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Microglia, the resident immune cells of the central nervous system, continuously

monitor the brain’s microenvironment through their array of specific receptors.

Once brain function is altered, microglia are recruited to specific sites to perform

their immune functions, including phagocytosis of misfolded proteins, cellular

debris, and apoptotic cells to maintain homeostasis. When toxic substances are

overproduced, microglia are over-activated to produce large amounts of pro-

inflammatory cytokines, which induce chronic inflammatory responses and lead

to neurotoxicity. Additionally, microglia can also monitor and protect neuronal

function through microglia-neuron crosstalk. Microglia receptors are important

mediators for microglia to receive external stimuli, regulate the functional state

of microglia, and transmit signals between cells. In this paper, we first review

the role of microglia-expressed receptors in the pathogenesis and treatment

of Alzheimer ’s disease; moreover, we emphasize the complexity of

targeting microglia for therapeutic interventions in neurodegenerative

disorders to inform the discovery of new biomarkers and the development of

innovative therapeutics
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1 Introduction

Alzheimer’s disease (AD) is the most common neurodegenerative cause of dementia,

accounting for 60-80% of dementia cases. According to the World Alzheimer’s Report

2024, approximately 6.9 million older Americans aged 65 and older currently have the

disease. This number will increase to 13.8 million by 2060 if significant progress is not made

in the prevention, mitigation, or treatment of AD (1). The main neuropathological

hallmarks of AD include the extracellular aggregation of amyloid-beta (Ab) peptides
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1508023/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1508023/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1508023/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1508023&domain=pdf&date_stamp=2025-02-14
mailto:qingsongye@whu.edu.cn
mailto:helen-1101@hotmail.com
https://doi.org/10.3389/fimmu.2025.1508023
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1508023
https://www.frontiersin.org/journals/immunology


Fu et al. 10.3389/fimmu.2025.1508023
in to p laques and the intrace l lu lar accumula t ion of

hyperphosphorylated tau protein, resulting in neurofibrillary

tangles (NFTs) (2). Indeed, AD pathogenesis is now recognized as

a complex array of pathogenic processes, a variety of factors

including genetics, amyloid, tau, ApoE, neuroimmune activation,

and infection (3).These factors can lead to synaptic dysfunction and

neuronal loss, ultimately causing cognitive impairment (4).

With the rapid development of immunotherapy and the

exploration of new therapeutic targets for AD in recent years,

microglia have received widespread attention for their role in

treating AD. These innate immune cells, equipped with receptors

that sense brain changes, have been confirmed to be associated with

AD risk by genome-wide association studies (GWAS) (5). Under

physiological conditions, microglia maintain brain homeostasis by

phagocytosing neuronal synapses, apoptotic cells, and cellular debris,

and by releasing trophic factors that support neuronal development

and survival (6). However, overactivation of microglia under

conditions of stimulation or disease leads to morphological changes

and abnormal production of cytokines, which may exacerbate

neuroinflammation with consequent effects on the progression of

AD (7). Targeting the aberrant activation of microglia presents a novel

strategy for curbing neuroinflammation and treating central nervous

system (CNS) disorders (8). The phenotypic regulation of microglia is

closely linked to pattern recognition receptors (PRRs) that recognize

Ab, pathogen-associated molecular patterns (PAMPs), and other

damage-associated molecular patterns (DAMPs), which in turn

affect microglial function and phenotype (9). While the function of

microglial receptors has been studied, the comprehensive mechanisms

of their regulation of microglial function remain unclear. In this paper,

we will analyze the receptor-ligand interaction signaling axis that

governs microglial function and evaluate its role in AD pathogenesis

and potential therapeutics (Table 1).
2 Physiology and pathology of
microglia in AD

Microglia originate from the early yolk sac and are the primary

immune cells of the CNS. These cells enter the CNS during early

embryonic development and become an intrinsic immune cell that

provides immune surveillance of the CNS (35). In their resting state,

microglia exhibit a branchedmorphology. These elongated branching

structures enable them to perform extensive surveillance in CNS

tissues, a key feature that distinguishes them from macrophages.

Microglia possess a variety of biological properties, such as

pathogen phagocytosis, cellular debris removal, and inflammatory

factor secretion, which play important roles in the CNS (36).

However, the functional state of microglia does not exist in

isolation but is highly dependent on the microenvironment in

which they reside (37). Studies have shown that even in the healthy

brain, microglia populations display complex heterogeneity and are

subject to a combination of factors such as gender, age, circadian

rhythms, gut flora, the central nervous system, the surrounding

environment, and disease state (38, 39). Nevertheless, microglia are
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always actively monitoring the CNS microenvironment and swiftly

adapt their phenotype upon detecting injury signals (40, 41).

Microglia sensory bodies composed of various receptors and

signaling molecules enable them to sensitively detect environmental

changes and respond adaptively to maintain CNS homeostasis (42,

43). This dynamic interaction with the CNS microenvironment is

especially critical in neurodegenerative diseases like AD.

In AD, microglia recognize pathogens, cellular debris, or

abnormal proteins (including misfolded Ab and tau) through

their surface receptors and induce microglial responses (44).

Activated microglia internalize pathogenic substances through

pinocytosis, phagocytosis, or receptor-mediated endocytosis and

attempt to degrade them via various endocytic pathways, such as

the lysosomal pathway, as well as by activating the expression of

relevant gene modules (45). This initial response is generally

neuroprotective, aiming to eliminate harmful substances and

maintain CNS integrity. However, as age and AD pathology

progress, microglia’s ability to address brain challenges, such as

toxic amyloid, infection, and compromised neurons, becomes

compromised (46, 47). Microglia often become dysfunctional and

susceptible to sustained activation, leading to neurotoxicity and

synapse loss (48, 49). Sustained microglial activation also impairs

their ability to effectively clear Ab and tau tangles, alongside the

generation of numerous toxic substances, particularly pro-

inflammatory cytokines and chemokines (50). This dysregulated

microglial response contributes to the neuroinflammation and

neurodegeneration characteristic of AD. Therefore, understanding

the role of microglia and their receptors in AD is essential for

developing therapeutic strategies to modulate microglial activity

and attenuate the disease process.
3 Receptors involving aggregation
clearance and microenvironment
regulation of microglia

Structural and functional changes in microglial receptors play a

key role in the pathologic process of AD (Figure 1). Microglia are

involved in the phagocytosis of aberrant proteins, such as misfolded

Ab and tau, through the expression of multiple receptor families.

These receptors include immunomodulatory receptors like TREM2

and CD33 (51, 52), scavenger receptors such as SR-A and CD36 (53,

54), and receptor tyrosine kinases of the TAM family—Tyro3, Axl,

and MerTK (55). Microglia also express a diverse set of pattern

recognition receptors (PRRs), including Toll-like receptors (TLRs),

NOD-like receptors (NLRs), and C-type lectin receptors (CLRs),

which enable the recognition of endogenous neurotoxic ligands,

notably Ab and tau (56–59). Additionally, they possess

neurotransmitter receptors, such as those for glutamate and

purines, that facilitate interactions between neurons and microglia

(60, 61).

Once microglia were thought to be homogeneous cells that

responded consistently to their environment. However, recent

developments in single-cell technology have revealed a variety of
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microglia states in normal and diseased brains (62). Microglial

phenotypes are intricately regulated by a complex network of

signaling pathways and transcription factors, which modulate

their functional states in response to environmental cues (63). For
Frontiers in Immunology 03
example, TREM2 signaling is crucial for maintaining microglial

homeostasis and supporting phagocytic functions (64). However,

under AD pathological conditions, functional variants of TREM2

(e.g., the R47H mutation) impair their ability to phagocytose Ab,
TABLE 1 Microglia Receptors involving aggregation clearance and immune modulation.

Receptor
family

Receptor Stimulate Functions
Treatment Strategies

References

IgSF TREM2

Ab
tau
ApoE
LPS

1) Mediates Ab phagocytosis
2) Modulates immune response to reduce inflammation
3) Regulates autophagy to promote cell survival

Anti-TREM2 antibodies:
AL-OO2 and DNL919

(10, 11)

Siglecs CD33 Ab
1) Involved in Ab clearance
2) Modulates microglial response to mitigate inflammation

anti-CD33 antibody:
HuM195

(12)

RTK TAM
Ab
tau

1) Contributes to plaque modification and removal
Ab phagocytosis inducer:
aAb-Gas6

(13, 14)

SR SR-A
Ab
oxLDL
pathogens

1) Involved in Ab clearance
2) Attenuates inflammatory responses

/
(15)

SR CD36
Ab
oxLDL
pathogens

1) Involved in Ab clearance
2) Upregulation of IL-1b and NO production through the NF-
kB and MAPK pathways

CD36 inhibitors:
salvinorin B, tanshinone IIA,
curcumin, and small
molecule compounds

(16, 17)

LILRB LilrB APOE4
1) LilrB3 activates microglia to enter a pro-inflammatory state
2) LilrB4 inhibits phagocytosis

Anti-LilrB4 antibody
(18, 19)

NLR NLRP3
Ab
tau
pathogens

1) Promote the maturation of the inflammatory cytokines IL-
1b and IL-18

NLRP3 inhibitors:
MCC950 and UK5099 (20)

PRRs RAGE
Ab
tau
LPS

1) Implicated in the abnormal aggregation of pathological
proteins
2) Activation of the NLRP3 inflammasome promotes the
secretion of IL-1b and the release of the N-GSDMD

RAGE inhibitors:
Azeliragon and FPS-ZM1

(21)

PRRs Dectin-1 Ab
1) Triggers the Syk/NF-kB signaling cascade and stimulates the
expression of inflammatory factors

Anti-CLEC7A antibody
(22)

PRRs TLRs
Ab
tau
LPS

1) Recognizes PAMPs and DAMPs, triggers NF-kB and
additional transcription factors, and enhances the generation of
pro-inflammatory cytokines.

TLR antagonists:
TAK-242, GX-50
and baicalein.

(23)

NRs PPAR
Ab
tau
LPS

1) PPAR-a activation reprograms the immune response
2) PPAR-g activation reduces inflammation

PPAR agonist:
DTMB and T3D-959 (24, 25)

GPCR GluRs Glutamate
1) mGluR2 activation promotes neurotoxicity
2) mGluR5 activation shows neuroprotection

mGluR2 inhibitor
MCCG
mGluR5 agonist
CHPG

(26, 27)

LGICs P2XR

Ab
tau
ApoE
ATP

1) Influence the clearance of Ab and tau
2) Promoting inflammatory responses by regulating the
expression of NLRP3 inflammasomes and chemokines

P2×7R antagonists:
Brilliant blue G
and AZ10606120

(28, 29)

Chemokine
receptor

CX3CR1
Ab
tau
CX3CL1

1) Influence the clearance of Ab and tau
2) Regulate the distribution, migration and function
of microglia

/
(30, 31)

PDGFR CSF1R
Ab
tau

1) Promoting Ab plaque formation
2) Influence the clearance of tau

CSF1R inhibitors: GW2580
and PLX5622

(32, 33)

unknown AdipoR1 adiponectin 1) Modulates microglial response to limit inflammation
adiponectin receptor
agonist: AdipoRon

(34)
IgSF, immunoglobulin superfamily; Siglecs, sialic acid-binding immunoglobulin-like lectins; RTK, receptor tyrosine kinase; SR, scavenger receptor; LILRB, leukocyte immunoglobulin-like
receptors B; NLR, NOD-like receptor; PRRs, pattern recognition receptors; NR, nuclear receptor superfamily; GPCR, G protein-coupled receptors; LGICs, ligand-gated ion channels; PDGFR,
platelet-derived growth factor receptor.
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thereby promoting disease progression (65). This highlights the

importance of understanding the broader regulatory network in

which microglial receptors operate. Thus, a deeper understanding

of the mechanisms of microglial receptors in AD and how to

modulate microglial function by targeting these receptors is

critical for effective intervention in the disease process. Below, we

have selected some of the more hotly studied and novel microglial

receptors and described their functions and differential effects

in AD.
3.1 Triggering receptor expressed on
myeloid cells 2

TREM2 is a transmembrane receptor with immunomodulatory

functions characterized by a V-type Ig structural domain,

transmembrane helices, and short cytoplasmic tails.TREM2 has

been shown to interact with various ligands, including Ab,
apoptotic cells, and lipid-related ligands such as ApoE (66, 67).

These interactions are critical for maintaining nervous system
Frontiers in Immunology 04
homeostasis. Specifically, upon ligand binding, TREM2 induces

the phosphorylation of DAP12, which subsequently recruits and

activates spleen tyrosine kinase (SYK). This signaling cascade to

regulate microglial phagocytosis, proliferation, survival, immune

responses, energy metabolism, and autophagy (68).

Polymorphisms in the TREM2 gene are major risk factors for

neurodegenerative disorders like Alzheimer’s disease (69, 70). In

particular, the R47H mutation in the coding region of TREM2

increased the susceptibility to AD, with an increased risk of up to

4.5-fold (71), thus establishing TREM2 as an immunogenetic risk

factor in AD. Recent studies have explored the signaling properties

of the TREM2R47H variant through a mouse model (72, 73). Under

normal conditions, microglial binding to Ab induces a

transcriptional signature known as disease-associated microglia

(DAM), primarily mediated by the TREM2-DAP12 receptor

complex. This complex transmits critical intracellular signals via

SYK, modulating microglial phagocytosis and inflammatory

responses (74). The TREM2R47H variant impairs the ability of

microglia to encapsulate Ab plaques and promotes Ab plaque

spreading and neurotoxicity as well as AD progression (75).
FIGURE 1

Microglia receptors and signal pathways in aggregation clearance and immune modulation. Created in BioRender.com. In Alzheimer’s disease,
pathological substances such as Ab and tau can activate microglial cells through various receptors, including CD36, TLRs, RAGE, P2XR and Dectin-1. This
activation leads to the stimulation of the NF-kB, which in turn triggers the activation of the inflammasome complex. This results in the cleavage of pro-
caspase-1 into active caspase-1 and the subsequent processing of pro-IL1b and GSDMD. The release of inflammatory cytokines and the cleavage of
GSDMD into N-GSDMD lead to the formation of pores in the plasma membrane, causing pyroptosis in microglia. Furthermore, the activation of
receptors such as AdipoR1, TAM receptors, CX3CR1, CD33, TREM2, PPAR, and SR-A aids in the clearance of pathological substances and mitigates
neuroinflammation. Additionally, TREM2 activation, proliferation and phagocytosis by activating the mTOR pathway. AdipoR, adiponectin receptors;
GSDMD, Gasdermin D; LilrB, leukocyte immunoglobulin-like receptors B; mTOR, mammalian target of rapamycin; N-GSDMD, N-terminal GSDMD;
PPAR, peroxisome proliferator-activated receptor; NLRP3, NLR family pyrin domain containing 3; RAGE, receptor for advanced glycation end products;
SR-A, scavenger receptor A; TAM, tyrosine-based activation motif; TLR, toll-like receptor; TXNIP, thioredoxin-interacting protein; TREM2, triggering
receptor expressed on myeloid cells 2.
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Additionally, TREM2 is involved in lipidmetabolism (76). It senses

lipids and mediates myelin phagocytosis. TREM2 dysfunction results

in the accumulation of pathologic lipids in microglia, likely because

TREM2 deficiency impairs the ability of microglial cells to transition to

DAM, which effectively removes myelin cholesterol. Enhancing

TREM2 function reduces cholesterol and cholesteryl ester (CE) load

in microglia, in part by facilitating lipid clearance (77). TREM2 also

regulates microglial autophagy and promotes microglial cell survival by

activating the PI3K/AKT/mTOR pathway (78). Overall, TREM2

enhances microglial phagocytosis in response to inflammatory

stimuli, thereby attenuating AD-related pathologic changes.

However, the role of TREM2 is not limited to neurodegenerative

diseases and may be dual in different disease contexts. For example, in

certain types of tumors, TREM2 may promote tumor immune escape.

In gliomas, knockdown of TREM2 expression in microglia may inhibit

tumor cell proliferation and contribute to delaying tumor progression

(79). These findings suggest that TREM2may play an inhibitory role in

the tumor microenvironment, suppressing the immune surveillance

function of microglia. Thus, the functions of TREM2 may differ in

different disease contexts, and further in-depth studies are needed to

investigate the complex mechanisms of TREM2’s role in AD and

other disorders.
3.2 Cluster of differentiation 33

CD33 is an inhibitory immune receptor that belongs to the family

of Sialic Acid-Binding Immunoglobulin-Like Lectins (Siglecs) (80). It

possesses an immunoreceptor tyrosine-based inhibitory motif (ITIM)

that, upon phosphorylation, attracts protein tyrosine phosphatases

such as SHP-1 and SHP-2, thereby suppressing cell activation,

proliferation, cytokine production, and phagocytosis (81, 82). In

2011, two genome-wide association studies (GWAS) found that the

single nucleotide polymorphism (SNP) rs3865444, located upstream of

CD33, was associated with AD risk (83). In the central nervous system,

CD33 is specifically expressed on microglial cells. Its potential link to

AD susceptibility has drawn significant attention from the scientific

community (84). Studies have shown CD33 levels are negatively

correlated with Ab clearance. The variant of CD33 associated with

an increased risk of AD is expressed at relatively higher levels, which

inhibits the phagocytic function of CD33 towards Ab (85). In a CD33

knockout (CD33-/-) mouse model, the lack of CD33 was linked to

decreased Ab levels and a reduction in amyloid plaques in the brain

(86). Moreover, Wong et al. demonstrated that targeting CD33 with

HuM195, an anti-CD33 antibody, and its single-chain variable

fragments can enhance Ab phagocytosis by microglia by blocking

CD33’s inhibitory signaling (87). Consequently, this finding implies

that diminished levels of CD33 expression could potentially empower

microglia to more effectively eliminate detrimental Ab peptides. To

investigate the role of human CD33 isoforms in microglial function,

given the functional differences between mice and humans, researchers

have developed transgenic mouse models expressing different hCD33

isoforms. Eskandari et al. demonstrated that, compared to 5XFAD

control mice, mice expressing the long form of the CD33 isoform

(CD33M) exhibited higher levels of Ab, more diffuse plaques, reduced

disease-associated microglia, and more dystrophic neuromasts (12). In
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contrast, mice that express the short CD33 isoform (CD33m) exhibited

plaque compression, enhanced microglia-plaque contacts, and

minimized neuroinflammatory plaque pathology, highlighting the

protective role of the CD33m isoform in AD (12). Of particular

importance, the protective phenotype driven by CD33m isoforms

was observed at an early stage of the disease, suggesting that CD33m

has a significant regulatory role on microglia function early in disease

progression. These findings emphasize the central role of CD33 in the

neuropathological mechanisms of AD and place it as a notable hotspot

in AD research, providing a promising target for possible future

therapeutic interventions.
3.3 Tyrosine-activated motif receptors

The TAM receptor family, which includes tyrosine kinase

receptors such as Tyro3, Axl, and MerTK, plays a key role in

regulating phagocytosis and inflammatory responses in microglia

(88). Under physiological conditions, human and mouse microglia

highly express MerTK and low levels of Axl, but not Tyro3 (89). In

AD patients and mouse models, Axl and MerTK expression is

elevated in microglia associated with amyloid plaques, where they

contribute to plaque modification and clearance by binding to Gas6

and phosphatidylserine (PtdSer) (13). This process is crucial for

maintaining brain environment stability and slowing AD

progression. In the APP/PS1 mouse model, the absence of Axl

and MerTK genes impaired microglial recognition and

phagocytosis of amyloid b plaques, highlighting the TAM

system’s essential role in these processes. TAM receptor activation

also compresses Ab plaques, potentially as a protective mechanism

to minimize brain damage (14).

Furthermore, a separate study reveals a microglial phagocytic

deficit. Specifically, tau can induce the expression of MerTK in

microglia, which then recognize and engulf neurons exposing

PtdSer through Gas6, thereby promoting neuronal loss (90).

Notably, aAb-Gas6, a novel fusion protein, selectively clears Ab
in a TAM receptor-dependent manner without inducing NF-kB-

mediated inflammation (91). This protein effectively scavenges Ab
and avoids the inflammatory response triggered by conventional

antibodies, offering novel therapeutic strategies for AD treatment.
3.4 Scavenger receptor A

SR-A is a pattern recognition receptor expressed mainly in

myeloid cells and plays an important role in the natural immune

system. It is expressed in CNS, microglia, and astrocytes (92). SR-A

has a variety of biological roles, such as the clearance of pathogens,

apoptotic cells, and lipids (93). SR-A deficiency leads to a decrease

in microglial inflammatory response and phagocytosis (94). As

animals age, the SR-A expressed in microglia decreases, which may

affect their scavenging and phagocytosis of Ab. Cornejo et al. found
that SR-A expression was reduced in the brains of aging animals,

and SR-A knockout resulted in the release of more nitric oxide

(NO) and proinflammatory cytokines from mouse microglia,

reduced production of anti-inflammatory cytokines, and
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decreased Ab phagocytic activity, which leads to further deposition

of Ab in the aging brain and promotes the development of AD (15).

In an SR-A-deficient mouse model of AD, microglia-mediated

phagocytosis of soluble Ab was reduced, and the expression levels

of enkephalinase and insulin-like growth factor 1 (IGF-1), which

have been reported to be Ab-degrading enzymes in AD, were also

significantly reduced, suggesting that SR-A may alleviate AD by

affecting Ab phagocytosis (95). Conversely, overexpression of SR-A

reduces Ab levels and promotes Ab clearance (96). However,

despite the potential that SR-A shows in AD therapy, no drugs

targeting SR-A in microglia have been discovered and developed.
3.5 Cluster of differentiation 36

As an SR-B receptor, CD36 is one of the key receptors

mediating the phagocytic response of microglia. In animal models

of AD, amyloid binds to CD36 and attempts to eliminate Ab
deposits by inducing CD36 expression and stimulating

phagocytosis (97). However, this process seems to trigger an

inflammatory response, which specifically seems to say that the

binding of CD36 to Ab activates the inflammasome NOD-like

receptor family pyrin structural domain-containing 3 (NLRP3),

which promotes the release of proinflammatory cytokines,

chemokines, and ROS, exacerbates neuroinflammation, and leads

to a progressive worsening of AD (16). In this case, CD36 seems to

do more harm than good. In addition, CD36 expression is regulated

by a variety of proteins, including PPAR, NgR, and others. A study

has shown that CD36 can be upregulated by selective PPAR

agonists, leading to increased microglia accumulation and

microglial Ab phagocytosis in and around Ab plaques, as

demonstrated in the APP/PS1 transgenic mouse model (17). In

contrast, the Nogo/NgR signaling pathway was shown to

significantly reduce CD36 expression in adult microglia (98). The

association between the Nogo receptor and CD36 expression was

further confirmed by Wang et al. (99), who proposed that

enhancing the expression of the Nogo receptor could inhibit the

transcription of the CD36 gene, thereby reducing the phagocytosis

of Ab by microglia. Although it seems contradictory on the role of

CD36 in AD pathology, in general, AD therapeutic strategies

targeting CD36 have focused on two aspects: 1) blocking CD36

using neutralizing antibodies or other small molecules to inhibit the

inflammatory response of microglia, such as salvinorin B,

tanshinone IIA, curcumin, and small molecule compounds (100).

and 2) enhancing Ab clearance by upregulating CD36 expression.

However, the exact mechanism and balance of these two

approaches still need further studies to elucidate.
3.6 Leukocyte immunoglobulin-like
receptors B

LilrB3 is a specific cell surface receptor for APOE4, as revealed in a

study by Shi et al. (18). APOE4 is the strongest known genetic risk

factor for LOAD, and LilrB3 acts as an immune checkpoint receptor

protein that binds specifically to APOE4 and almost not to APOE2.
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This specific binding is capable of activating microglia, prompting a

shift to a pro-inflammatory state, and providing new molecular-level

insights into the pathogenesis of AD (101). The team further resolved

the high-resolution structure of the LilrB3-APOE4 complex by cryo-

electron microscopy. It was found that the extracellular structural

domain (ECD) of LilrB3 contains two discontinuous immunoglobulin-

like structural domains that recognize and bind to positively charged

surface patch on the N-terminal structural domain (NTD) of APOE4.

The revelation of this structural detail provides evidence at the

molecular level for understanding how APOE4 activates microglia

through the LilrB3 receptor. This binding brings the intracellular

signaling motifs of the LilrB3 molecules in close proximity to each

other, triggering microglia (e.g., the HMC3 cell line) to enter a pro-

inflammatory state (18). This process is consistent with the LilrB3-

dependent activation of APOE4 but not APOE2, revealing a unique

role for APOE4 in immune regulation. This finding is scientifically

important for unraveling the functional differences between different

isoforms of the APOE gene and how they affect the onset and

progression of related diseases, especially Alzheimer’s disease.

Furthermore, LilrB4 also plays a role in regulating microglia

function in AD. LilrB4 interacts with membrane-bound ligands and

signals through an immunoreceptor tyrosine-based inhibitory motif

(ITIM) in its cytoplasmic domain (19). In AD, high LilrB4

expression in activated microglia inhibits phagocytosis (102, 103).

Recently, Hou et al. investigated antagonist antibodies targeting

human leukocyte Ig-like receptor B4 to enhance microglia

responses. In an AD mouse model, human LilrB4 expression

reduced the association between microglia and amyloid plaques,

increasing amyloid pathology. This effect was reversed by LilrB4-

specific antibody treatment, which enhanced microglia

phagocytosis of amyloid plaques, suggesting that LilrB4 is a

potential therapeutic target for AD (104).
3.7 NLR family pyrin domain containing 3

In the neuropathology of AD, the NLRP3 inflammatory vesicle

serves as a key pattern recognition receptor in the CNS and is

expressed predominantly in microglia (105). The NLRP3

inflammasome is strongly activated in AD and may contribute to

the pathogenesis of the disease. Activation of the NLRP3

inflammasome is a complex molecular event involving a sensor

(NLRP3), a junction protein (e.g., ASC or PYCARD), and an

effector molecule (e.g., caspase-1) (106). Specifically, activation of

the NLRP3 inflammasome leads to the conversion of the precursor

caspase-1 to its active form, and then, by its protease activity,

activation of caspase-1 drives the cleavage, maturation, and release

of cytokine precursors such as IL-1b and IL-18, which ultimately

leads to the inflammatory necrosis of cells (e.g., neurons, glial cells,

etc.) (20). In addition to causing pro-inflammatory factor activation

and release, NLRP3 inflammatory vesicle activity leads to the release

of assembled ASC speckles. Some studies have shown that ASC

specks released by microglia bind rapidly to amyloid-b and increase

the formation of Ab oligomers and aggregates, acting as an

inflammation-driven cross-seed for Ab pathology (107, 108). This

suggests that ASC plays a key role in the seeding and spread of Ab
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pathology. Moreover, genetic studies have shown that caspase-1

shearing, reduced IL-1b activation, enhanced Ab clearance, and

enhanced learning memory were found in APP/PS1/NLRP3-/-

mouse models (109, 110). Notably, NLRP3 inflammatory vesicles

can be activated both by Ab aggregation and by small-molecule Ab
oligomers and protofibrils, suggesting that the central intrinsic

immune response is initiated before Ab deposition (111). In

addition, gut flora transplantation in AD patients upregulates

intestinal NLRP3 expression and peripheral blood levels of IL-18

and IL-1b in APP/PS1 double-transgenic mice, suggesting that

NLRP3 signaling in peripheral inflammation may be transferred

to the CNS, triggering neuroinflammation and other AD

pathologies (112).

Moreover, tau proteins and their oligomers are strongly

DAMPs-active and can be activated through the ASC-mediated

activation of NLRP3-ASC inflammatory vesicles and promote IL-1b
release (113). Inhibition of NLRP3 inflammatory vesicle expression

in microglia can normalize Ab metabolic pathways and reduce

neuronal tau protein phosphorylation (114). In therapeutic

strategies for AD, NLRP3 inflammasome inhibitors such as

MCC950 show the potential to block NLRP3 inflammasome

activation and reverse tau pathology (115). In addition, natural

compounds such as acacetin inhibit NLRP3 inflammasome

activation by decreasing ROS production and inhibiting ASC

aggregation, showing potential as therapeutic candidates for

AD (116).
3.8 Receptor for advanced glycation
end-products

RAGE is expressed on a variety of immune and non-immune

cells, including microglia, blood-brain barrier endothelial cells, and

neurons (117). RAGE is closely associated with AD pathology.

Notably, RAGE mediates the intraneuronal transport of Ab,
contributing to its accumulation and dissemination within

neurons (118). This highlights that the effect of RAGE blockage

on pathology propagation is likely mediated not only by immune

cells but also by neurons themselves.

Overexpression of RAGE on microglia increases inflammatory

responses and Ab aggregation in transgenic mouse models of

amyloid pathology (21). Recent studies have further elucidated

the mechanism of RAGE in Ab-mediated microglial activation.

The RAGE-TXNIP axis formed by RAGE and Thioredoxin

Interacting Protein (TXNIP) induces Ab translocation from the

cell surface to mitochondria, a process that is essential for the

activation of NLRP3 inflammatory vesicles in mitochondria. It is

known that NLRP3 inflammatory vesicles in mitochondria can

promote IL-1b secretion and activate Gasdermin D (GSDMD), a

protein associated with cellular death (119). By silencing TXNIP or

inhibiting the activation of RAGE, the translocation of Ab to

mitochondria can be reduced, mitochondrial function can be

restored, and the toxic effects of Ab can be attenuated (120).

Furthermore, RAGE also serves as a receptor for tau protein and

is involved in the uptake and regulation of tau protein. Kim et al.

found that the knockout of RAGE reduced the uptake of tau by
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microglia and neurons and slowed the propagation of tau between

neurons. Treatment with the RAGE antagonist FPS-ZM1 blocked

trans-synaptic tau propagation and inflammatory responses in

rTg4510 mice and alleviated cognitive impairments (121). These

suggest that RAGE not only plays a role in Ab-associated
neuroinflammation but may also be involved in tau protein-

associated pathological processes, providing a new perspective on

the complex pathological mechanisms of AD.
3.9 Dectin-1 receptor

The Dectin-1 receptor, encoded by the Clec7a gene, is a C-type

lectin pattern-recognition receptor (CLR), and Clec7a expression is

significantly upregulated in microglia associated with Ab plaque

deposition in mouse models and human AD brain tissues (122, 123).

Dectin-1’s extracellular C-type lectin structural domain endows it with

the ability to recognize and bind specific ligands (124). It can mediate

the pro-inflammatory response to Ab. Direct interaction of Ab42 with
Dectin-1 triggers homodimerization of the receptor and further

activates downstream signaling pathways, such as splenic tyrosine

kinase (Syk) and nuclear factor-kB (NF-kB), which promotes the

secretion of pro-inflammatory cytokines and the production of

reactive oxygen species (ROS) (22).

Dectin-1 is also crucial for microglial phagocytosis and is linked

to TREM2. Specifically, TREM2 increases the expression of Dectin-

1/Clec7a, as validated by RNA sequencing analysis (122). Clec7a

activation can correct microglial phagocytosis deficiencies related to

TREM2 mutations. Both TREM2 and Clec7a stimulate the

downstream SYK signaling pathway, which promotes microglial

activation as disease-associated microglia for Ab plaque clearance

(125). Colonna et al. discovered that in TREM2R47H mutant mice,

which cannot activate SYK, treatment with a Clec7a-activating

antibody can activate SYK, thus enhancing microglia’s capacity to

clear Ab plaques (75). This research indicates that Clec7a activation

can partially compensate for the lack of SYK activation due to

TREM2 mutations.
3.10 Toll-like receptors

In the human brain, microglia express a wide range of Toll-like

receptors (TLRs), including TLR1 through TLR9 (126), of which

TLR2 and TLR4 are considered to be the major functional subtypes

in AD (127, 128). It has been shown that the receptor complex of

microglia recognizing Ab protofibrils contains TLR2, TLR4, and the
co-receptor CD14 and that these components are essential for

receptor function (129, 130). In terms of signaling, members of

the TLRs typically utilize MyD88-dependent pathways for

signaling, except TLR3 through the TRIF pathway. Activation of

TLR2 and TLR4 triggers the activation of key transcription factors,

such as NF-kB and AP1, through the MyD88 pathway, which

further regulates the expression of inflammatory factors,

chemokines, and co-stimulatory factors (131). TLR4 is an

important receptor for inflammatory responses in the CNS and is

closely related to the development of AD (132). Ligands such as Ab
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and LPS can upregulate several inflammation-related genes by

activating the TLR4-MyD88 signaling pathway, which in turn

activates its downstream NF-kB, MAPKs, etc. (133, 134).

Therapeutically, small-molecule drugs targeting TLR4 inhibitors

such as TAK-242, GX-50, baicalein, etc. can significantly reduce

neuroinflammation and neuronal damage by interfering with the

TLR4 signaling pathway, thereby improving cognitive function in

AD mouse models (23). In addition, tau protofibrils induced TLR2

activation in microglia, and tau protofibrils stimulated microglial

inflammation via TLR2. It has been shown that rTg4510 tau

transgenic mice knocked down for TLR2 reduced tau pathology

and microglial activation (135). Similarly, in the PS19 mouse model,

genetic deletion of TLR2 prevented the development of tau

pathology and was accompanied by significant suppression of

neuroinflammation as well as improved cognitive behavior (136).

Although these data suggest that knockout of TLRs may provide

novel strategies for AD treatment, MyD88-deficient mouse models

show reduced Ab load in the brain and amelioration of behavioral

deficits (137). Furthermore, transplantation of MyD88-deficient

myeloid cells is more effective at ameliorating brain Ab levels and

cognitive deficits compared with MyD88-normal myeloid cells in an

AD mouse model (138). These findings suggest that the activation

of TLRs may adversely affect the progression of AD, and therefore,

the study of the TLR signaling pathway is important for the

pathogenesis and prevention of AD.
3.11 Peroxisome proliferator-
activated receptor

PPAR is a nuclear receptor, which is divided into three subtypes:

PPAR-a, PPAR-g, and PPAR-d. Among them, PPAR-a and PPAR-g
have received more attention. They are significantly expressed in

microglia and play a key role in the pathogenesis of AD. The

activation of PPAR-a is closely associated with the recruitment of

microglia and their phagocytosis of Ab. In an AD transgenic mouse

model, the PPAR-a agonist Gemfibrozil has been shown to enhance

microglia autophagy, contributing to the removal of damaged

organelles and accumulated proteins (139). In addition, the novel

PPAR agonist DTMB inhibited neuroinflammation by decreasing the

levels of NF-kB protein and reducing the production of pro-

inflammatory cytokines by microglia. In the 5xFAD mouse model,

DTMB not only improved learning and memory abilities but also

reduced the formation of Ab plaques in the brain. This reduction may

be associated with reduced levels of neuroglial proliferation and

chronic inflammation (24). Given the ability of PPAR-a agonists to

cross the blood-brain barrier, they have the potential to be a novel

strategy for the treatment of AD. On the other hand, PPAR-g, a
member of the nuclear receptor superfamily, is also significantly

expressed in microglia and has important implications for the

pathogenesis of AD (140). PPAR-g agonists reduce the release of

proinflammatory factors by inhibiting the activation of microglia and

astrocytes (141). For example, the PPAR-g activation was able to

reduce neuroinflammation in AD by inhibiting microglia

hyperactivation through the NF-kB signaling pathway (142). It was

also found that PPAR-g agonists were able to ameliorate learning and
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memory deficits in a mouse model of dementia by increasing the

expression of low-density lipoprotein receptor-related protein 1

(LRP1) in the hippocampus (143). LRP1 is an Ab-scavenging
receptor, and its high expression reduces Ab accumulation in the

brain (144). Recent studies have further revealed the role of PPAR-g
in regulating microglia autophagy. The activation of PPAR-g
enhances mitochondrial autophagy and ameliorates cognitive

deficits in APP/PS1 mice (25). Since autophagy dysfunction causes

the accumulation of Ab and tau proteins, PPAR-g regulation of

autophagy makes it a new target for AD prevention and treatment.
3.12 Glutamate receptors

GluRs are the most important receptors for the excitatory

neurotransmitters within the central nervous system, and the

overactivation of the GluR signaling can lead to excitotoxicity,

which poses a threat to neuronal cell survival (145). Ionic and

metabotropic glutamate receptors (GLU receptors) expressed by

microglia play a complex role in the pathology of AD (146). The

former receptors are classified into AMPA receptors, kainate (KA)

receptors, and NMDA receptors (147, 148). The expression and

function of these receptors on microglia have important implications

for the onset and progression of neuroinflammation. The activation

of NMDA receptors is closely associated with the release of

proinflammatory factors such as NO, TNF-a, and IL-1, and

excessive release of these factors exacerbates neuroinflammation

and neuronal injury (149). In addition, NMDA receptors promote

pro-inflammatory responses through poly ADP-ribose polymerase-1

(PARP-1) and transmembrane protein 2 (TRMP2) signaling

pathways (10). It was shown that the NMDA receptor inhibitor

MK801 was able to alleviate the proinflammatory polarization of

microglia (11). In addition, in a mouse model of AD, the activation of

AMPA receptors under non-inflammatory stimulus conditions

enhances microglia phagocytosis. However, with the progression of

the disease, overactivation of AMPA receptors causes overproduction

of inflammatory factors and exacerbates neuroinflammation (150).

These findings suggest that the role of ionotropic glutamate receptors

in AD pathology is double-edged, with mild activation potentially

contributing to neuroprotection and excessive activation potentially

exacerbating neurological damage.

Metabotropic glutamate receptors, functioning as G protein-

coupled receptors (GPCRs), initiate intracellular signaling cascades

without directly forming ion channels. The expression and activation

of mGluR2/5 on microglia significantly influence the inflammatory

response. mGluR2 activation promotes the release of inflammatory

cytokines, contributing to neurotoxicity, which is inhibited by

2S,3S,4S-2-methyl-2-(carboxycyclopropyl) glycine (MCCG) (151).

In contrast, mGluR5 activation using the selective agonist

(RS)-2-chloro-5-hydroxyphenylglycine (CHPG) reduces TNF-a
secretion and exhibits neuroprotective effects (26). mGluR5

antagonism increases endoplasmic reticulum stress and

mitochondrial dysfunction, promoting a pro-inflammatory state in

microglia (152). A recent study demonstrated that genetic deletion

of mGlu5 exacerbates neurodegeneration; mGlu5 knockout

mice displayed increased neuronal loss and microglial activation,
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as well as accelerated neurodegeneration compared to wild-type

mice (27). Enhanced mGlu5 signaling in neurodegenerative

diseases may prevent neuronal loss, but its potential to ameliorate

cognitive function warrants further investigation (153). Collectively,

glutamate receptors onmicroglia play a dual role in AD pathogenesis.

In the early stages of the disease, moderate glutamate receptor

activation may contribute to microglia phagocytosis and promote

Ab clearance, thereby exerting neuroprotective effects. However, as

the pathology progresses, excessive activation of glutamate receptors

may lead to the release of excessive inflammatory factors from

microglia, exacerbating neuroinflammation.
3.13 Purinergic receptors

These include P1 and P2 receptors, which are crucial purinergic

signaling mediators and have a significant impact on AD

pathogenesis (154). Microglia express ionotropic P2X receptors,

especially P2X4R and P2X7R, as well as metabotropic P2Y

receptors, which constitute the focus of studies on AD pathology

(155, 156). Interestingly, activation of the P2X4 receptor enhances

histone B (CatB) activity in lysosomes and promotes degradation of

apolipoprotein E (ApoE), which is closely linked to Ab clearance. In

the APP/PS1 mouse model, deletion of the P2X4 receptor led to an

increase in intracellular and secreted ApoE, as well as a decrease in

the level of the soluble microaggregate Ab1-42 peptide and

amelioration of spatial memory deficits. These findings suggest

microglial P2X4 promotes lysosomal ApoE degradation and

indirectly alters Ab peptide clearance (28). Although P2X7R is

neuroprotective in physiological states, P2X7R overexpression

stimulates neurodegenerative changes and promotes neurotoxic

effects. The importance of P2X7R in AD pathology is emphasized

by its reported upregulation in the vicinity of Ab plaques in animal

models of AD and in AD patients (157). The P2X7R activation

induces potassium efflux and, in turn, activates NLRP3

inflammasome vesicles and promotes IL-1b release (158). Released

interleukins, in turn, induce pyroptosis. A recent study unexpectedly

found that Ab regulates microglia migration by affecting elevated

extracellular ATP concentration and activating P2X7R, leading to the

accumulation of microglia in the vicinity of senile plaques, and also

regulates the ability of microglia to phagocytose Ab (159). Targeted

silencing of P2X7R expression by RNA interference technology

reduces P2X7R levels in the AD nervous system, decreases b-
amyloid deposition and neuronal apoptosis, and ameliorates

neurodegenerative pathological changes and learning and memory

abilities in AD mice. This suggests that P2X7R is expected to be an

effective therapeutic target for RNA interference in the treatment of

AD (160). In addition, the interaction of P2X7R with tau protein

pathology has been investigated. Inhibition of P2X7R may reduce the

disease phenotype in a mouse model of tauopathy (P301S mice) by

inhibiting the release of microglia exosomes (161). Further

mechanistic studies showed that deletion of the P2X7 receptor,

while having a positive effect on tau protein phosphorylation,

ameliorates the neuroinflammatory response primarily by reducing

microglia activation and decreasing the production of associated
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inflammatory markers (29). This suggests that P2X7 receptors are

not only involved in the pathologic process of tau proteins but also

play an important role in the pathology of AD by regulating the

activation state of microglia and inflammatory responses. Taken

together, the regulation of P2X7 receptors may provide new

therapeutic strategies for restoring the normal function of

microglia, attenuating neuroinflammation, promoting Ab clearance,

and inhibiting tau protein pathology.
3.14 CX3C chemokine receptor 1

CX3CR1 is a chemokine receptor specifically expressed by

microglia in both human and mouse brains (162). Its binding to

its ligand, CX3CL1 (also known as fractalkine), is critical for

microglial homeostasis and function (163). The CX3CR1/CX3CL1

system has a dual effect on the pathologic manifestations of AD

(164). For example, CX3CR1 knockout models show reduced

amyloid pathology but exacerbated tau pathology, highlighting

the dual role of CX3CR1 in AD. Elimination of CX3CR1 in

amyloid-depositing mouse models resulted in reduced Ab
deposition, likely due to increased phagocytosis by activated

microglia (165). Interestingly, in APP/PS1 mice, loss of CX3CR1

in a gene dose-dependent manner reduces Ab aggregation (30).

Conversely, studies focusing on tau pathology have shown that

CX3CR1 deletion exacerbates tau hyperphosphorylation and

pathology. For example, in hTau mice, CX3CR1 deletion leads to

increased tau hyperphosphorylation, greater microglial activation,

and inflammation, resulting in further memory impairment (31).

Notably, Bolos et al. highlighted an interesting mechanism of

competition between tau proteins and CX3CL1, the natural ligand

of CX3CR1. The authors showed that the amount of tau

internalized is reduced in the presence of CX3CL1, emphasizing

that microglia strongly influence tau internalization through

CX3CR1 (166). These findings suggest that while CX3CR1

inhibition enhances microglial phagocytosis of Ab, it may also

promote tau hyperphosphorylation and aggregation by reducing

tau internalization. Future studies should conduct an in-depth

examination of the coexistence of Ab and tau pathologies in

Alzheimer’s disease models to elucidate the role of CX3CR1 in

AD pathogenesis.
3.15 Colony stimulating factor 1 receptor

CSF1R is a receptor tyrosine kinase belonging to the platelet-

derived growth factor receptor (PDGFR) family (167). In the CNS,

CSF1R is predominantly expressed on microglia. In the adult brain,

microglia are entirely dependent on CSF1R signaling for survival,

making CSF1R inhibitors effective tools for microglial

depletion (168).

It has been reported that microglial clearance of Ab declines

with age and the progression of AD pathology, leading to plaque

formation and subsequent, unresolved inflammatory reactions (95).

In the late stages of AD, microglial depletion may be an effective
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therapeutic option, with CSF1R inhibitors serving as a means to

deplete microglia. However, microglial depletion with a CSF1R

inhibitor after plaque formation does not alter b-amyloid levels or

plaque load, but it prevents synaptic and neuronal loss at a late stage

of pathology (169). In a later study, The effect of microglia on

plaque formation was investigated by Spangenberg et al., who

studied the impact of microglial depletion on neuron-derived Ab
aggregation using the CSF1R inhibitor PLX5622 in a mouse model

of AD (5xFAD). They found that microglial depletion prevented the

formation of plaques in the parenchymal space (32). The authors

suggest that neuron-derived Ab is internalized and aggregated

within microglia, contributing to the initial formation of plaques.

Additionally, microglia promote tau propagation through exosomal

secretion during the early stages of AD. Depleting microglia with a

CSF1R inhibitor inhibits tau propagation in mouse models (33).

These results suggest that inhibiting CSF1R signaling alters the role

of microglia in plaque formation and reduces tau propagation.
3.16 Adiponectin receptors

AdipoR1 and AdipoR2 are the two main adiponectin receptors;

their expressions in the brain are mainly concentrated on cell types

such as microglia, astrocytes, and neurons (170, 171). AdipoR1

expression in microglia is associated with inflammatory regulation.

In vitro experiments have shown that the knockdown of AdipoR1 in

BV2 microglia enhances the ability to release pro-inflammatory

cytokines induced by Ab (34). In vivo studies confirm this, showing

that AdipoR1 knockdown mice experience memory deficits and

exhibit Alzheimer’s-like symptoms, such as neuronal oxidative

stress, insulin resistance, and heightened neuroinflammation

(172). Adiponectin, which acts via AdipoR1, lessens the

inflammatory response to Ab in microglia, but this protective

effect is negated when AdipoR1 is downregulated (34). AdipoRon,

a small molecule adiponectin receptor agonist, reduces

inflammation by decreasing microglial activation and lowering

cytokine levels (173). These findings suggest that AdipoR1 in

microglia may be involved in the pathologic process of AD and

that its changes may have important implications for altered

cognitive function in AD. Since AdipoR1 and AdipoR2 are co-

expressed in cells, it can be hypothesized that AdipoR2 may also be

involved in the pathological process of AD through similar or

different mechanisms (174). In conclusion, AdipoR1 may be

involved in the pathogenesis of AD through the regulation of the

microglial inflammatory response, but the role of AdipoR2 remains

to be investigated.
4 Receptors related to synaptic
plasticity of neuron

Synapse elimination is a finely regulated physiological

phenomenon during the development and maturation of the CNS

that involves the removal of nonfunctional or redundant synaptic

connections. This process is critical for optimizing the efficiency of
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neural networks (175). Microglia play an important role in this

process, both by removing apoptosis and by directly influencing

neuronal regeneration. For example, among all neurons produced

during neural development and adult neurogenesis, some cells then

undergo programmed cell death and are rapidly cleared by

microglia (176). Synaptic damage is an early pathological feature

of AD, and its development is closely related to cognitive

dysfunction (177). Microglia are key to synapse clearance and

formation, and their phagocytosis is regulated by the activity-

dependent regulation of the immune signaling proteins ‘eat me’

and ‘don’t eat me’, which determine which synapses will be cleared,

especially those inactive synapses (178). Although physiological

phagocytosis of synapses is essential for the fine-tuning of

experience-dependent neural networks, excessive synaptic

clearance may lead to the loss of live neurons and synapses,

which can trigger neurodegeneration. This pathological

phagocytosis can be triggered by a number of factors, including

aberrant release of ‘find-me’ signaling, overexpression of ‘eat-me’

signaling, or absence of ‘don’t-eat-me’ signaling (179) (Figure 2).
4.1 ‘Find-me’ signaling

4.1.1 CX3CL1-CX3CR1
CX3CL1, a neuron-derived chemokine, activates microglia and

guides their migration to specific synaptic regions by binding to its

receptor, CX3CR1. This interaction is crucial for microglia to

recognize and respond to synaptic pruning signals. Acting as a

soluble “find-me” signal, CX3CL1 induces microglial-mediated

synaptic pruning, and CX3CR1 knockdown makes microglia

unresponsive to CX3CL1’s chemotactic effects (180). In

developing hippocampal and barrel cortex regions, CX3CR1-

deficient mice show a transient delay in microglia recruitment to

synapse-rich areas and a delay in synaptic functional maturation

(181). Over the long term, CX3CR1-deficient mice exhibit defects in

social interaction and functional synaptic connectivity (182). A

similar phenomenon occurs in the absence of CX3CL1, where

thalamocortical synapse elimination is impaired due to defective

microglial phagocytosis in CX3CL1-deficient mice (183). These

findings underscore the critical role of the CX3CL1/CX3CR1 axis

in regulating synaptic plasticity.

4.1.2 ATP-P2Y12 receptor
The P2Y12 receptor is a G protein-coupled receptor that

is expressed on microglia and is involved in synaptic

surveillance, pruning, and clearance (184). In the early stages of

neurodevelopment, microglia monitor immature neurons and

regulate neurodevelopmental processes through P2Y12R-mediated

somatic interactions (185). The absence of P2Y12R disrupts these

functions, resulting in the aberrant development of cortical cellular

structures (186). This somatic connection is a key mechanism for

microglial monitoring and control of neural development.

Similarly, knocking down P2Y12R in adult mice after normal

development reduces microglial involvement in synaptic pruning,

thereby impacting neural network refinement and plasticity (187).
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ATP-induced P2Y12R chemotaxis is considered an early

response to minor pathologic signs (188, 189). For instance, it

directs microglia to overactive neuronal axons, protecting them

through cell-cell interactions (190). In AD, ATP released by

damaged neurons activates P2Y12 receptors on microglia,

triggering their migration to the site of damage to engage in the

clearance of damaged synapses and neurons (191).
4.2 ‘eat-me’ signaling

4.2.1 Complement pathway
In the adult CNS, expression of the complement component

C1q is normally maintained at low levels to ensure the stability of

neural circuits. However, in brain injury or pathological states such

as Alzheimer’s disease, the C1q expression is significantly

upregulated in the injured region, and By integrating multi-omics

analyses, it was shown that complement proteins (e.g., C1q) are co-

localized with the postsynaptic PSD95 dot in an AD mouse model,

which suggests that C1q can act as a molecular label on synapses in

preparation for microglia phagocytosis (192). Microglia express

high levels of the C1q receptor (C1qR) and complement component

3 receptor (CR3). C1q plays a unique role in the nervous system as

an initiating protein of the classical complement cascade reaction.

At neuronal synapses, the activation of C1q can trigger activation of
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CR3 receptors, which in turn facilitates synapse recognition and

clearance by microglia (193). Notably, microglia are the only cell

type in the brain that expresses CR3 (194), a property that confers

them a unique function in synapse clearance. In mouse models of

AD, activation of the complement system was found to precede the

formation of amyloid plaques (195), and the finding that microglia

are involved in synaptic loss through a complement-mediated

mechanism underscores the importance of the complement

system in the early pathological process of AD. By inhibiting key

components of the complement cascade reaction, such as C1q, C3,

or CR3, on microglia, they can significantly rescue synapse density

and prevent microglia-mediated synapse loss (196). In addition, the

use of C1q-blocking antibodies is a potential intervention strategy

that can reduce microglia overactivation and synaptic damage

(197). These findings suggest that C1q-blocking antibodies may

play an important role in the treatment of AD by reducing

microglia overactivation and synaptic damage, thus providing a

potential therapeutic strategy for AD treatment.

4.2.2 PtdSer-TREM2
Phosphatidylserine (PtdSer) is a membrane phospholipid, and

during apoptosis, externalization of PtdSer is a clear ‘death signal’

that is irreversibly exposed at the cell surface and directs synaptic

pruning (198). In the Abmodel of AD, the externalization of PtdSer

is associated with early dysregulation of synaptic function (199).
FIGURE 2

Interactions Between Microglial Receptors and Neurons in Alzheimer’s Disease Pathogenesis. Created in BioRender.com. Interactions between
microglial receptors and neurons collectively regulate the synaptic strength of neurons. During the pathogenesis of Alzheimer’s disease, microglia fail to
effectively clear excessive Ab and tau aggregates, which chronically activate and damage both neurons and microglia. Abnormal release of ‘find-me’
signals, such as CX3CL1 and ATP, leads to a delay in the synaptic pruning process. Ab induces the overexpression of ‘eat-me’ signals, including PtdSer-
TREM2 and iC3b-CR3, resulting in excessive synapse elimination. CD47, a normally expressed ‘don’t-eat-me’ signal, exhibits reduced expression in AD,
leading to an increased phagocytic capacity of microglia, which may exacerbate synaptic loss. ATP, adenosine triphosphate; CX3CL1, C-X3-C motif
chemokine ligand 1; CD47, cluster of differentiation 47; CR3, complement receptor 3; PtdSer, phosphatidylserine; SIRPa, signal regulatory protein a;
TREM2, triggering receptor expressed on myeloid cells-2.
frontiersin.org

http://www.BioRender.com
https://doi.org/10.3389/fimmu.2025.1508023
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fu et al. 10.3389/fimmu.2025.1508023
Microglia exhibit selective phagocytosis of damaged synapses

expressing PtdSer. Ab oligomers induce synaptic hyperactivity

and contribute to the externalization of PtdSer, a classic ‘eat me’

signal (200). These apoptosis-like spines are recognized and

phagocytosed via TREM2 receptors on microglia, thereby

ameliorating Ab oligomer-induced synaptic hyperactivity. Higher

levels of apoptotic-like synapses have been observed in mouse

models and in humans carrying loss-of-function variants

of TREM2 (67). The deletion of TREM2 results in impaired

synaptic elimination accompanied by increased excitatory

neurotransmission (201). Furthermore, the synaptic removal by

microglia in mouse models of AD tauopathy has been investigated.

A study using co-cultures of BV2 microglia and neurons expressing

phosphorylated tau demonstrated that microglia can engulf intact,

living neurons by recognizing exposed PtdSer (202). Recent studies

have further revealed the potentially beneficial role of TREM2 in the

early stages of AD. A study by Rueda et al. found higher levels of

uncleared apoptosis-like synapses in mouse and human brains from

patients with loss-of-function mutations in TREM2. This suggests

that the removal of overactive synapses by microglia in AD is

important for maintaining normal nervous system function (203).

Future studies need to explore in depth the interaction between

PtdSer and TREM2 in AD and its potential application in

disease treatment.
4.3 ‘Don’t eat me’ signaling

4.3.1 CD47-SIRPa
CD47 is a widely expressed ‘don’t eat me’ signaling protein that

exerts its protective effects by binding to the signal-regulated

protein alpha (SIRPa) receptor on microglia. SIRPa is expressed

at high levels on microglia during critical periods of brain

development and helps to inhibit synaptic hyperphagy (204, 205),

The presence of CD47 may protect highly active synaptic

populations from becoming targets of microglia-mediated

pruning processes (206). In the context of AD, decreased

expression of CD47 leads to increased phagocytosis of synapse by

microglia, which may exacerbate synaptic loss. A study by DeVries

et al. found an association between elevated C1q at PSD95-positive

synapses and decreased CD47 in age-related cognitive impairment.

In addition, they observed reduced CD47 RNA expression in

neurons, suggesting that aging neurons may be defective in

producing the protective signal CD47 (207). These findings

emphasize the importance of CD47-SIRPa signaling as a ‘don’t

eat me’ signal during brain development and neurodegeneration.

This signaling mechanism is essential to protect synapses from

microglia-mediated excessive synaptic pruning.
5 Therapeutic strategies based on
microglia receptors

Currently, there are a large number of preclinical studies

demonstrating the potential efficacy of some microglia receptor

families in the treatment of AD, but these studies have taken less
Frontiers in Immunology 12
account of the complexities involved in targeting microglia

receptors for therapy. These complexities might come from the

spatial and developmental heterogeneity of microglia revealed by

recent studies using single-cell RNA sequencing (208). This

heterogeneity increases the complexity of therapeutic strategies

for microglia receptors. The discovery of disease-associated

microglia suggests that microglia may play diverse functions at

various stages of AD, and their activation state and function may be

influenced by multiple factors (122). Therefore, a deeper

understanding of the molecular mechanisms underlying microglia

heterogeneity is important for the development of new therapeutic

approaches. Considering the complexity of microglia receptors in

the determination of treatment strategy for AD would be of great

importance. Nonetheless, we reviewed current studies of microglia

receptor-based therapeutic strategies, including preclinical studies,

and mostly studied receptors.
5.1 CSF1R inhibitor

A hallmark of AD is the hyperproliferation and activation of

microglia. CSF1R, essential for microglial survival and proliferation,

is a target for antagonists that have shown promise in preclinical

AD models for preventing cognitive decline. For example, in APP/

PS1 mice, CSF1R inhibition with the oral tyrosine kinase inhibitor

GW2580 reduced plaque-associated microglia and normalized

behavior (209). Similarly, in 5XFAD mice, short-term (10 days)

CSF1R inhibition with PLX5622 (Plexxicon Inc.) promoted

homeostatic microglia retention and decreased inflammasome

activation (210). In a model of tau disease, Edicotinib, a CSF1R

inhibitor, effectively reduced microglial inflammation and tau-

induced neurodegeneration and improved cognitive function in

P301S mice (211). These observations suggest that reducing

dysfunctional microglia may be an effective strategy for

modulating AD pathology.
5.2 TREM2 activation

The activation of TREM2, a key microglia surface receptor, has

been shown to promote Ab clearance and improve cognitive

function in AD mouse models (212). Activation of TREM2

through the use of agonist monoclonal antibodies enhances its

downstream signaling, thereby increasing phagocytosis and anti-

inflammatory effects in microglia. This strategy has received much

attention in the treatment of Alzheimer’s disease.

AL-002 (NCT04592874), a monoclonal antibody against

TREM2 developed by Alector for early AD treatment, has

recently completed Phase 2 clinical trials, with results pending

publication. In a previous Phase 1 clinical trial (NCT03635047),

AL-002 demonstrated safety and good tolerability (213). It also

decreased filamentous Ab plaques and attenuated the microglial

inflammatory response in preclinical models (214). In addition,

Denali Therapeutics and Takeda have partnered to develop an

antibody called DNL919 (ATV: TREM2), which is designed to

activate the TREM2 receptor through intravenous administration to
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improve TREM2 function for therapeutic use in AD. A Phase 1

clinical trial of DNL919 (NCT05450549) was successfully initiated

in July 2022; however, the development of the drug was terminated

in 2023 due to safety concerns in healthy volunteers. Besides, a

study exploring the effects of DNL919 on human-induced

pluripotent stem cell (iPSC)-derived microglia found that it

promoted the proliferation of these key immune cells and

improved their metabolism (215). Overall, DNL919 activated

TREM2 and improved microglia function.

While the TREM2 activation strategies show great potential in

AD treatment, studies have also shown that their efficacy may be

limited by disease stage. The benefits of enhanced TREM2 signaling

may be time-dependent and more pronounced in early AD

pathology (216). Therefore, future studies need to further explore

the optimal timing and conditions for TREM2 activation to achieve

more effective interventions in AD.
5.3 PPARg agonists

PPARg agonists have demonstrated some potential in the

treatment of AD and have been shown to be associated with

suppression of pro-inflammatory cytokines and amelioration of

inflammatory diseases (217). One study further elucidated that

PPARg agonists improve cognitive function by inhibiting

inflammation and reducing apoptosis, an effect mediated by

activation of the PPARg/NF-kB signaling pathway, suggesting

that PPARg agonists may serve as potential therapeutic agents for

the treatment of AD (218). Notably, T3D Therapeutics, Inc. has

developed a drug called T3D-959, a dual PPAR d/g agonist that

showed signs of improvement in cognitive function tests in patients

with mild to moderate AD in an exploratory phase IIa study

(NCT04251182) (219). Although PPARg agonists show potential

in AD treatment, most of the current studies are still in the

preclinical phase, and more clinical studies are needed to validate

their safety and efficacy.
5.4 P2X7R antagonists

The presence of the P2X7R isoform on the surface of microglia,

which has dual functions of neuroprotection and neurodegeneration,

has emerged as a potential therapeutic target for AD (220). As

mentioned previously, inhibition or knockdown of P2X7R has been

shown to attenuate P2X7R-mediated inflammatory responses and

ameliorate neuropathological changes associated with AD in a variety

of animal models of AD. Notably, P2X7R activation usually occurs

when extracellular ATP levels reach pathological concentrations,

suggesting that P2X7R inhibition may be particularly effective in

pathological states (221). Brilliant blue G (BBG), a known P2X7R

antagonist, has been used in the treatment of neurological disorders

due to its ability to penetrate the blood-brain barrier and to show

effectiveness against P2X7R in different species, thus showing

potential applications in the treatment of neurological disorders
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(222, 223). BBG attenuates Ab-induced inflammatory response and

induces microglia to exert anti-inflammatory effects (224). In

addition, several other drugs and compounds are being investigated

as P2X7R antagonists to explore their potential in AD therapy. For

example, AZ10606120 is another P2X7R antagonist that has shown

inhibitory effects on neuroinflammation in preclinical studies (225).

Anti-AD drugs targeting P2X7R must balance their selectivity,

bioavailability, blood-brain barrier permeability, and toxicity.

Future studies need to further explore the pharmacological

properties of these drugs, as well as their specific mechanisms of

action in AD pathology, in order to achieve more effective and safer

treatments for AD.
5.5 RAGE inhibitors

RAGE is a multi-ligand receptor associated with a variety of

pathological processes, including inflammation, cell signaling, and

cell survival. Azeliragon (TTP488) and FPS-ZM1 are two promising

inhibitors of RAGE that intervene in the pathological processes of

AD through different mechanisms. Azeliragon (TTP488) is an

orally bioavailable small-molecule RAGE antagonist that inhibits

inflammatory signaling by blocking the binding of RAGE to its

ligands, including Ab, advanced glycosylation end-products

(AGEs), S100 proteins, and high mobility group protein 1

(HMGB1) activation (226). In phase 2b (NCT00428701) clinical

trials, Azeliragon showed the potential to reduce brain Ab plaque

levels, increase plasma Ab concentrations, decrease inflammatory

cytokine levels, and slow cognitive decline (227). Azeliragon is

currently undergoing a Phase 3 clinical trial (NCT02080364) for

AD to further evaluate its effects on cognitive function in patients

wi th mi ld AD. FPS-ZM1 (4-chloro-N-cyc lohexy l -N-

benzylbenzamide) is another small-molecule RAGE inhibitor,

which works by binding to the RAGE receptor to inhibit Ab40
and Ab42 production and deposition, showing potential effects on

AD treatment (228). Notably, the mechanism of action of

Azeliragon and FPS-ZM1 is not limited to AD treatment, but

Azeliragon has also shown potential to inhibit tumor progression

and metastasis in other disease areas, such as the treatment of triple-

negative breast cancer (229).
5.6 NLRP3 inhibitors

Currently, inhibitors targeting the NLRP3 inflammatory vesicle

can be categorized into two main groups: small molecule

compounds and natural products, which have shown potential

therapeutic potential in preclinical studies. Small molecule

inhibitors such as MCC950, a specific NLRP3 inflammasome

inhibitor, have shown therapeutic efficacy in several preclinical

models. MCC950 reduces inflammatory responses and improves

cognitive function by inhibiting NLRP3 inflammasome activation

(230). Although MCC950 has been tested in a number of clinical

trials, specific clinical trial results have not yet been published. In
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addition, Qiang Li’s team at Tongji University reported UK5099 as

a novel inhibitor of NLRP3 inflammatory vesicles. UK5099 was

found to be a potent NLRP3 inhibitor, which effectively inhibited

NLRP3 inflammasome-mediated IL-1b production in both in vitro

and in vivo experiments (231). The inhibitory ability of UK5099 is

comparable to that of RRx-001, which has entered phase III clinic,

and has a favorable safety profile, showing its potential for clinical

application. In addition, some natural products, such as resveratrol,

radicicchioidin, aloe vera, and curcumin, have been found to have

the ability to inhibit the activation of NLRP3 inflammatory vesicles

(232). These natural products may inhibit the assembly or

activation of inflammatory vesicles through different mechanisms,

showing potential as therapeutic candidates for AD treatment.

Currently, research and development of NLRP3 inflammasome

inhibitors is actively underway, and some candidate molecules

have demonstrated therapeutic potential. However, the clinical

efficacy and safety of these candidate molecules still need to be

verified by further clinical trials.
6 Conclusion and perspectives

The role of microglia receptors has received increasing attention

in AD research as immunomodulatory therapy via microglia

receptors has shown great potential for treatment. To further

investigate the advantages of immunomodulatory therapy, it is

crucial to define the roles of microglial receptors, including those

involved in phagocytosis and inflammatory regulation, as well as

the associated signaling pathways. Nonetheless, current research on

these receptors is still in the exploratory phase. Epigenetic change in

microglia is greatly influenced chronologically and spatially (233).

The functional roles of microglia receptors may vary with brain

regions and physiological status (234).

The double-edged function of certain receptors (e.g., CD36) and

the impact on the immune system should be carefully considered

when developing therapies. For example, TREM2 receptors play a

role in regulating microglia phagocytosis and attenuating AD-

associated pathological changes, but their role in the tumor

microenvironment should not be overlooked (235, 236), especially

when treatment with TREM2 agonists could stimulate tumor

growth. Future studies need to further explore the spatiotemporal

dynamics of AD microglia receptors and how these properties can

be utilized to provide new strategies for AD therapy.
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62. Provenzano F, Pérez MJ, Deleidi M. Redefining microglial identity in health and
disease at single-cell resolution. Trends Mol Med. (2021) 27:47–59. doi: 10.1016/
j.molmed.2020.09.001

63. Sun N, Victor MB, Park YP, Xiong X, Scannail AN, Leary N, et al. Human
microglial state dynamics in Alzheimer’s disease progression. Cell. (2023) 186:4386–
4403.e29. doi: 10.1016/j.cell.2023.08.037

64. Colonna M. The biology of TREM receptors. Nat Rev Immunol. (2023) 23:580–
94. doi: 10.1038/s41577-023-00837-1

65. Carmona S, Zahs K, Wu E, Dakin K, Bras J, Guerreiro R. The role of TREM2 in
Alzheimer’s disease and other neurodegenerative disorders. Lancet Neurol. (2018)
17:721–30. doi: 10.1016/S1474-4422(18)30232-1

66. Ramakrishnan GS, Berry WL, Pacherille A, Kerr WG, Chisholm JD, Pedicone C,
et al. SHIP inhibition mediates select TREM2-induced microglial functions. Mol
Immunol. (2024) 170:35–45. doi: 10.1016/j.molimm.2024.04.002

67. Wang Y, Cella M, Mallinson K, Ulrich JD, Young KL, Robinette ML, et al.
TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model.
Cell. (2015) 160:1061–71. doi: 10.1016/j.cell.2015.01.049

68. Ulland TK, Colonna M. TREM2 - a key player in microglial biology and
Alzheimer disease. Nat Rev Neurol. (2018) 14:667–75. doi: 10.1038/s41582-018-0072-1

69. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, et al.
TREM2 variants in Alzheimer’s disease. N Engl J Med. (2013) 368:117–27. doi: 10.1056/
NEJMoa1211851

70. Colonna M, Wang Y. TREM2 variants: new keys to decipher Alzheimer disease
pathogenesis. Nat Rev Neurosci. (2016) 17:201–7. doi: 10.1038/nrn.2016.7

71. Deczkowska A, Weiner A, Amit I. The physiology, pathology, and potential
therapeutic applications of the TREM2 signaling pathway. Cell. (2020) 181:1207–17.
doi: 10.1016/j.cell.2020.05.003

72. Cheng-Hathaway PJ, Reed-Geaghan EG, Jay TR, Casali BT, Bemiller SM,
Puntambekar SS, et al. The Trem2 R47H variant confers loss-of-function-like
phenotypes in Alzheimer’s disease. Mol Neurodegener. (2018) 13:29. doi: 10.1186/
s13024-018-0262-8

73. Song WM, Joshita S, Zhou Y, Ulland TK, Gilfillan S, Colonna M. Humanized
TREM2 mice reveal microglia-intrinsic and -extrinsic effects of R47H polymorphism. J
Exp Med. (2018) 215:745–60. doi: 10.1084/jem.20171529

74. Hall-Roberts H, Agarwal D, Obst J, Smith TB, Monzón-Sandoval J, Di Daniel E,
et al. TREM2 Alzheimer’s variant R47H causes similar transcriptional dysregulation to
knockout, yet only subtle functional phenotypes in human iPSC-derived macrophages.
Alzheimers Res Ther. (2020) 12:151. doi: 10.1186/s13195-020-00709-z

75. Wang S, Sudan R, Peng V, Zhou Y, Du S, Yuede CM, et al. TREM2 drives
microglia response to amyloid-b via SYK-dependent and -independent pathways. Cell.
(2022) 185:4153–4169.e19. doi: 10.1016/j.cell.2022.09.033

76. Damisah EC, Rai A, Grutzendler J. TREM2: modulator of lipid metabolism in
microglia. Neuron. (2020) 105:759–61. doi: 10.1016/j.neuron.2020.02.008

77. Nugent AA, Lin K, van Lengerich B, Lianoglou S, Przybyla L, Davis SS, et al.
TREM2 regulates microglial cholesterol metabolism upon chronic phagocytic
challenge. Neuron. (2020) 105:837–854.e9. doi: 10.1016/j.neuron.2019.12.007

78. Ulland TK, SongWM, Huang SC-C, Ulrich JD, Sergushichev A, Beatty WL, et al.
TREM2 maintains microglial metabolic fitness in alzheimer’s disease. Cell. (2017)
170:649–663.e13. doi: 10.1016/j.cell.2017.07.023

79. Yan Y, Bai S, Han H, Dai J, Niu L, Wang H, et al. Knockdown of trem2 promotes
proinflammatory microglia and inhibits glioma progression via the JAK2/STAT3 and
NF-kB pathways. Cell Commun Signal. (2024) 22:272. doi: 10.1186/s12964-024-
01642-6
Frontiers in Immunology 16
80. Angata T, Varki A. Discovery, classification, evolution and diversity of Siglecs.
Mol Aspects Med. (2023) 90:101117. doi: 10.1016/j.mam.2022.101117

81. Wißfeld J, Nozaki I, Mathews M, Raschka T, Ebeling C, Hornung V, et al.
Deletion of Alzheimer’s disease-associated CD33 results in an inflammatory human
microglia phenotype. Glia. (2021) 69:1393–412. doi: 10.1002/glia.23968

82. Lowell CA. Src-family and syk kinases in activating and inhibitory pathways in
innate immune cells: signaling cross talk. Cold Spring Harb Perspect Biol. (2011) 3:
a002352. doi: 10.1101/cshperspect.a002352

83. Naj AC, Jun G, Beecham GW, Wang L-S, Vardarajan BN, Buros J, et al.
Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated
with late-onset Alzheimer’s disease. Nat Genet. (2011) 43:436–41. doi: 10.1038/ng.801

84. Eskandari-Sedighi G, Jung J, Macauley MS. CD33 isoforms in microglia and
Alzheimer’s disease: Friend and foe. Mol Aspects Med. (2023) 90:101111. doi: 10.1016/
j.mam.2022.101111

85. Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN, Asselin CN, Mullin K,
et al. Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta.
Neuron. (2013) 78:631–43. doi: 10.1016/j.neuron.2013.04.014

86. Gnoth K, Geissler S, Feldhaus J, Taudte N, Ilse V, Zürner S, et al. Evidence for
enhanced efficacy of passive immunotherapy against beta-amyloid in CD33-negative
5xFAD mice. Biomolecules. (2022) 12:399. doi: 10.3390/biom12030399

87. Wong E, Malviya M, Jain T, Liao GP, Kehs Z, Chang JC, et al. HuM195 and its
single-chain variable fragment increase Ab phagocytosis in microglia via elimination of
CD33 inhibitory signaling. Mol Psychiatry. (2024) 29:2084–94. doi: 10.1038/s41380-
024-02474-z

88. Wilson EN, Andreasson KI. TAM-ping down amyloid in Alzheimer’s disease.
Nat Immunol. (2021) 22:543–4. doi: 10.1038/s41590-021-00918-0

89. Fourgeaud L, Través PG, Tufail Y, Leal-Bailey H, Lew ED, Burrola PG, et al.
TAM receptors regulate multiple features of microglial physiology. Nature. (2016)
532:240–4. doi: 10.1038/nature17630

90. Pampuscenko K, Morkuniene R, Sneideris T, Smirnovas V, Budvytyte R,
Valincius G, et al. Extracellular tau induces microglial phagocytosis of living neurons
in cell cultures. J Neurochemistry. (2020) 154:316–29. doi: 10.1111/jnc.14940

91. Jung H, Lee SY, Lim S, Choi HR, Choi Y, Kim M, et al. Anti-inflammatory
clearance of amyloid-b by a chimeric Gas6 fusion protein.Nat Med. (2022) 28:1802–12.
doi: 10.1038/s41591-022-01926-9

92. El Khoury J, Hickman SE, Thomas CA, Cao L, Silverstein SC, Loike JD.
Scavenger receptor-mediated adhesion of microglia to beta-amyloid fibrils. Nature.
(1996) 382:716–9. doi: 10.1038/382716a0

93. Yuan C, Aierken A, Xie Z, Li N, Zhao J, Qing H. The age-related microglial
transformation in Alzheimer’s disease pathogenesis. Neurobiol Aging. (2020) 92:82–91.
doi: 10.1016/j.neurobiolaging.2020.03.024

94. Frenkel D, Wilkinson K, Zhao L, Hickman SE, Means TK, Puckett L, et al. Scara1
deficiency impairs clearance of soluble amyloid-b by mononuclear phagocytes and
accelerates Alzheimer’s-like disease progression. Nat Commun. (2013) 4:2030.
doi: 10.1038/ncomms3030

95. Hickman SE, Allison EK, El Khoury J. Microglial dysfunction and defective beta-
amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci. (2008)
28:8354–60. doi: 10.1523/JNEUROSCI.0616-08.2008

96. Pan X-D, Zhu Y-G, Lin N, Zhang J, Ye Q-Y, Huang H-P, et al. Microglial
phagocytosis induced by fibrillar b-amyloid is attenuated by oligomeric b-amyloid:
implications for Alzheimer’s disease. Mol Neurodegener. (2011) 6:45. doi: 10.1186/
1750-1326-6-45

97. Ricciarelli R, D’Abramo C, Zingg J-M, Giliberto L, Markesbery W, Azzi A, et al.
CD36 overexpression in human brain correlates with beta-amyloid deposition but not
with Alzheimer’s disease. Free Radic Biol Med. (2004) 36:1018–24. doi: 10.1016/
j.freeradbiomed.2004.01.007

98. Fang Y, Wang J, Yao L, Li C, Wang J, Liu Y, et al. The adhesion and migration of
microglia to b-amyloid (Ab) is decreased with aging and inhibited by Nogo/NgR
pathway. J Neuroinflamm. (2018) 15:210. doi: 10.1186/s12974-018-1250-1

99. Wang J, Qin X, Sun H, He M, Lv Q, Gao C, et al. Nogo receptor impairs the
clearance of fibril amyloid-b by microglia and accelerates Alzheimer’s-like disease
progression. Aging Cell. (2021) 20:e13515. doi: 10.1111/acel.13515

100. Feng M, Zhou Q, Xie H, Liu C, Zheng M, Zhang S, et al. Role of CD36 in central
nervous system diseases. Neural Regeneration Res. (2023) 19:512. doi: 10.4103/1673-
5374.380821

101. Gosselin D, Skola D, Coufal NG, Holtman IR, Schlachetzki JCM, Sajti E, et al.
An environment-dependent transcriptional network specifies human microglia
identity. Science. (2017) 356:eaal3222. doi: 10.1126/science.aal3222

102. Zöller T, Attaai A, Potru PS, Ruß T, Spittau B. Aged mouse cortical microglia
display an activation profile suggesting immunotolerogenic functions. Int J Mol Sci.
(2018) 19:706. doi: 10.3390/ijms19030706

103. Kamphuis W, Kooijman L, Schetters S, Orre M, Hol EM. Transcriptional
profiling of CD11c-positive microglia accumulating around amyloid plaques in a
mouse model for Alzheimer’s disease. Biochim Biophys Acta. (2016) 1862:1847–60.
doi: 10.1016/j.bbadis.2016.07.007

104. Hou J, Chen Y, Cai Z, Heo GS, Yuede CM, Wang Z, et al. Antibody-mediated
targeting of human microglial leukocyte Ig-like receptor B4 attenuates amyloid
frontiersin.org

https://doi.org/10.3389/fnins.2021.727784
https://doi.org/10.1080/01616412.2023.2296754
https://doi.org/10.1080/01616412.2023.2296754
https://doi.org/10.1186/s12974-024-03166-9
https://doi.org/10.1016/j.it.2021.08.005
https://doi.org/10.1016/j.it.2021.08.005
https://doi.org/10.3390/cells13050407
https://doi.org/10.3389/fphar.2022.893422
https://doi.org/10.3389/fphar.2022.893422
https://doi.org/10.1186/s40035-024-00438-5
https://doi.org/10.1186/s40035-024-00438-5
https://doi.org/10.1016/j.molmed.2020.09.001
https://doi.org/10.1016/j.molmed.2020.09.001
https://doi.org/10.1016/j.cell.2023.08.037
https://doi.org/10.1038/s41577-023-00837-1
https://doi.org/10.1016/S1474-4422(18)30232-1
https://doi.org/10.1016/j.molimm.2024.04.002
https://doi.org/10.1016/j.cell.2015.01.049
https://doi.org/10.1038/s41582-018-0072-1
https://doi.org/10.1056/NEJMoa1211851
https://doi.org/10.1056/NEJMoa1211851
https://doi.org/10.1038/nrn.2016.7
https://doi.org/10.1016/j.cell.2020.05.003
https://doi.org/10.1186/s13024-018-0262-8
https://doi.org/10.1186/s13024-018-0262-8
https://doi.org/10.1084/jem.20171529
https://doi.org/10.1186/s13195-020-00709-z
https://doi.org/10.1016/j.cell.2022.09.033
https://doi.org/10.1016/j.neuron.2020.02.008
https://doi.org/10.1016/j.neuron.2019.12.007
https://doi.org/10.1016/j.cell.2017.07.023
https://doi.org/10.1186/s12964-024-01642-6
https://doi.org/10.1186/s12964-024-01642-6
https://doi.org/10.1016/j.mam.2022.101117
https://doi.org/10.1002/glia.23968
https://doi.org/10.1101/cshperspect.a002352
https://doi.org/10.1038/ng.801
https://doi.org/10.1016/j.mam.2022.101111
https://doi.org/10.1016/j.mam.2022.101111
https://doi.org/10.1016/j.neuron.2013.04.014
https://doi.org/10.3390/biom12030399
https://doi.org/10.1038/s41380-024-02474-z
https://doi.org/10.1038/s41380-024-02474-z
https://doi.org/10.1038/s41590-021-00918-0
https://doi.org/10.1038/nature17630
https://doi.org/10.1111/jnc.14940
https://doi.org/10.1038/s41591-022-01926-9
https://doi.org/10.1038/382716a0
https://doi.org/10.1016/j.neurobiolaging.2020.03.024
https://doi.org/10.1038/ncomms3030
https://doi.org/10.1523/JNEUROSCI.0616-08.2008
https://doi.org/10.1186/1750-1326-6-45
https://doi.org/10.1186/1750-1326-6-45
https://doi.org/10.1016/j.freeradbiomed.2004.01.007
https://doi.org/10.1016/j.freeradbiomed.2004.01.007
https://doi.org/10.1186/s12974-018-1250-1
https://doi.org/10.1111/acel.13515
https://doi.org/10.4103/1673-5374.380821
https://doi.org/10.4103/1673-5374.380821
https://doi.org/10.1126/science.aal3222
https://doi.org/10.3390/ijms19030706
https://doi.org/10.1016/j.bbadis.2016.07.007
https://doi.org/10.3389/fimmu.2025.1508023
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fu et al. 10.3389/fimmu.2025.1508023
pathology in a mouse model. Sci Trans Med. (2024) 16:eadj9052. doi: 10.1126/
scitranslmed.adj9052

105. Yanagisawa S, Katoh H, Imai T, Nomura S, Watanabe M. The relationship
between inflammasomes and the endoplasmic reticulum stress response in the injured
spinal cord. Neurosci Lett. (2019) 705:54–9. doi: 10.1016/j.neulet.2019.04.033

106. Chen R, Yin C, Fang J, Liu B. The NLRP3 inflammasome: an emerging
therapeutic target for chronic pain. J Neuroinflamm. (2021) 18:84. doi: 10.1186/
s12974-021-02131-0

107. Dick MS, Sborgi L, Rühl S, Hiller S, Broz P. ASC filament formation serves as a
signal amplification mechanism for inflammasomes. Nat Commun. (2016) 7:11929.
doi: 10.1038/ncomms11929

108. Venegas C, Kumar S, Franklin BS, Dierkes T, Brinkschulte R, Tejera D, et al.
Microglia-derived ASC specks cross-seed amyloid-b in Alzheimer’s disease. Nature.
(2017) 552:355–61. doi: 10.1038/nature25158

109. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A,
et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/
PS1 mice. Nature. (2013) 493:674–8. doi: 10.1038/nature11729

110. Zhang Y, Zhao Y, Zhang J, Yang G. Mechanisms of NLRP3 inflammasome
activation: its role in the treatment of alzheimer’s disease. Neurochem Res. (2020)
45:2560–72. doi: 10.1007/s11064-020-03121-z
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