio, China) followed by real-time PCR

amplification by using of SYBR Green Premix Pro Taq HS qPCR

Kit (Rox Plus) (Accurate Biology, China) in QuantStudio™ 5 Real-

Time PCR System (Applied Biosystems™, Thermo Fisher

Scientific, USA). Finally, the RNA quantity was estimated using

the 2−DDCt method, with b-actin as the reference gene for

normalization (47). The primers employed for qRT-PCR analysis

were performed in Additional File 1: Supplementary Table S1.
2.16 Statistical analysis

Bioinformatics statistical analysis and images were conducted

using RStudio software (v2023.6.0.421). Student’s t test, Wald Chi-

Squared test and Wilcoxon rank sum test were applied as specified.

Correlation analysis was completed with the Spearman method.

The Graphpad Prism version 10.1.2 for Windows (GraphPad

Software, Boston, Massachusetts USA, www.graphpad.com) was

used for qRT-PCR statistical analysis. Results were presented as

mean ± standard deviation (SD). Statistical comparison was

performed using the student’s t-test. P value < 0.05 were

considered statistically significant and are represented as follows:

*p<0.05; **p<0.01; ***p<0.001.
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3 Results

3.1 ScRNA-seq analysis identified the
diversity of epithelial cell populations
in BALF

To investigate gene expression and create a detailed map of the

BALF cell landscape in asthma at single-cell resolution, we analyzed

the scRNA-seq data (GSE164015) from the GEO database using

bioinformatics techniques (Figure 1). After data integration, strict

quality control (QC) filtering and removing batch effect (Additional

File 2: Supplementary Figures S1A, B), all BALF cells were divided

into 8 clusters. The dot plot effectively displayed the expression of

canonical marker genes that can distinguish epithelial cells from

immune cells well (Additional File 2: Supplementary Figure S1C).

Based on this, we identified 0, 2, and 4 clusters as epithelial cells and

the rest clusters as immune cells (Additional File 2: Supplementary

Figures S1D, E). Thus, 24,316 epithelial cells and 9,072 immune

cells from 8 samples were further analyzed. The number of immune

cells in A was more than C (Additional File 2: Supplementary Figure

S1F). Our analysis initially focused on epithelial cells, followed by

the immune compartments.

In the epithelial lineage, cells were clustered into 7 separate

subsets. We identified multiple club, ciliated, goblet, basal cells, and

ionocytes based on canonical markers and marker genes

(Figures 2A-C, Additional File 2: Supplementary Figure S1G).

Two distinct states were identified within both basal and ciliated

epithelial cells. The two basal cell states were associated with

differentiation functions. Basal 1 cells exhibited elevated

expression of KRT5, TP63, and BCAM, which are involved in cell

secretion and adhesion. In contrast, basal 2 cells showed higher

expression of genes related to immunity and homeostasis, such as

RPS18, RPS3, and MT1X (48–51). Ciliated 1 cells expressed higher

levels of PIFO and TPPP3. DNAH11 and MSA48 are expressed at

higher levels in ciliated 2 cells (Figures 2B, C) (11, 52, 53).

According to Spearman’s correlation analysis, ionocytes had

different transcriptional features when compared with other types

of epithelial cells because they had no distinct positive correlation

with other epithelial subsets (Figure 2D). In addition, basal 2,

ciliated, and club cells demonstrated higher purity, while goblet

cells exhibited greater heterogeneity (Figure 2E).

The proportion of epithelial subsets was different in two groups.

A had more ciliated cells, while the C had more club cells (Figure 2F).

To validate our cell type identification and investigate the gene-

disease relationship, we examined the expression of genes linked to

lung phenotypes in various cell types. The specific genes were selected

based on Braga, F. A. V.’s study by comparing Mendelian disease-

related genes from the Online Mendelian Inheritance in Man

(OMIM) database to DEGs in asthma (12). The findings indicated

that the epithelial lung components exhibited unique expression

profiles of genes linked to Mendelian disorders, varying by cell type

(Figure 2G). Analysis of asthma GWAS gene expression in scRNA-

seq data revealed a significant role of airway epithelial cell types in

asthma susceptibility with elevated expression of asthma GWAS

genes in club and ciliated cells (54) (Figure 2H).
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3.2 Differences in transcriptome profiles of
epithelial cell subsets

According to the cut-off criteria (p value < 0.05 and |log2FC| >

0.5), 242 DEGs were identified between A and C, with 98

upregulated and 144 downregulated genes (Figure 3A). GO

analysis was conducted to annotate the functions of DEGs.

Pathways related to oxidative phosphorylation, respiratory

electron transport chain, and ATP synthesis were significantly

emphasized (Figures 3B, C). Single-cell GSEA analysis revealed

that pathways related to transcriptional regulation, DNA and RNA

metabolism, basal cellular processes, and ATP binding were

upregulated in A compared to C (Figure 3D), confirming the

association of these pathways with asthma exacerbation. It is

worth noting that immune cell fusion, T cell activated, and

molecule targets were upregulated in A, suggesting that these

epithelial cells are crucial in connecting the immune

system (Figure 3E).

The significant increase in ciliated 2 cells in patients

experiencing acute asthma exacerbations suggests their potential

role in asthma development. We compared the functional

annotations of ciliated 1 and ciliated 2 cells to investigate their

functions. The analysis indicated significant upregulation of several

regulatory pathways, including cilium assembly, DNA-binding

transcription factor activity, and RNA metabolism, in ciliated 2

cells (Figures 3F, G), suggesting that ciliated 1 cells were mainly

involved in ATP synthesis, mitochondrial respiration of electron

transport chain, and the function of ciliated 2 was mainly the

movement of flagella, DNA and RNA metabolism synthesis. Goblet

cells, which swiftly boost mucus production upon stimulation, also

showed an increase in A. These traits reflected that exposure to

allergies alters the composition of airway epithelial cells, enhances

mitochondrial and ribosomal activity, activates immune signaling

pathways, and reshapes the airway microenvironment.
3.3 Trajectory and cell-cell communication
analysis revealed dynamics and molecular
interactions of epithelial cell populations

To elucidate epithelial cell differentiation trajectories, a

pseudotime developmental trajectory analysis was conducted,

revealing potential differentiation relationships. The trajectory of

epithelial cells originating from basal cell subsets in the airway wall

of group A diverged into a secretory lineage, mainly comprising

club cells, and a ciliated lineage, primarily consisting of ciliated cells

(Additional File 3: Supplementary Figures S2A, B). In the C group,

basal cells first differentiated into club cells, which then matured

into goblet cells or differentiated into ciliated cells. Basal cells, the

primary stem cells in the airway, possess self-renewal capabilities

and can differentiate into various epithelial cell types, such as club,

goblet, and ciliated cells (55). Pathway enrichment analysis revealed

significant enrichment in iron ion homeostasis and ficolin-1-rich

granule pathways in cells with varying differentiation fates. This

suggests that iron ion regulation and ficolin-1 signaling are crucial
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in mediating phenotypic and functional changes during epithelial

differentiation in response to different microenvironmental stimuli

(Additional File 3: Supplementary Figures S2C, D). A TFs-mRNA

regulatory network of the hub gene of different differentiation fates

was constructed to reveal the underlying mechanism by which the
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hub gene regulates asthma epithelial differentiation. According to

the degree of the protein-protein interaction (PPI) network, the top

10 important differential hub genes and upstream TFs were listed

through the cytoHubba plugin. Combining the TFs-mRNA pairs, a

TFs-mRNA regulatory network was correspondingly established,
FIGURE 2

ScRNA-seq identified 7 epithelial cell clusters in BALF. (A) UMAP representation of 7 epithelial cell clusters from all samples. Ciliated 2, ciliated cell
cluster 2; Basal 2, basal cell cluster 2; Ciliated 1, ciliated cell cluster 1; Basal 1, basal cell cluster 1. (B) Dot plot of canonical cell type marker genes for
each cell population. (C) Heatmap showing the normalized average expression levels of the top differentially expressed marker genes in each cell
subpopulation. (D) Correlation analysis between the epithelial cell populations. (E) Boxplot showing cell purity for each cell type by ROGUE. ROGUE,
Ratio of Global Unshifted Entropy. (F) Bar plot of the epithelial clusters distribution in the A and C groups. (G) Dot plot displaying the specific gene
expression levels and percentage of cells expressing genes associated with lung phenotypes. (H). Heat map depicting the normalized average
expression of asthma GWAS genes.
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including 41 TFs and 10 hub mRNAs (Additional File 3:

Supplementary Figure S2E). These findings suggested that iron

metabolism and ficolin-1 signaling pathways may promote

epithelial cell differentiation, drive asthma progression, and
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trigger exacerbation events, which has not been clarified in single-

cell studies.

To characterize discrepancies in the molecular interactions

between epithelial cells, we utilized CellChat to construct an
FIGURE 3

Functional enrichment and metabolism analysis of epithelial cells. (A) Volcano plot of DEGs for C and A groups. The top 10 upregulated genes and
top 10 downregulated genes were labeled according to the value of log2FC. Pct.1 and pct.2 (normalized) indicate the proportion of the
corresponding gene expression in the two groups. Stable, no significant; Up, upregulated genes; Down, downregulated genes. (B) GO enrichment
analysis of DEGs between C and A groups. (C) Network diagram of GO enrichment analysis depicting the relationships between enrichment items.
(D) GSEA of GO pathways representing some highly enriched pathways. (E) The GSEA of C2 pathways of the C and A groups. NES, normalized
enrichment score. C2: curated gene sets in MSigDB datasets. (F) Radar plot showing enrichment of GO terms of ciliated 1 and ciliated 2 cells.
(G) GSEA of GO pathways presenting some highly enriched pathways in the ciliated subsets. (H) Boxplot of the metabolic pathway activity in
epithelial cells subsets.
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extensive cell-cell communications network. A had more

intercellular interaction numbers and strength than C, which was

possibly due to increased interactions between basal cells and other

cell groups in A group (Additional File 3: Supplementary Figures

S2F–H). Basal 1 cells predominantly influenced the cell-cell

communication landscape in A. The detailed ligand-receptor

interactions among the 7 cell clusters were explored. Further

analysis found 13 significant pathways between epithelial cell

clusters in asthma exacerbation, and the most significant ligand-

receptor pair was APP-CD74 (Additional File 3: Supplementary

Figure S2I). We also conducted a comprehensive analysis of

signaling-receptor level changes across all key pathways. Some

pathways occurred active in cells of A, such as the CD99 and

JAM pathways (Additional File 3: Supplementary Figure S2J). In

addition, CD99 and JAM signaling only targeted basal 1 in A.

Certain pathways were restricted to cells in C, such as the THBS

signaling pathway that targeted basal 1 and ionocytes, and the CDH

and NCAM signaling pathway that targeted ionocytes (Additional

File 3: Supplementary Figure S2J). In all, the results collectively

indicated that the asthma exacerbation group had its own specific

signaling networks associated with the disease states in epithelial.
3.4 Metabolic analysis of epithelial cells

Themetabolic profile of epithelial cells in asthmawas elucidated by

evaluating the activity scores of metabolic pathways. A comprehensive

examination comparing the metabolic pathways between groups A

and C revealed significant differences in 82 out of 85 pathways

(Additional File 4: Supplementary Figure S3A). All cell types

consistently had similar metabolic activity scores and no statistical

difference between them (Figure 3H). An examination of pathway

activities in shared cell types between A and C demonstrated a high

level of concordance among the corresponding pathways (Additional

File 4: Supplementary Figures S3B–H). Metabolism analysis in

epithelial cells could help identify metabolite biomarkers for asthma

and improve understanding of the condition’s pathophysiology.
3.5 Single-cell RNA-seq analysis of the
immune cell composition in BALF

We subsequently analyzed the single-cell transcriptomes of airway

immune cells. We identified immune clusters comprising myeloid cells

(macrophages, neutrophils, dendritic cells, and mast cells) and

lymphoid cells (T and natural killer cells, B cells, plasma cells;

Figure 4A, Additional File 5: Supplementary Figure S4A). The

canonical markers and marker genes of these cell clusters were

showed in Figure 4B; Additional File 5: Supplementary Figure S4B.

Most cells exhibited higher purity, whereas macrophages showed

higher heterogeneity (Figure 4C). Spearman’s correlation analysis

revealed unique transcriptional characteristics in neutrophils

compared to other immune cells. There was a positive correlation

between myeloid cells except neutrophils, and also a positive

correlation between lymphoid cells (Figure 4D). The expression
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landscapes of the top 10 feature genes in each cell subtype, as

depicted in Figure 4E, suggested that these unique markers can

accurately differentiate between cell subtypes. Comparison with

GWAS analysis of human asthma genes, which showed cell-type

specific expression patterns, identified multiple factors potentially

influencing asthma progression (Figure 4F). Our study identified that

conventional dendritic cell cluster 1 (cDC 1) exhibited the highest

expression of asthmatic GWAS genes, with significant differential

expression between the C and A groups. Additionally, the immune

components displayed cell type-specific expression patterns of genes

linked toMendelian disorders, as illustrated in Figure 4G. Furthermore,

we conducted Ro/e analysis to quantify the tissue enrichment of these

populations (33). Among all populations, neutrophils, plasma cells and

macrophages cluster 1 (Mac 1) were preferentially distributed in the A

group, whereas Mono/Mac (monocyte/macrophage) cells,

conventional dendritic cell cluster 2 (cDC 2) and macrophages

cluster 2 (Mac 2) cells were preferentially located in C (Figure 4H).
3.6 Functional diversity and distinct roles
of immune cell subtypes in airways

To investigate discrepancies in the regulatory framework of

immune cell subsets, hallmark gene sets were used to analyze

pathway differences in immune cell populations between groups C

and A (Figure 5A). Interestingly, plasma and cDC 1 cells exhibited an

increase in a diverse array of pathway activities, encompassing

various facets of immunology, metabolism, signaling, and

proliferation. The macrophages exhibited significant up-regulation

in oxidative phosphorylation and MYC targets V1, suggesting a

preferential remodeling and induction of specific functional states.

Furthermore, interferon (IFN)-g response pathways were upregulated
in cDC 1 cells and tumor necrosis factor (TNF)-a response was

upregulated in plasma and neutrophils, with neutrophils showing

greater enrichment for inflammatory response (Figure 5A). The

KEGG functional analysis of DEGs between A and C interestingly

focused on some immune-related diseases, antigen processing and

presentation, Th cells signaling pathways, ferroptosis, and various

signaling pathways (Figure 5B). The key genes associated with these

immune pathways are shown in the Figure 5C. Genes related to

leukocyte migration are relatively independent, while genes related to

T cell differentiation and antigen presentation are duplicated,

indicating that the differentiation and development of leukocytes in

group A may have its unique regulatory mechanism. The functional

radar chart can help us to see the enrichment of these pathways more

intuitively in the two groups (Figure 5D). The A group showed

notable enrichment in T cell differentiation and leukocyte migration,

whereas the C was significantly enriched in ribosome and junction.

While cytokine-cytokine receptor interaction and regulation of actin

cytoskeleton were also upregulated in A group according to the GSEA

analysis (Figure 5E). Taken together, these findings revealed that the

complex regulation of combined innate and adaptive immune

responses contributes to asthma pathogenesis.

The infiltration of plasma cells increased in A group and the

number of B cells decreased in C. Further analysis was made to
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FIGURE 4

Overview of immune cell atlas in BALF with scRNA-seq detected. (A) UMAP representation of 14 immune cell clusters from all samples. Mono/Mac,
monocytes/macrophages; CD8+ T, CD8+ T cells; Treg/Th2, Treg/Th2 cells; Mac 1, macrophages cluster 1; cDC 2, conventional dendritic cell cluster
2; T, T cells; NK/T, NK/T cells; cDC 1, conventional dendritic cell cluster 1; Mast, Mast cells; B, B cells; Plasma, plasma cells; mDCs, migratory
dendritic cells; Neu, neutrophils; Mac 2, macrophages cluster 2. (B) Stacked violin plot of canonical cell type marker genes for each cell population.
(C) Boxplot showing cell purity for each cell type by ROGUE. (D) Correlation analysis between the immune cell populations. (E) Heatmap showing
the normalized average expression levels of the top differentially expressed marker genes in each cell subpopulation. (F) Heat map depicting the
normalized average expression of asthma GWAS genes. (G) Dot plot displaying the specific gene expression levels and percentage of cells
expressing genes associated with lung phenotypes. (H) Line chart showing lung prevalence for each cell type in C and A based on the Ro/e index.
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explore the relationship and functional differences between the two

kinds of cells. The volcano plot showed the DEGs between the two

types of cells (Figure 5F). Using KEGG molecular function terms,

we found that the DEGs between B and plasma cells were highly
Frontiers in Immunology 11
linked to various immune-related signaling pathways, such as

NOD-like receptors, NF-kB signaling, TNF signaling, and cGMP-

PKG signaling pathways, suggesting that these pathways may

facilitate plasma cells enrichment in asthmatic airways
FIGURE 5

Differentially expressed immunologically relevant genes and function of immune cells in scRNA-seq dataset. (A) Dot plot showing differentially
enriched pathways in the global immune cell type between C and A groups. (B) KEGG enrichment analysis of DEGs between C and (A, C) KEGG
enrichment analysis depicting the gene regulatory network between enrichment items and related genes. (D) Radar plot showing enrichment of
KEGG terms of C and A groups. (E) GSEA of KEGG pathways presenting highly enriched pathways in the A group. (F) Volcano plot of DEGs for C and
A groups. The top 10 upregulated genes and top 10 downregulated genes were labeled according to the value of log2FC. Difference, pct.1-pct.2;
Stable, no significant; Up, upregulated genes; Down, downregulated genes. (G) KEGG enrichment analysis of DEGs between B cells and Plasma cells.
(H) Network diagram of KEGG enrichment analysis depicting the relationship between enrichment items. (I) Radar plot showing enrichment of KEGG
term of B cells and Plasma cells.
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(Figure 5G). The correlation between these functions was showed in

Figure 5H. The elevated expression of genes associated with

signaling pathways and the enrichment of responses observed in

this study in response to inflammation or allergens may

significantly impact the composition and function of B and

plasma cells. The aforementioned findings indicated that the

immune microenvironment plays a significant role in shaping the

functional and phenotypic diversity observed within the plasma cell

and B cell repertoire. B cells terminally differentiate into plasma

cells, which play significant roles in the biology of antigen specific

antibody secretion (56). B cells showed specific enrichment in

signaling pathways associated with differentiation, whereas the

plasma cells were significantly enriched in biological processes

related to protein production and export (Figure 5I).

Dendritic cells (DCs), as potent antigen-presenting cells, are

crucial in the pathophysiology of asthma (57). To investigate

immunological changes in asthma, we analyzed the single-cell

transcriptomes of airway lung DCs. We identified 3 DC subsets,

cDC 1 specifically expressed BATF3, KLF4, and CD1C, primarily

associated with DNA-binding transcription and antigen

presentation (Additional File 6: Supplementary Figure S5A). cDC

2 specifically expressed genes which are produced by immature

dendritic cells involved in the classical complement pathway (e.g.,

C1QA, C1QB, C1QC). cDC 2 also largely expressed genes related to

presenting peptides derived from extracellular proteins (e.g., HLA-

DPB1, HLA-DRA, HLA-DQB1) (Figure 4E). mDCs specifically

expressed CCR7, CCL19, and FSCN1, genes primarily associated

with immune cell migration, motility, adhesion, and cellular

interactions (Additional File 6: Supplementary Figure S5A) (58–

60). The proportion of each subtype in A differed from that in C

(Figure 4H). The DEGs were compared between DCs and other cell

types by volcano plot (Additional File 6: Supplementary Figure

S5B). The DEGs in the GO terms and KEGG pathways were closely

linked to initiating and regulating immune responses, supported by

the superior antigen presentation ability of DCs (Additional File 6:

Supplementary Figure S5C, D). Besides, GSEA analysis confirmed

our findings by revealing a strong enrichment for immune-related

pathways. It is worth noting that dendritic cell maturation, IFN-g
signaling, antigen processing and presentation were upregulated in

DCs, highlighting the crucial role of IFN-g signaling in the immune

response of DCs (Additional File 6: Supplementary Figure S5E).
3.7 Analysis of differentiation of
macrophages in BALF

Macrophages are a heterogeneous and dynamic population of

cells, which can differentiate from monocytes or develop from the

proliferation of resident macrophages (61). ScRNA-seq analysis

identified three populations, all exhibiting high AIF1 expression

(Figure 4B). Mac 1 exhibited elevated SIGLEC10 and FCGR3A

expression, with comparatively lower CEBPD levels. Mac 2

exhibited high FCN1 expression and several monocytes marker

genes, including CD14, IL1B and VCAN (62), while showing low to

no expression of SIGLEC10 and FCGR3A (63). The third

population of cells had common biomarkers with monocytes and
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macrophages which did not distinguish this subset well, therefore

we clustered it to monocyte/macrophage. To further understand the

immune dynamics, we used the Monocle analysis toolkit to perform

cell trajectory analysis to explore the potential transitions between

cell types. According to the trajectory analysis, we found that

monocyte/macrophage cells can transform into the two

macrophage clusters over time which may have significantly

different biological functions. This trajectory can be segmented

into 5 distinct states (Figures 6A–C). C1QA and CSF1 are the

marker genes of tissue-resident macrophages and their expression

all decreased significantly along the pseudotime (64, 65)

(Figure 6D). On the other hand, the expression of MRC1 (the

marker gene of M2 macrophages), along with MARCO and IL1B

(the marker genes of M1 macrophages) increased over time in

cluster 2, suggesting a mixed population of M1 and M2

macrophages (Figure 6E) (66). Based on biomarkers expression

and pseudotime analysis, we inferred that Mac 1, which increased

significantly in A group, may be derived from tissue-resident

macrophages, while Mac 2 from differentiated monocytes. We

analyzed the cell trajectory from left to right and categorized the

genes into two clusters. BEAM analysis displayed the fate-

determining genes related to the differentiation of pre-branch to

cell fate 1 and cell fate 2 (Figure 6F). KEGG analysis of these

branch-related differential genes showed that the IL17, NOD-like

receptor, HIF-1, and NF-kB signaling pathway mediated the

phenotypic and funct ional shi f t dur ing macrophage

differentiation, supporting the possibility that these signaling

pathways play important roles in the progression of asthma

(Figure 6G). GO analysis of cell marker genes from three

macrophage clusters identified 15 signaling pathways. Among

them, metabolic pathways and molecular signaling pathways were

closely associated with asthma formation (Figure 6H). Collectively,

these results indicated that tissue-resident macrophages in the A

group undergo a differentiation process into Mac 1, which is

significantly enhanced. Multiple signaling pathways were

identified as playing a role in promoting this differentiation process.
3.8 Intercellular communications of
immune cells

Extensive cell-cell communications were demonstrated among

the immune cell clusters using Cellchat. The number and strength

of cell-cell communication among immune cells were elevated

(Figure 7A). The PTPRC-MRC1 ligand-receptor pair was the

most significant, involving the majority of immune cell clusters

(Figures 7B, C). Through a comparative analysis of the information

flow in the C and A groups, we discovered 34 signaling pathways

that exhibited enrichment in either group, with additional pathways

showing equal enrichment in both regions (Figure 7D). Of

particular interest, certain pathways enriched in the A group have

been linked to the development of asthma. Previous data indicated

an upregulation of TGF-b in asthma (67). TGF-b is crucial in

regulating cellular processes such as epithelial cell growth

suppression, epithelial cell differentiation, fibroblast activation,

and extracellular matrix organization (68). TGF-b also plays a
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crucial role in T cell differentiation and is significantly involved in

asthmatic airway inflammation (69). Pathways that enriched in the

A group were showed in Figure 7E. At the single-cell level, we

demonstrated that TGF-b dependent signaling was transmitted

from certain immune cells to mast cells, primarily involving

TGFb-(ACVR1B+TGFBR2) interactions among all known ligand-
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receptor pairs (Figure 7F). Subsequently, a detailed analysis of

signaling-receptor level changes across all significant pathways

was conducted. The study identified active pathways in group A,

including the IL1 pathway targeting neutrophils (Figure 7G).

ALCAM signaling only targeted Treg/Th2 cells in A group.

Certain pathways were restricted to cells in C, such as the CD86
FIGURE 6

Pseudotime analysis of macrophage populations. (A-C) Trajectory analysis reveals the differentiation process of macrophage populations, colored-
coded by the associated cell subpopulations (A), states (B) and pseudotime (C). Trajectory directions were determined by a comprehensive
consideration of biological prior and pseudotime analysis. (D, E) Scatter plots showing the expression of selected genes in the pseudotime
progresses. (F) Heatmap displaying the dynamic expression of fate-determining genes which were obtained by BEAM analysis along the pseudotime
trajectory, and these genes were clustered into 4 groups according to their expression pattern along the pseudotime. (G) KEGG enrichment analysis
of differential related genes in heatmap. (H) Heatmap of the expression of gene markers in each macrophage cluster along the pseudotime
trajectory (left) and selected GO pathways related to corresponding gene markers. The top 5 GO pathways were displayed according to p value
(right). The smaller the p value, the larger the font of the pathway name.
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signaling pathway that targeted Treg/Th2 cells, and the GRN

signaling pathway that targeted monocytes. Some of the

remaining pathways exhibited variations corresponding to disease

states. For example, SEMA4 signaling mainly targeted macrophages

and monocytes in the A group, whereas it only targeted monocytes
Frontiers in Immunology 14
in the C group (Figure 7G). In addition, CCL signaling targeted

monocytes and mDCs in A group, whereas it targeted macrophages

and monocytes in C group (Figure 7G). These characteristics may

reflect that the changed interactions and communications of

immune cells reshape the asthma microenvironment.
FIGURE 7

Cell-cell communications of immune cell populations. (A) Illustration of the Interaction numbers (left) and interaction weights/strength (right)
between immune cell types. (B) Relative contribution of each ligand-receptor pair to the overall communication network. L-R, Ligand-receptor.
(C) The PTPRC-MRC1 pair interactions network between immune cell types. (D) Significant signaling pathways ranked based on differences in the
overall information flow within the inferred networks between C and A groups. Pathways enriched in A group are red; black pathways are equally
enriched in A and C groups; green pathways are enriched in C group. (E) Inferred signaling networks enriched in (A, F) Relative contribution of each
ligand-receptor pair to the overall communication network of inferred signaling networks which enriched in (A, G) Analysis of the interactions
between C and A groups on the activity of incoming signaling pathways.
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3.9 Observation of a cell−type−specific
metabolic program

Immunometabolism and the associated phenotypic biology in

asthma remain unclear (70). To comprehend the metabolic profile

of immune cells in asthma, the metabolic activity scores of all 85

active metabolic pathways were computed. Among all cell types,

macrophage cells demonstrated consistently elevated metabolic

activity scores in both C and A groups (Additional File 7:

Supplementary Figures S6A, B). Further analysis of the

metabolic pathways differences between the two groups

identified 28 potentially upregulated pathways in the A group,

indicating strong metabolic profiles associated with asthma

(Additional File 7: Supplementary Figure S6C). Notably, some

upregulated metabolic pathways in the A group are implicated in

asthma pathogenesis. For example, monocytes derived from

asthmatic patients, as well as lung tissues from ovalbumin-

sensitized and challenged mice, exhibited elevated levels of

lactate and enhanced aerobic glycolysis (71). Moreover,

glutathione-S-transferase P (GSTP) induces aerobic glycolysis in

bronchial epithelial cells, highlighting the importance of the

glutathione–glycolysis signature in asthma pathogenesis (72). In

A group, glutathione, purine, glycolysis, and oxidative

phosphorylation which are involved in mitochondrial redox

system significantly up-regulated, suggesting that A group may

require more ATP production (Additional File 7: Supplementary

Figure S6D). These findings revealed metabolic pathways in

different immune cells that could lead to immune response

dysregulation in asthma. New therapies that target the critical

biological mediators in the metabolic pathways in asthma can be

explored further.
3.10 Integrating single-cell and bulk
transcriptome analysis and key regulated
gene identified

Given the significant impact of alterations in the immune

microenvironment on asthma, we conducted an analysis of the

proportions of 22 immune cell types in bulk RNA-seq samples

using the CIBERSORT algorithm (Figure 8A). Removing the cell

types that expressed zero in more than half of the samples, the

heatmap illustrating immune cell abundance per sample is

presented in Figure 8B. Furthermore, the correlation among

immune cells in these samples was analyzed (Figure 8C). A

positive correlation was found between mast and activated NK

cells, activated dendritic cells and CD4 memory T cells (r=0.62).

Conversely, macrophages exhibited the strongest negative

correlation with naïve B cells (r=-0.78). Later, we analyzed the

DEGs in the bulk transcriptomic data. A total of 480 dysregulated

DEGs were retained between A and C groups in GSE136587

(Figure 8D). A heatmap of the upregulated and downregulated

DEGs demonstrated relative consistency within groups (Figure 8E).

The functional analysis of DEGs in asthma interestingly highlighted

various signaling pathways and immune responses (Figure 8F),

consistent with the scRNA-seq analysis of GSE164015.
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To identify key regulatory genes involved in both acute asthma

exacerbation and its pathogenesis, we analyzed the common

expression patterns of DEGs across two datasets. As epithelial

and immune cells showed different characteristics in asthma, the

key regulatory genes were obtained by intersecting of the DEGs with

the most significant difference (p value <0.05 and |log2FC| > 0.5)

between C and A group in epithelial, immune cells and bulk RNA-

seq. The change trend of DEGs in each dataset should be in the

same direction. 9 key regulatory genes crucial to asthma

development were identified (Figure 8G). Among them, 5 genes

(tmprss11a, tuba1a, scel, icam4, and tmprss11b) down-regulated

were in airway epithelial cells, 3 genes (clc, nfam1, and f13a1) were

highly expressed in immune cells, and 1 gene (igfbp2) down-

regulated played critical roles in both epithelial and immune cells

in scRNA-seq data (Figure 8H). NFAM1, F13A1, and IGFBP2 were

mainly expressed in macrophages which at different stages of

differentiation. CLC was mainly expressed by mast cells

(Figure 8I). However, the 9 key regulated genes did not show a

tendency of change by the moderate and severe degree of asthma in

bulk RNA-seq (data were not showed).

To better understand how key regulated genes influence

asthma progression, we explored upstream regulation by

predicting related TFs and miRNAs. The TFs-mRNA-miRNA

regulatory network, constructed using NetworkAnalyst, includes

105 nodes and 119 edges (41). A total of 31 TFs genes and 65

miRNAs interacted with the 9 key regulated genes (Figure 8J). A

total of 28 transcription factors were detected in scRNA-seq data,

of which MYB, SOX5, SREBF2, PRRX2, NR2F1, TEAD1,

TFAP2A, and FOXC1 were mainly expressed in epithelial cells

and the rest were mainly expressed in immune cells (Figure 8K).

These TFs were expressed in one or more subtypes of immune

subtypes, with all immune cells showing activation in TFs

expression (Figure 8L).
3.11 Experiments validations of key
regulated genes expression in asthma

We next aimed to preliminary verify our findings that these key

regulated genes are involved in asthma by in vitro and in vivo

experiments. We established a cellular model of asthma by

stimulating BEAS-2B cells with HDM. The inflammatory

cytokines (il-25, il-33, tslp, and postn) mRNA increased in HDM-

stimulated BEAS-2B cells (Figure 9A). We quantified the mRNA

levels of key epithelial cell genes using qRT-PCR. Tmprss11a,

tuba1a, scel, icam4, tmprss11b, and igfbp2 mRNA expression was

significantly decreased in the HDM group compared to PBS

group (Figure 10A).

The mice were intranasally administered HDM or PBS for

sensitization and challenge. HDM-challenged mice exhibited

significantly higher total cell and eosinophil counts in BALF, as

well as increased inflammatory cell numbers around the conducting

airways, as assessed by H&E staining (Figures 9B–D). PAS staining

revealed numerous mucus-containing epithelial cells, and muc5ac

transcript levels were significantly elevated in HDM-challenged

mice compared to PBS-challenged mice (Figures 9E–F). We
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FIGURE 8

Analysis of bulk RNA-seq dataset and potential regulatory mechanisms. (A) Immune infiltration proportion of the 22 immune cell populations in 39
samples. (B) Heatmap exhibiting the expression landscapes of infiltrated immune cells between C and A groups. (C) Correlation heatmap depicting
co-expression patterns among immune cells. (D) Volcano plot of DEGs between C and A groups in the bulk RNA-seq dataset (|log2FC|> 0.5 and p
value < 0.05). (E) Heatmap of DEGs with unsupervised clustering in the bulk RNA-seq dataset. (F) KEGG enrichment analysis of DEGs between C and
A groups. (G) Upset plot of key regulatory genes identified in scRNA-seq and bulk RNA-seq. (H) Expression of key regulatory genes in scRNA-seq
data set. Up-regulated genes were colored in the red bar, and down-regulated genes were colored in the blue bar. The blue gene names represent
the DEGs in the epithelial cells, the red gene names represent the DEGs in the immune cells and the black gene name represents the DEG in both
epithelial cells and immune cells. (I) Dot plot showing the expression of key regulatory genes in immune cells from the scRNA-seq data set. (J) The
TF-mRNA-miRNA regulatory network visualized by Cytoscape. Red represented mRNAs, blue represented TFs and yellow represented miRNAs.
(K) Dot plot showing the expression of predicted TFs in scRNA-seq data set. (L) Dot plot showing the expression of predicted TFs in immune cells
from the scRNA-seq data set.
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FIGURE 9

Establishment of asthma model in cell line and mouse. (A) The transcriptional levels of il-25, il-33, tslp and postn in culture medium of BEAS-2B cells
after treatment with PBS or HDM for 24h. (B) H&E staining and PAS staining of representative lung sections. Black arrowheads indicate inflammatory
infiltration after H&E staining and goblet cells containing mucus (magenta) after PAS staining. (C) Counts for macrophages, eosinophils, lymphocytes
and neutrophils in BALF. n = 6 mice per group. BALF, bronchoalveolar lavage fluid. Total, Total cells number in BALF; Mac, macrophages; Lym,
lymphocytes; Eos, eosinophils; Neu, neutrophils. (D) Inflammatory scores of lung sections from mice intranasally challenged with HDM or PBS were
calculated as described in Materials and methods. (E) PAS point scores of lung sections from mice intranasally challenged with HDM or PBS were
calculated as described in Materials and methods. (F) The transcriptional levels of ccl11, ccl24, ccl26 and muc5ac in lung of mice. The data are
represented as mean ± SD. **p<0.01; ***p<0.001.
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analyzed the expression of the eotaxins (ccl11, ccl24, and ccl26) in

mouse lungs by qRT-PCR. HDM challenge induced the mRNA

expression of ccl11, ccl24, and ccl26 in lung tissue of mice

(Figure 9F). Due to species difference between human and mouse,

the gene information for CLC in mice was not available in NCBI, so

there was no in vivo experimental verification of CLC. The nfam1
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and f13a1 mRNA expression was significantly increased and

tmprss11a, tuba1a, scel, icam4, tmprss11b, and igfbp2 expression

was decreased in HDM-challenged mice (Figure 10B). Taken

together, our data indicated that TMPRSS11A, TUBA1A, SCEL,

ICAM4, TMPPRSS11B, IGFBP2, CLC, NFAM1 and F13A1 are

crucial in the occurrence and development of asthma.
FIGURE 10

Verification of key regulatory genes in asthma model by qRT-PCR. (A) The transcriptional levels of tmprss11a, tuba1a, scel, icam4, tmprss11b and
igfbp2 in culture medium of BEAS-2B cells after treatment with PBS or HDM for 24h. (B) The transcriptional levels of tmprss11a, tuba1a, scel, icam4,
tmprss11b, igfbp2, nfam1 and f13a1 in lung of mice. The data are represented as mean ± SD. *p<0.05; **p<0.01; ***p<0.001.
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4 Discussion

Airway BALF are important for providing further insight into

altered epithelial cells and immunity pathways of asthma patients.

“Omic” techniques on them help to clarify the pathophysiology of

delayed reaction induced by allergen in asthma more precisely (73).

This study directly compared exacerbated allergic asthmatics with

allergic asthmatic controls to identify distinct populations,

functional properties, and tissue-specific trajectories of epithelial

and immune cell subsets in BALF at the single-cell level.

Furthermore, a single-cell resolution landscape of cellular

metabolisms and communication networks was constructed. The

hub conclusions were displayed in Table 1. Then we explored 9 key

regulatory genes associated with asthma occurrence and

development by performing a series of bioinformatics analyses

based on scRNA-seq and bulk RNA-seq. TFs-mRNA-miRNA

networks associated with the nine key regulated genes were

constructed. Afterward, we preliminary verified these key

regulatory genes in epithelial cell and mouse asthma models to

offer new insight into the pathogenesis of allergic asthma.

Mucociliary clearance dysfunction has been reported in asthma

in the stable state and during exacerbations (74). Analysis of the

scRNA-seq epithelial data revealed that the number of ciliated cells

increased significantly and respiratory electron transport chain,

ATP synthesis and NAD(P)H dehydrogenase (quinone) activity

were primarily concentrated on in A group. These results confirm

that respiratory ciliated cells require an efficient ATP supply chain

for cilia beating to clear mucus; however, this organization also

produces reactive oxygen species (ROS), which risk causing injury

(75). Pseudotime analysis enhances our understanding of epithelial

cell changes and dynamic gene regulatory programs throughout

continuous biological processes (76). Results indicated that basal

cells act as progenitors, differentiating into ciliated, secretory, and

goblet cells during repair. The secretory and ciliated lineages in

asthma also underscore the essential role of ciliated cell function

and mucociliary clearance in respiratory tract defense. Besides, GO
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results prompted that epithelial cells differentiation are related

to iron homeostasis and transport. The findings elucidated

the regulatory impact of iron overload on epithelial cell

proliferation and differentiation, offering new insights into the

mechanisms by which iron overload influences asthma.

Ferroptosis was recognized as a non-apoptotic cell death type

linked to asthma (77). Our study further identified a potential

possibility that iron overload promotes the abnormal differentiation

of epithelial cells. Fcolin-1-rich granule is also one of the important

mechanisms affecting epithelial cell differentiation. Gao Pengfei

et al. reported that asthmatic patients exhibited elevated plasma

ficolin-1 concentrations, which diminished following inhaled

corticosteroids (ICS) treatment, suggesting ficolin-1’s potential

role in asthma pathogenesis (78). Cell-cell communication

analysis indicated that signal-communication patterns were

altered in asthma exacerbation. It was noticed that the MDK–

NCL ligand-receptor pair showed higher activity and possibility

between epithelial cells in A group, indicating that NCL might be a

significant receptor during cellular cross-talk in asthma exacerbation.

Furthermore, allergic exposure can alter the metabolic biology of

airway epithelial cells. Metabolic analysis revealed that the metabolic

activities of A and C groups were similar, but unique metabolic

heterogeneity in asthma exacerbation was displayed, such as enhanced

activity of glycolysis, oxidative phosphorylation pathways, purine

metabolism, and unsaturated fatty acids biosynthesis pathways. A

prior study utilized lipidome and metabolome analyses showed the

metabolic differences in bronchial epithelial cells between asthma

patients and healthy individuals. These differences are associated

with inflammation and asthma severity (79).

The relationship between the immune responses of different

immune subtypes is very complex. In asthma, memory IgG-positive

B cells produce IgE upon stimulation and differentiate into long-

lived plasma cells, which are an independent negative prognostic

factor, possibly due to their production of the immunosuppressive

cytokine IL-35 (80) (81). B cells also contribute to allergic

inflammation through interactions with T cells (82). DCs have
TABLE 1 The characteristics of epithelial and immune cells in asthma excerbation.

Celltypes Analysis Hub conclusions Fig

Epithelial

Functional Enrichment The number of goblet and ciliated cells increased significantly, mitochondrial and
ribosomal activity enhanced.

Figures 2, 3

Pseudotime Iron metabolism and ficolin-1 signal related pathways promote epithelial
cell differentiation.

Supplementary Figure S2

Communication APP–CD74 was the most significant ligand–receptor pair. CD99 and JAM pathways
were occurred active.

Supplementary Figure S2

Metabolism Epithelial cell populations had the similar metabolic activity scores. 47 metabolic
pathways were upregulated.

Supplementary Figure S3

Immune

Functional Enrichment A complex regulation of conjoint innate and adaptive immune responses activated. Figure 5

Pseudotime Tissue-resident macrophages undergo a differentiation process into Mac 1, which is
significantly enhanced. IL17, NOD-like receptor, HIF-1, and NF-kB signaling pathway
mediated the phenotypic and functional shift.

Figure 6

Communication TGF-b dependent signaling was upregulated significantly. Figure 7

Metabolism Macrophages cells had the highest metabolic activity scores. 28 metabolic pathways
were upregulated.

Supplementary Figure S6
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emerged as critical players in the communication between the

innate and adaptive immune systems during the initiation and

maintenance of asthma (83). In our functional enrichment analysis

of DCs, results showed a significant increase in IFN-g which induces
the generation and maturation of immune-regulatory DCs (84).

Moreover, IFN-g directs DC-mediated polarization of T cells

toward Th1, essential for initiating effective immune responses (85).

Macrophages, the primary immune cells in the lung, play a

crucial role in the development of airway inflammation caused by

environmental allergens in asthma (86). Lung macrophages exhibit

heterogeneity due to their potential origins from either the

differentiation of bone marrow-derived monocytes or from the

proliferation of resident macrophages (87). Our pseudotime

analysis of macrophages also clarified the possible source and

type in the BALF of asthma exacerbation. It is crucial to

acknowledge that macrophages exhibit a spectrum of polarization

states, adopting intermediary phenotypes and diverse

subpopulations to perform various physiological functions (61).

The co-expression of gene markers for both M1 andM2 phenotypes

in individual cells highlights the complexity of polarization states,

complicating the assessment of macrophage generation and

maturation. M1 macrophages, known for their pro-inflammatory

phenotype, express cytokines and chemokines to recruit immune

cells and exhibit strong phagocytic and cytotoxic abilities (88). M2

macrophages exhibit greater functional diversity including

clearance of dead cells and anti-inflammatory responses,

manifesting as distinct subtypes (M2a, M2b, M2c, M2d)

characterized by unique profiles of cytokines, chemokines, and

growth factors (89). Increased expression of MARCO and IL1B

indicates promoted M1 polarization, while elevated MRC1

expression signifies enhanced M2 polarization. Given the

plasticity and complexity of lung macrophage phenotypes, further

comprehensive studies on macrophage polarization in both stable

and exacerbating asthma are necessary.

As expected, the A group exhibited a notable increase in both

the number and strength of cell communication, along with a

significant enhancement of the TGF-b signaling pathway. In the

functional enrichment analysis using hallmark gene sets, the TGF-b
signaling pathway was also enriched and enhanced, indicating the

key role of TGF-b signaling pathway in asthma exacerbation.

According to inferred signaling network plots, the recipients of

TGF-b signaling were closely related to mast cells in asthma. TGF-b
promotes inflammation by inducing Th17 cell differentiation

through Smad and p38MAPK pathways and serves as a

chemoattractant for monocytes, mast cells, and granulocytes (90).

The ubiquitous presence of TGF-b receptors across various

immune cell types suggests a significant impact on immune

responses, posing a challenge in the investigation of TGF-b
therapy. Furthermore, metabolic reprogramming is essential for

inducing immune responses, as immune cells engage in cellular

immune signaling and significantly alter metabolic pathways,

inc lud ing g lu ta th ione , pur ine , g lyco lys i s , ox ida t ive

phosphorylation, and fatty acid metabolism, thereby enhancing

their ability to respond to subsequent stimuli (91).

In addition, our study identified 9 key regulatory genes with

significantly different expression between groups A and C based on
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combined analysis. The down-regulated genes in epithelial

associated with barrier function, cell motility, adhesion, secretion,

and regulation. TUBA1A encoding tubulin proteins, together with

microtubule-associated proteins (MAPs) and motor proteins on the

outer surface, are involved in significant cellular activities such as

intracellular transport, cell division, and migration (92). Research

revealed that the expression levels of TUBA1A were lower in cells

exposed to particulate matter (PM10) for 24 hours than in the

control group (93). This may indicate that the microtubule

aggregation dynamics in asthma are disrupted. As a member of

the adhesion molecular protein family, ICAM4 is not only

responsible for cell adhesion, but also important for cellular,

proliferation, inflammation and immune responses (94, 95).

Sciellin (SCEL), a precursor to the cornified envelope of human

keratinocytes, play a major role in the physical barrier properties of

the stratum corneum (96). Mice with knockout of the gene

encoding epidermal protein have a defect in barrier function and

respond abnormally to the application of irritants (97, 98). The

airway epithelial type II transmembrane serine proteases,

TMPRSS11A and TMPRSS11B, are linked to SARS, MERS, and

COVID-19 infections. They assist in the fusion of the virus with the

cell membrane, cleave the viral spike protein, and play a regulatory

role in airway epithelial cells (99, 100). The secreted protein IGFBP2

governs the distribution, function, and activity of insulin-like

growth factor (IGF) in the extracellular matrix, enabling it to

regulate multiple biological processes, including the integration of

signaling pathways (101). For example, research indicates that

IGFBP2 might actively promote the movement of macrophages

(102). These gene expression levels are down-regulated, indicating

that the function of airway epithelial cells is impaired during

asthma exacerbation.

The up-regulated genes in immune cells support the

development, migration and activation of immune cells, enhance

signal transduction, and facilitate the production of inflammatory

cytokines and chemokines. Charcot-Leyden crystals (CLCs) are

formed from the eosinophil granule protein galectin-10 (Gal10)

and found in severe eosinophil-associated diseases like asthma. It is

a biomarker of airway eosinophilia and it forms bipyramidal

hexagonal crystals which can directly induce innate and type 2

immune response (103). Therapeutic antibodies with high affinity

for Gal10 quickly dissolve crystals in patient mucus samples and

decrease CLC-induced mucus production, inflammation, and IgE

synthesis (104). There is anticipation about their potential impact

on people with asthma. NFAM1 is a transmembrane receptor

expressed in innate and adaptive immune cells. It is capable of

inducing the activation of the calcium-dependent transcription

factor NFAT, thereby promoting the expression of pro-

inflammatory cytokines and chemokines across various cell types.

Additionally, NFAM1 facilitates the activation of diverse immune

cells, including T cells, macrophages, dendritic cells, and

monocytes. It also plays a regulatory role in B lymphocyte

development and signal transduction (105, 106). F13A1 is an

important coagulation-related gene encoding factor XIII subunit

A (FXIII-A). It is not only involved in blood coagulation, but also

has a role in basic immunological functions as well (107). The

cellular form of FXIII has been associated with phagocytic activities
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of macrophages, as well as the regulation of migration in monocyte-

derived dendritic cells (108, 109). Esnault et al. also found that the

RNA and protein level of F13A1 in BALF cells of asthma patients

was significantly up-regulated after allergen exposure, and the

expression level was positively correlated with the level of type 2

immune response. Combined with our analysis results, F13A1 in

BALF of asthma patients mainly came from immune cells. It may

also play a role in the acute exacerbation of asthma, but the exact

mechanism is unclear (110, 111). These genes are up-regulated,

indicating a dysregulated immune response in asthma exacerbation.

Apparently, the downregulation of key regulatory genes in

epithelial cells and the enhancement of the immune related

signaling pathways, particularly TGF-b signaling, which is a

marker of epithelial-mesenchymal transition (EMT), suggest a

loss of epithelial integrity and epithelial-mesenchymal balance in

patients with asthma. Consistent with us, research showed that

asthmatic samples exhibited stronger reactions to TGF-b compared

to healthy controls, with more TGF-b-responsive basal cells and a

decrease in epithelial markers alongside an increase in

mesenchymal cell markers (112). Dysregulation of EMT in

asthma could permit transformed cells to migrate into the airway

submucosa and impair the wound healing ability of epithelial cells

(113, 114). Inflammation and remodeling occur concurrently and

promote each other, thereby maintaining asthma-associated

pathology (113). Moreover, it is important to note that functional

enrichment analysis of epithelial cells revealed upregulated immune

signaling pathways, implying that airway epithelial cells also play a

crucial role in regulating immune responses. For example, in

addition to iron homeostasis, inflammation response was also

involved in the differentiation of airway epithelial cells

(Supplementary Figure S2D). The processes depend on the

activation of the immune cells. In details, pattern recognition

receptors (PRRs) on the surface of epithelial cells enable them to

react to different external stimuli by generating chemokines and

cytokines (115). This subsequently triggers the activation of DCs,

which move to the draining nodes to encourage Th2 development,

and activates innate immune cells (eosinophil, mast cells, et al.) that

are drawn to the airways, leading to the production of numerous

mediators that contribute to airway inflammation (116). To

conclude, asthma is characterized as a chronic inflammation of

the airways, in which airway epithelial cells and immune cells

participate in and interact with each other (117). The airway

epithelium serves not only as a passive shield against harmful

external substances but also plays a crucial role in modulating the

immune system with potentially significant contributions to asthma

pathogenesis (115). Consequently, the interconnection of epithelial

and immune cells may contribute to the persistence of asthma

symptoms, and targeting only one factor in treatment might not

offer enough clinical enhancement (113).

Finally, we performed validation in asthma models to elucidate

the specific roles of these key regulated genes in disease progression.

Both airway inflammation and mucous hypersecretion

characteristics were presented in the asthma model induced by
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HDM stimulation. The pathological findings and qRT-PCR results

indicate the successful establishment of the asthma model. The

reliability of 9 key regulatory genes (TUBA1A, ICAM4, SCEL,

TMPRSS11A, TMPRSS11B, IGFBP2, CLC, NFAM1, and F13A1)

were supported by qRT-PCR verification.

Some limitations need to be elucidated in our study. First, our

data may have variations introduced by differences in the

sequencing depth of two GEO datasets, BALF sampling methods,

and individual reactions to allergens. Second, our study did not

employ verification using the asthma exacerbation model to

enhance results credibility, only the asthma model was utilized, as

there is no recognized method for modeling acute exacerbation of

asthma, which complicates confirmation of success (116). Last, due

to insufficient cell numbers in the BALF of mice for adequate RNA

extraction for qRT-PCR, we verified key regulatory genes in

epithelial and immune cells using lung tissue. The cell

composition in the lung tissue of mice was complicated, which

may cause interference with the results. Further clarifying the roles

of these key regulated genes is a topic that we will explore in

the future.
5 Conclusions

In summary, we revealed the multiple characteristics of

functional enrichment, differentiate dynamics, cell-cell

communication, and metabolic changes in epithelial and immune

cells of asthma exacerbation at the single-cell level. Furthermore, we

pinpointed 9 key regulatory genes (TUBA1A, ICAM4, SCEL,

TMPRSS11A, TMPRSS11B, IGFBP2, CLC, NFAM1, and F13A1)

in BALF of asthma by integrating scRNA-seq and bulk RNA-seq

data. Our research elucidates cellular changes and intercellular

interactions in asthma airways, offering new insights into the

cellular and molecular mechanisms of asthma pathogenesis and

progression, and potentially aiding in the development of more

effective therapeutic interventions.
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SUPPLEMENTARY FIGURE 1

ScRNA-seq analysis and cell-type assignment strategy for the assignment of
epithelial and immune cells. (A, B) UMAP plots showing a comparison of data

quality before (left) and after (right) integration of cell clusters from all
samples. color-coded by the sample ID. A1-A4, 4 samples in A group; C1-

C4, 4 samples in C group. (C) Dot plot of canonical cell type marker genes for

each cluster. (D) UMAP representation of epithelial and immune cell clusters
from all samples. (E) Feature plots of the expression of canonical marker

genes used for global cell-type assignment. (F) Bar plot of the cell type
distribution in C and A groups. (G) Feature plots of the expression of canonical

marker genes used for epithelial subsets assignment.

SUPPLEMENTARY FIGURE 2

Pseudotime analysis and cell-cell communications of epithelial cell

populations. (A, B) Trajectory analysis reveals the differentiation process of

epithelial populations (A) and pseudotime (B). Trajectory directions were
determined by a comprehensive consideration of biological prior and

pseudotime analysis. (C) Heatmap displaying the dynamic expression of
fate-determining genes which were obtained by BEAM analysis along the

pseudotime trajectory, and these genes were clustered into 4 groups
according to their expression pattern along the pseudotime. (D) GO

enrichment analysis of differential related genes in heatmap. (E) The TF-

mRNA regulatory network visualized by Cytoscape. Red represented mRNAs
and blue represented TFs. (F, G) Circle plot showing the interaction numbers

and strength between epithelial cell types comparing A with C. Blue lines
indicated that the displayed communication is decreased in A, whereas red

lines indicate that the displayed communication is increased in A compared
with C. (H) Bar plots of the inferred interaction numbers (left) and strength

(right) of epithelial cells in A and C groups. (I) Relative contribution of each

ligand-receptor pair to the overall communication network. (J) Analysis of the
interactions between C and A groups on the activity of overall (incoming and

outcoming) signaling pathways.

SUPPLEMENTARY FIGURE 3

Metabolic analysis of epithelial cell populations. (A) Heatmap displaying the

significantly different metabolic pathways between C and A groups. (B-H)
Scatter plots comparing metabolic pathway activities between C and A
groups for epithelial subsets.

SUPPLEMENTARY FIGURE 4

Cell-type assignment strategy for the assignment of immune subsets. (A)
UMAP plot showing immune cell clusters from all samples, color-coded by

Sample ID. A1-A4, 4 samples in A group; C1-C4, 4 samples in C group. (B)
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Feature plots of the expression of canonical marker genes used for immune
subsets assignment.

SUPPLEMENTARY FIGURE 5

The lineage and characteristics of dendritic cells. (A) Stacked violin plot

depicting distributions of DCs marker genes in each cell type cluster. (B)
Volcano plot of DEGs for DCs and other cell types. The top 10 upregulated

genes and top 10 downregulated genes were labeled according to the value
of log2FC. (C) Trigram array plot demonstrating the GO pathway analysis of

DEGs and the top 10 enrichment pathways. (D) KEGG analysis depicting the

gene regulatory network between enrichment items and related genes. (E)
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The GSEA of C2 pathways of DCs and other cell types. NES, normalized
enrichment score. C2: curated gene sets in MSigDB datasets.

SUPPLEMENTARY FIGURE 6

Metabolic analysis of immune cell populations. (A) Boxplot of the metabolic

pathway activity of immune cell subsets in A. (B) Boxplot of the metabolic
pathway activity of immune cell subsets in C. (C) Heatmap displaying the

significantly different metabolic pathways of immune subsets between C
and A. (D) UMAP plots showing the enrichment score of glutathione

metabolism, purine metabolism, glycolysis and oxidative phosphorylation

signal pathway.
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