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Aging is associated with immunosenescence, a decline in immune functions, but

also with inflammaging, a chronic, low-grade inflammation, contributing to

immunosenescence. Monocytes and macrophages belong to the innate

immune system and aging has a profound impact on these cells, leading to

functional changes and most importantly, to the secretion of pro-inflammatory

cytokines and thereby contributing to inflammaging. Rheumatoid arthritis (RA) is

an autoimmune disease and age is an important risk factor for developing RA. RA

is associated with the early development of age-related co-morbidities like

cardiovascular manifestations and osteoporosis. The immune system of RA

patients shows signs of premature aging like age-inappropriate increased

production of myeloid cells, accelerated telomeric erosion, and the

uncontrolled production of pro-inflammatory cytokines. In this review we

discuss the influence of aging on monocytes and macrophages during healthy

aging and premature aging in rheumatoid arthritis.
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Introduction

The immune system is the body’s defense against diseases and infection. As individuals

age, the immune system undergoes changes that gradually impair its ability to defend

against diseases, infections and other challenges; a process called immunosenescence.

Cellular senescence, stem cell exhaustion, genomic instability, telomere attrition,

epigenetic alterations, loss of proteostasis, altered cellular communication, dysregulated

nutrient-sensing, and mitochondrial dysfunction have been described as hallmarks of aging

(1). Senescent cells secrete a variety of mediators (growth factors, proteases, chemokines,

cytokines), termed the senescence-associated secretory phenotype (SASP), that affect

surrounding cells and tissues (2).

In addition to immunosenescence, aging is accompanied by a chronic, low-grade

inflammation. This process is called inflammaging (3). Both the innate and the adaptive

immune system are altered by aging. While the innate immune system becomes more

active during aging, the adaptive immune system tends to become more inactive. This leads
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to a decreased ability to resolve infections and establish

immunological memory, as well as an increased risk of age-

related diseases (3, 4).

Rheumatoid arthritis (RA) is an autoimmune disease

characterized by systemic chronic inflammation, chronic

infiltration of immune cells in the synovial membrane, and joint

destruction. Age is considered an important risk factor for RA (5, 6)

and the immune system is prematurely aged (7), making it an

important model to study the molecular mechanisms of an aging

immune system. RA patients have increased systemic levels of pro-

inflammatory cytokines such as IL-6 and TNFa (5). Monocytes and

macrophages are the main producers of TNFa and IL-6, and these

cytokines are targets of the most successful therapies in RA,

demonstrating that monocytes and macrophages are important

players in the pathogenesis of RA. Circulating monocytes are

recruited into the RA synovium via chemotaxis and this

recruitment is an important factor for causing synovial

inflammation (8). Monocytes also express increased cellular

surface antigens, chemokine receptors, produce inflammatory

cytokines and promote cartilage and bone destruction in RA (9).

These immune responses contribute to RA pathogenesis. Thus,

understanding the role of monocytes and how they are influenced

by aging in RA can provide insight into potential therapeutic targets

to modulate monocyte function or block inflammatory signals.

In this review we summarize the findings on the effects of

healthy aging and premature aging in RA on the phenotype and

function of monocytes and macrophages. We will focus thereby on

monocytopoiesis and monocyte subpopulations, telomere length

and epigenetic changes, functional consequences like cytokine

production, phagocytosis, and respiratory burst, and finally on

monocyte metabolism.
Monocytopoiesis

Monocytes develop from hematopoietic stem cells (HSCs).

These multipotent stem cells are located in the bone marrow and

have the potential to differentiate into all blood cell types. In the

myeloid lineage, HSCs then differentiate into common myeloid

progenitors (CMPs), granulocyte-monocyte progenitors (GMPs)

and ultimately culminate in the development of granulocytes and

monocytes (10). Aging leads to changes in the differentiation of

HSCs into the various blood cells (11), which results in the

increased production of myeloid cells, in a process called

“myeloid skewing” (12–15).

Aged healthy adults have an increased monocyte count in the

peripheral blood. Reitsema et al. reported a monocyte count of 0.56

x 109/L in healthy older individuals in comparison to 0.41 x 109/L in

young individuals (16). Similar results were reported by others (17–

21). Seidler et al. observed no difference in the monocyte count (22).

The discrepancies seen might depend on the different recruitment

strategies of old healthy individuals and the different age spans in

the cohorts. The time point of the phlebotomy might also play role

in the discrepancies between the studies, especially the metabolic

state and physical activity. Snodgrass et al. showed a decreased
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fasting monocyte count in older individuals that increased after

consuming a high-fat meal (23). In addition, exercise is known to

mobilize monocytes, however, the effect on the monocyte count is

mostly short-term (24). In healthy mice, an increased monocyte

count was observed in the bone marrow, the spleen, and the

peripheral blood of old mice (15, 19, 25, 26). Aging in rats also

leads to monocytosis in the peripheral blood (27).

Bone marrow progenitor cells of RA patients show an

accelerated differentiation into CD14+ cells compared to control

cells (28). In line with this study, Smijanovic et al. showed that the

transcriptomes of bone marrow monocytes of RA patients indicate

an accelerated monocytopoiesis (29). This increased production of

monocytes in the bone marrow leads to an increased monocyte

count in the peripheral blood and increased monocyte frequencies

in the mononuclear peripheral blood cells (30–34). Klimek et al.

showed that the increase in absolute monocyte numbers is more

pronounced in RA patients with a high disease activity (33), and

Coulthard et al. observed increased monocyte numbers in both

early (<12 months disease duration) and late RA (>12 months

disease duration) (34). Murine arthritis models show increased

myeloid precursors in the bone marrow and peripheral blood, and

increased monocyte numbers in the spleen and peripheral blood

(35, 36).

In addition to bone marrow hematopoiesis, extramedullary

hematopoiesis in the spleen has been reported in adults (37).

Hematopoietic stem and progenitor cells (HSPCs) are able to

migrate from the bone marrow via the peripheral blood into the

spleen and increase myelopoiesis during infectious or inflammatory

conditions (38, 39). The so-called “emergency hematopoiesis” plays

a role in acute and chronic sterile inflammation (38, 40, 41). Not

much is known about extramedullary hematopoiesis in the spleen

during aging. Loukov et al. showed that extramedullary

hematopoiesis is increased in aged mice, resulting in increased

monocyte numbers (42). They also found that splenic monopoiesis

is driven by TNF, suggesting that the increased extramedullary

monopoiesis is caused by the chronic, low-level inflammation that

occurs with age. Extramedullary hematopoiesis in the spleen has

also been reported in murine arthritis models (35, 43, 44), however,

studies in humans are missing.

It is known that inflammatory conditions lead to an enhanced

production and release of myeloid cells from the bone marrow (45).

So it’s not surprising that in both RA and aging an increased

monocytopoiesis and increased numbers of monocytes in the

peripheral blood are observed. TNFa and IL-1b have a profound

influence on the bone marrow, already in low-grade inflammation

(46, 47). Neutralization of TNFa by therapeutic antibodies led to a

reduction of monocyte numbers in the peripheral blood of RA

patients (48, 49), further demonstrating the role of TNFa in bone

marrow mobilization.
Monocyte subpopulations

Circulating human blood monocytes are not a homogenous cell

population but can be divided into classical monocytes (CM, CD14+
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+/CD16-), intermediate monocytes (IM, CD14++/CD16+), and non-

classical monocytes (NCM, CD14+/CD16++), where CMs represent

approximately 90%, IMs 5%, and NCMs 5% of peripheral blood

monocytes (50). In mice, CMs are Ly-6C++/CD43+, IMs Ly-6C+

+/CD43++, and NCMs Ly-6C+/CD43++ (50).

Classical monocytes are released from the bone marrow and

circulate in the bloodstream for approximately 24 hours (51). A

similar lifespan was reported for Ly-6C++ monocytes in mice (52).

CMs then differentiate into intermediate monocytes, however, most

of the CMs leave the circulation or die. The CMs leave the

circulation to enter various organs to replenish the monocyte-

derived macrophage pool or migrate to sites of inflammation

(53–55). Intermediate monocytes then circulate for approximately

four days and all differentiate into non-classical monocytes. The

NCMs circulate for approximately seven days, the Ly-6C+

monocytes in mice for two days (51, 52). They are known to

patrol the endothelium (56, 57). All three monocyte

subpopulations are able to produce pro- and anti-inflammatory

cytokines. However, there are discrepancies in the literature in

regard to comparisons between the subpopulations, most likely

explained by different isolation strategies (57–61).

In humans, there seems to be an age-dependent dynamic in the

prevalence of the three subpopulations as early as birth. However, it

is important to note that monocytes in neonates originate from both

fetal and adult HSCs (62), and this might influence monocyte

subpopulation frequencies. Hegge et al. compared the percentage

of the three subpopulations on total monocytes between healthy

term neonates (mean gestational age 39 weeks) to young adults

(mean age 24 years), and found a decrease of CMs and an increase

of IMs in the neonates (63). Wisgrill et al. compared cord blood

from premature infants (mean gestational age 29 weeks), term

newborns (mean gestational age 39 weeks), and peripheral blood

from healthy adults (mean age 25 years) (64). The absolute count of

CMs was found to be increased in term neonates compared to

preterm neonates. IMs were decreased in term neonates in

comparison to preterm neonates and also in adults in comparison

to both term and preterm neonates. In contrast, Sohlberg et al. and

Murphy et al. observed no difference between cord blood from term

newborns and blood of healthy adults, however, both did not

differentiate between three subpopulations but only between CMs

and IMs combined and NCMs (65, 66).

Most of the studies focus on monocytes in the peripheral blood

of adults after the neonatal-to-adult hematopoiesis transition.

Several studies showed that the NCM subpopulation and the IM

subpopulation expand with age in adults, both in frequency and in

absolute numbers (17, 67–69). In addition, several other studies

reported an expansion of the NCM subset. Seidler et al. observed

both an increase in NCM frequency as well as an increase in

absolute numbers of NCMs in old individuals in comparison to

young individuals (22). Wang et al. found an increase in NCM and a

decrease in CM frequencies in old individuals compared to young

individuals (70). They also observed a positive correlation of the IM

frequency with age in old individuals, however, there was no

significant difference between the two age groups when compared

directly. Ong et al. found the absolute number of all three
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subpopulations increased with age (61). Mohanty et al. analyzed

IMs and NCMs together, and the frequency of this combined subset

was increased in older individuals, whereas CMs decreased (71).

In addition to an increase in absolute monocyte numbers, RA

patients also have an expansion of the intermediate monocyte

subset. Early studies reported an increase in the frequency and

absolute number of CD16+ monocytes in RA patients, however, the

monocytes were only classified into CMs and CD16+ monocytes

(IMs and NCMs together) (72, 73). Cooper et al. also did not use the

CM, IM, and NCM classification, but compared NCMs and CD14+

+ monocytes (CMs and IMs together) between healthy donors and

RA patients (74). They observed no difference in the NCM

frequency, but an increased CD16 expression in long-standing

RA vs. healthy donors in the CD14++ population, most likely

representing IMs. Using the CM, IM, and NCM classification, we

and other groups observed an expansion of the IM subset in RA (33,

34, 58, 75–79). IMs are also the predominant monocyte

subpopulation in the synovial fluid of RA patients (29, 76). While

the expansion of IMs in RA is well documented, the data on NCMs

are less clear. Several studies observed no difference (58, 74, 76, 79),

some reported a decrease (29, 33, 80), and others an increase (34,

75). Overall, all the studies did not observe an age correlation, while

in healthy adults it was shown that the NCM and IM subset expands

with age, as described earlier. This suggests that there might be a

premature shift in the RA patient subpopulations, at least with the

expansion of the IM subset. On the other hand, most RA patient

cohorts have a mean age of approximately 50 years, and although

some cohorts also include younger patients, more cohorts with

young RA patients are needed to analyze the influence of age on

monocyte subpopulations. Disease duration seems to play no role in

the expansion of monocyte subsets as the changes are already

present in early RA (34, 58).

There is one other noteworthy monocyte subpopulation that is

part of the classical monocyte subset, namely CD56+ monocytes

(81). CD56+ monocytes were first described by Sconocchia et al. in

2005 (82). We found that the frequency of CD56+ monocytes

strongly increases with age (83). Young RA patients (20-39 years

old) have an increased frequency of CD56+ monocytes compared to

age-matched healthy adults (83), suggesting that the monocytes of

RA patients are prematurely aged. The frequency of CD56+

monocytes declined during therapeutic TNFa blockade and the

decrease was also associated with a better response to the treatment.

CD56+ monocytes are also expanded in obesity and SARS-CoV-2,

both diseases associated with immunosenescence (81, 84, 85). Dutt

et al. also showed a correlation of CD56+ monocyte frequency and

age in SARS-CoV-2 patients (84).
Telomere length

Aging is associated with telomere shortening, and Hearps et al.

showed that classical monocytes and CD16+ monocytes from older

individuals had shorter telomeres than monocytes from young

individuals (67). Spyridopoulos et al. observed an age-dependent

telomere attrition of 30 base pairs per year in monocytes (86).
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Hochstrasser et al. also reported a strong negative correlation

between age and telomere length (87). Bone marrow-derived

macrophages from old mice had shorter telomeres than from

young mice (88).

Circulating monocytes do not show signs of proliferation and

active cell cycle (51). This suggests that telomere shortening occurs

before the monocytes enter the circulation and is already present in

the myeloid precursors. Spyridopoulos et al. showed that there was

a strong correlation of telomere length in monocytes, granulocytes,

and CD34+ peripheral blood progenitor cells (86). Telomere length

is maintained by telomerase, a reverse transcriptase able to lengthen

telomeres. When telomerase components were deleted, bone

marrow-derived macrophages had shorter telomeres and an

inflammatory phenotype with increased oxidative stress and

hyperactivation of the NLRP3 inflammasome (89).

Telomere length is associated with the risk of RA (90, 91), but

most data are from T cells (92). So far, we can only speculate on

telomere length in RA monocytes and macrophages. Li et al.

showed that the expression of MRE11A is decreased in

monocytes of RA patients (93). MRE11A is a double-strand-break

repair nuclease and a decreased expression leads to telomere

damage in CD4+ T cells in RA. It is also known that circulating

CD34+ HSCs from RA patients have a decreased telomere length

but an increased telomerase activity (92, 94). The regulation of

telomerase seems to be cell-type specific in the hematopoietic

system in RA and independent of disease activity, at least in naïve

CD4 T cells (92). In aging, it has been shown that an increased

inflammatory load is associated with increased odds for a short

leukocyte telomere length (95) and inflammation can cause

telomere attrition (96), but it is not clear if cytokines are the

cause or the result of shortened telomere length and vice versa. It

has been shown that persistent DNA damage in senescent cells

initiated the secretion of inflammatory cytokines like IL-6 (97).

However, more research focusing on telomere length in monocytes

and macrophages in aging and RA could provide further insight

into the interplay between inflammation and telomere length as the

cells are one of the major producers of these cytokines.
Epigenetic changes

Epigenetics is the structural adaptation of chromosomes that do

not alter underlying DNA sequence but influence genetic function

(98). Common types of epigenetic changes include DNA

methylation and histone modification and can have long term

effects on an individual’s health. DNA methylation patterns play a

part in the determination of immune cell fate and immune

responses (99). Aging leads to changes in the DNA methylation

patterns, and sites with hyper-methylation and hypo-methylation

have been described (100–103).

Reynolds et al. identified genes that showed an age-associated

expression in monocytes, and in some of those genes the CpG

methylation state mediated the association (102, 104). The

described age-related methylation sites are located in enhancers

linked to the expression of antigen processing and presentation
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genes and tend to be hypomethylated, suggesting a change in

antigen presentation during aging. Saare et al. detected several

CpG sites with differential methylation between age groups in

monocytes (105), and they also found hypermethylation of CpG

sites at the ELOVL2 and FHL2 gene loci. These have been previously

reported to be associated with age (100). Other groups also observed

age-related changes in DNA methylation in monocytes (106–109).

There have been several monocyte methylome alterations

described in RA. Rodrıǵuez-Ubreva et al. reported that the

change in the methylome correlated with the disease activity

score DAS28, and that the methylome of RA patients in

remission resembled the methylome of healthy donors (110).

They also showed that pro-inflammatory cytokines can induce

the methylation pattern linked to the high DAS28 score. Mok

et al. showed the hypomethylation of CYP2E1 and DUSP22

promoters in monocytes of active RA patients with erosive

disease (111). Other groups also described a distinct DNA

methylation pattern in monocytes of RA patients (112, 113).

The above studies show that in recent years epigenetic changes

in monocytes have emerged as features of aging and RA. Currently

there is insufficient data available on its functional consequences,

interaction of various epigenetic modifications and their exact role

in RA and aging. More insight could lead to a better predicament of

therapeutic responses and opens the possibility of personalized anti-

TNF treatment as demonstrated recently in a study on the PBMC

methylome in RA patients using machine learning models (114).

More research is also needed on the role of aging in the epigenetic

modifications in monocytes observed in RA.
Cytokines

Aging is associated with elevated concentrations of pro-

inflammatory cytokines, like TNFa, IL-6, and IL-1b, in the serum

(70, 115–117). There is a plethora of studies focusing on the

cytokine response of monocytes and macrophages during aging

and we will focus on one hand on the spontaneous cytokine

secretion of resting monocytes and macrophages, and on the

other hand on the cytokine response to bacterial challenges.

Finally, we will discuss RA monocytes and macrophages.
Spontaneous cytokine secretion of
monocytes and macrophages

Álvarez-Rodrı ́guez et al. reported that age is positively

correlated with the intracellular expression of TNFa, IL-6, and
IL-1b in circulating monocytes (117), whereas O’Mahony et al.

found no difference (118). Cao et al. and Puchta et al. also did not

observe a difference in the TNFa, IL-6, and IL-1b expression of

monocytes in young and old individuals (17, 119). Hearps et al.

however, reported an increased TNFa expression in classical,

intermediate, and non-classical monocytes of older individuals

(67). Pence et al. showed a decreased IL-6 gene expression in

older individuals (120), corroborating the findings of Mohanty
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et al. who observed a decrease in IL-6+ monocytes (71). In mice,

unstimulated splenic macrophages, thioglycollate-elicited

peritoneal macrophages, or bone marrow-derived macrophages

from young and old mice did not differ in their spontaneous

TNFa, IL-6, and IL-1b secretion (121–125).

The results on pro-inflammatory cytokine secretion or

expression in resting monocytes and macrophages are

inconclusive. Different analysis methods (intracellular cytokine

staining, ELISA of cytokines in the supernatant) and detection

limits of the expected low, spontaneous monocyte cytokine

secretion might play a role.
Induced cytokine secretion of monocytes
and macrophages

Cao et al. reported a higher frequency of TNFa+ monocytes, a

decreased frequency of IL-6+ monocytes, and an unchanged

frequency of IL-1b+ monocytes in response to stimulation with

bacterial lipopolysaccharide (LPS) in older individuals (17). Puchta

et al. analyzed the TNFa and IL-6 response of classical,

intermediate, and non-classical monocytes of old and young

individuals. They found an increased TNFa and IL-6 expression

in intermediate monocytes of older individuals in response to LPS

and no difference in the other two subpopulations (119). In

addition, the group analyzed the LPS-induced TNFa and IL-6

secretion of isolated monocytes and observed an increased

response from older individuals. An increased TNFa expression

was also observed by Hearps et al. in intermediate monocytes and

non-classical monocytes (67). Wang et al. analyzed the intracellular

expression of IL-6 and found an increased LPS-induced IL-6

expression in all three monocyte subpopulations from aged

donors (60-70 years) vs. young donors (21–30) (70). However,

Pence et al. showed a decreased IL-6 gene expression in response to

LPS in older individuals (120). We analyzed CD56+ monocytes, a

monocyte subset that expands with age, and found that they express

more TNFa in response to LPS than CD56- monocytes (83).

The findings on an increased TLR4 cytokine response is not

limited to monocytes. Bouchlaka et al. differentiated peripheral

blood mononuclear cells (PBMCs) into macrophages and

stimulated them with LPS. They found an increased TNFa and

IL-6 secretion in response to LPS in macrophages differentiated

from older individuals compared to young individuals (123).

Gather et al. differentiated monocytes from young and old

individuals towards M1 and found no difference in TNFa and IL-

6 mRNA and TNFa protein expression (126).

Whereas there is a trend towards a stronger pro-inflammatory

cytokine response in TLR4 activation in monocytes and also

macrophages, the response to other TLR ligands seems to be

attenuated. Van Duin et al. showed that the frequency of TNFa+
and IL-6+ monocytes is diminished in older individuals when the

monocytes were activated with Pam3CSK4, a TLR1/2 heterodimer

ligand (127). However, they observed no difference when the

monocytes were activated with lipoteichoic acid (TLR2/6

heterodimer ligand), LPS (TLR4 ligand), or flagellin (TLR5
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ligand). Nyugen et al. activated whole blood with Pam3CSK4 and

analyzed the frequency of TNFa+ and IL-6+ monocytes (68). IL-6+

monocytes were decreased in all three monocyte subsets, TNFa+
monocytes were decreased in intermediate and non-classical

monocytes in older individuals.

LPS-stimulated thioglycollate (TG)-elicited peritoneal

macrophages from old mice produced less TNFa and IL-6 than

those from young mice (121). The same group also showed that

activation of splenic macrophages from old mice with LPS or

zymosan led to a diminished TNFa and IL-6 production (122,

128). Fallah et al. made similar observations. They reported that

splenic macrophages produced less TNFa in response to LPS or

killed S. pneumoniae (129). Gomez et al. and Chelvarajan et al. also

described a decreased LPS-induced TNFa, IL-6, and IL-1b secretion
in splenic macrophages from old mice (130, 131). Beharka et al.

observed no difference in the LPS-induced IL-6 secretion of

peritoneal macrophages between young and old mice (125). Chen

and Bradley found a decreased TNFa and IL-6 secretion in resident

and complete Freund’s adjuvant-elicited peritoneal macrophages

from old mice, but an increased TNFa and IL-6 secretion in TG-

elicited peritoneal macrophages (132). Cecıĺio et al. showed that

resident and TG-elicited peritoneal macrophages from old mice

have a decreased TNFa response (133).

The overall findings on decreased cytokine secretion are not

limited to TLR4 ligands but also found with other TLR ligands.

Alveolar macrophages from mature mice (10-12 months) and old

mice (19-21 months) had a decreased TNFa response to ethanol-

killed pneumococci and purified pneumococcal cell wall (134), and

purified CD11b+ peritoneal macrophages a decreased TNFa
response to zymosan (135).

The data on murine bone marrow-derived macrophages (BMDM)

from old mice are less clear. Several studies reported an increased

TNFa and IL-6 secretion in response to LPS (123, 133, 136, 137) Kang

et al. reported an increased production of IL-1b in BMDMs from old

mice in response to activation with Staphylococcus aureus (89). Zhao

et al., however, found a decreased LPS-induced IL-6 secretion (138),

whereas Mahbub et al. observed no difference in the TNFa, IL-6, and
IL-1b secretion between old and young mice (128). Ramirez et al. also

did not find an age effect on the LPS-induced IL-1b secretion, however,
they observed a decreased response to an inflammasome activation

with LPS and ATP (139). BMDMs activated with Porphyromonas

gingivalis from older mice also showed a decreased TNFa
response (140).

Published data on the anti-inflammatory cytokine IL-10 and

monocytes or macrophages are scarce. Cao et al. did not observe a

difference in the IL-10 expression of monocytes in young and old

individuals (17). They also reported an unchanged frequency of IL-10+

monocytes in response to stimulation with LPS in older individuals.

Mohanty et al. found an increased frequency of IL-10+ monocytes in

older individuals (71). Boehmer et al. showed that splenic macrophages

of old mice produce more IL-10 than youngmice in response to LPS as

well as zymosan (122), whereas Cecıĺio et al. observed no effect on IL-

10 in LPS-activated murine BMDM (133).

While an increased TLR4-induced pro-inflammatory cytokine

response was most often observed in monocytes, the cytokine
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response was diminished in tissue macrophages. The age effect on

bone marrow-derived macrophages is also less clear than on tissue

macrophages from mice. Mahbub et al. already speculated that the

surrounding aging microenvironment has an effect on macrophage

development (128). Gomez et al. reported similar findings (141).

Inflammaging and inflammatory cytokines and chemokines

secreted by senescent cells (the senescence-associated secretory

phenotype, SASP) have a profound influence on surrounding

cells. Gather et al. showed that age has no effect on monocyte-

derived macrophages, but that an aged microenvironment in co-

culture experiments with aged dermal fibroblasts drives a more pro-

inflammatory macrophage phenotype (126). The aged

microenvironment also drives the accumulation and activation of

M1-like CD38+ macrophages in adipose tissue and liver during

aging (142, 143). McQuattie-Pimentel et al. also showed that age-

related changes in alveolar macrophages are defined by their

microenvironment in the lung (144). Chambers et al. described

the recruitment of inflammatory monocytes by senescent fibroblasts

in the human skin (145).
Cytokine secretion of monocytes and
macrophages in RA

Pro-inflammatory cytokines play an important role in the

pathogenesis of RA, as demonstrated by the successful therapies

using TNFa and IL-6 neutralizing agents (146). We have shown

that monocytes of RA patients show signs of premature aging. They

express membrane TNFa and spontaneously secrete IL-1b, which
leads to an increased survival of the monocytes (147). Paoletti et al.

also found an increased expression of membrane TNFa on RA

monocytes (148). It has also been demonstrated that the

intermediate monocyte subpopulation is predominantly expanded

in the synovial fluid of RA patients (29, 76) and this subpopulation

is associated with aging as discussed above and characterized by a

high IL-1b secretion (58, 149). Single-cell RNA sequencing of RA

synovial tissue led to the identification of a IL1B+ pro-inflammatory

monocyte subset which was possibly shaped by the local

microenvironment (150). Transcriptomic analysis of classical

monocytes revealed that the expression of IL6 was higher in

erosive disease than in non-erosive disease in premenopausal

women (median age 39 vs. 37 years) (151).

We and others have shown that monocytes of treated RA patients

and healthy controls have a comparable cytokine response to LPS (147,

152, 153). However, Leirisalo-Repo et al. observed an increased TNFa
secretion in LPS-activated monocytes of untreated patients with early

RA (152). This is in contrast to a study by Liou (154). They reported a

normal cytokine response to LPS in monocytes from untreated RA

patients. We also found no difference in the IL-1b secretion in treated

and untreated RA patients following monocyte activation with LPS,

however, we observed a lower IL-18 response in monocytes of

untreated RA patients compared to healthy controls (153). The

inflammasome activation with LPS and calcium led to an increased

IL-1b and IL-18 secretion in monocytes from RA patients compared to

healthy controls (153).
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Phagocytosis

Aging is associated with an increased susceptibility to

infections. Phagocytosis of pathogens and apoptotic cells is one of

the key functions of monocytes and macrophages and plays a

crucial role in immune defense.
Human monocytes and macrophages

Published data on the effect of aging on human monocyte

phagocytosis are conflicting. Hearps et al. report an impaired

phagocytosis of Escherichia coli by human monocytes from old

adults (median age 72) compared to monocytes from young adults

(median age 28) (67) whereas several older publications describe no

effect or a non-significant trend towards impaired phagocytosis in old

individuals (155, 156). Mege et al. studied the phagocytosis of

opsonized zymosan, immunoglobulin-coated sheep red cells and

glutaraldehyde-treated sheep red cells (155). They observed an

impaired phagocytosis of opsonized zymosan and immunoglobulin-

coated sheep red cells by human monocytes from old adults (mean age

76) compared to monocytes from young adults (mean age 36) but this

trend did not reach statistical significance (155). Gardner et al. found

no difference in the phagocytosis and killing of Candida albicans in

monocytes from healthy young controls (<35 years) and hospitalized

patients >60 years and <35 years of age (156). Unrelated to an

infectious setting, Bliederhaeuser et al. report an impaired

phagocytosis of exosome-associated and free alpha-synuclein

oligomers by human monocytes from old adults (median age 66)

compared to monocytes from young adults (median age 24) (157). A

recent study showed that monocytes and monocyte-derived

macrophages from old adults (mean age 60.5) have an impaired

phagocytosis of opsonized beads or Staphylococcus aureus in

comparison to young individuals (mean age 23.7) (158).
Murine monocytes and macrophages

Studies of aged monocytes and macrophages in mice and rats

are as conflicting as in humans. The phagocytosis of latex beads by

peritoneal macrophages was decreased in aged mice (85 weeks)

compared to young mice (15 weeks) (159), whereas the

phagocytosis of Klebsiella pneumoniae was increased in alveolar

macrophages from old rats (18 month) compared to young rats (6

month) (160). The phagocytosis of apoptotic cells by thioglycolate-

elicited peritoneal macrophages, resident peritoneal macrophages

and bone marrow-derived macrophages was found to be decreased

in aged mice (161–163).

Linehan et al. showed that the tissue microenvironment might

play a role in age-related defects in phagocytosis (164). They

reported a decreased phagocytosis of fluorescent particles by

peritoneal macrophages from old mice (15-20 month) compared

to young mice (8-12 weeks), whereas bone marrow-derived

macrophages and bone marrow monocytes showed no age-related

impairment of phagocytosis (164). Interestingly, peritoneal
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macrophages derived from young mice showed impaired

phagocytosis when injected into the peritoneum of old mice

(164). This suggests that microenvironmental factors in the aged

peritoneum cause age-related defects and Linehan et al. identified

IL-10 as one of the factors (164).
Rheumatoid arthritis

Several older studies reported no difference in phagocytosis of

bacteria between RA patients and healthy controls (165–167).

Steven et al. observed increased phagocytosis of opsonized

Staphylococcus aureus and Proteus mirabilis by monocytes from

RA patients compared to age-matched controls (168). The

phagocytosis rate correlated positively with age when patients and

controls were analyzed combined, and the phagocytosis rate of RA

patients remained higher than in controls in the 30-60 age group

(168). More recent studies also did not focus on age. Fragoulis et al.

observed no difference in the phagocytosis of secondary necrotic

cell remnants in RA patients and controls (169) and Tas et al. found

no difference in the phagocytosis of apoptotic cells in monocyte-

derived macrophages from RA patients and controls (170).

Interestingly, Lee et al. reported that activated platelet-induced

CD16 (also known as FcgRIII) on classical monocytes participates in

increased antibody-dependent cellular phagocytosis (171). The

monocytes then resemble intermediate monocytes, a monocyte

subpopulation expanded in the blood and synovial fluid of RA

patients (58, 76) and reported to be expanded in older individuals

(17, 23).
Respiratory burst and reactive
oxygen species

As described earlier, immune functions such as phagocytosis

decline with age. Phagocytosis is accompanied by a sudden increase

in the activation of oxidative metabolism known as the respiratory

burst, which is responsible for killing phagocytosed pathogens, and

mediated by the NADPH-oxidase (172). The enzyme catalyzes the

formation of superoxide by transferring one electron to oxygen from

NADPH (173). Other prominent reactive oxygen species (ROS) are

hydrogen peroxide and hydroxyl radical. ROS are not only produced in

response to pathogens or pathogen-associated molecular patterns by

the NADPH-oxidase, ROS are also formed during mitochondrial

oxidative phosphorylation and by the 5-lipoxygenase (173).
ROS and respiratory burst

Aging leads to a decrease in ROS produced during the

respiratory burst in monocytes and macrophages. Alvarez et al.

have shown that the production of ROS decreases with age in rat

peritoneal macrophages (174, 175). Phorbol Myristate Acetate

(PMA)-activated 12-month-old rat macrophages showed a lower

production of superoxide ions compared to 3-month-old rats.
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Macrophages from 24-month-old rats had a further reduction in

ROS production compared to both 12-month-old and 3-month-old

rats. Activation of macrophages with N-formylmethionyl-

leucylphenylalanine (fMLP) or concanavalin A did not show a

decrease in ROS production between 3 and 12-month-old rats,

however, a significant reduction in 24-month-old rats compared to

both 3 and 12-month-old rats was observed (175).

The PMA-induced superoxide generation in human monocytes

is negatively correlated with (176) and the PMA-induced capacity

to produce superoxide ions is reduced in aged subjects (65-75 years

old) compared to young (25-35 years old) and mature (45-55 years

old) (177). Lower ROS production was also reported in alveolar

macrophages. Ganguly et al. measured the production of superoxide

in alveolar macrophages from female Fisher-344 rats stimulated by

opsonised zymosan and found that aged rats showed lower ROS

production (178). One limitation of this study was the use of aged

breeder rats which have been shown to exhibit a lower magnitude of

respiratory burst compared to young and aged virgins (179).

Esposito et al. compared alveolar macrophages obtained from

virgin adult and aged female rats and observed that normal

senescent mice released larger quantities of superoxide when

activated by either PMA or zymosan (180), contrary to

previous findings.
ROS accumulation in aging monocytes
and macrophages

In contrast to the ROS produced in activated monocytes and

macrophages, the general ROS content in resting monocytes and

macrophages seems to increase with age. Sebastián et al. showed an

increased ROS content in BMDM from old mice compared to

young mice (88). Jacinto et al. reported an increased ROS content in

circulating monocytes from aged mice (181). Their study focused

primarily on the apoE-/- mouse model of spontaneous

atherosclerosis, but they also observed a significant increase in

ROS content in monocytes from 18-month-old mice compared to

2-month-old wild-type mice.

Saare et al. reported similar findings in human monocytes (105).

Oxidative stress due to ROS production was determined by

measuring the fluorescence of oxidized products of chloromethyl

derivative of 2’,7’-dichlorodihydrofluorescein diacetate (CM-

H2DCFDA) in monocytes isolated from young (mean age 29.6

years) and old (mean age 79.4 years) donors (105). Unstimulated

monocytes from older donors showed a twofold increase in ROS

production, while LPS-stimulated monocytes showed a smaller but

still significant increase. Higher cellular levels of ROS are associated

with DNA damage (182), and Saare et al. observed that double-

strand breaks were 1.5 times higher in the old cohort by analysing

the percentage of monocytes showing a gH2AX signal (105).

Wang et al. also reported an increased ROS content (measured

with DCFH-DA) in all three monocyte subpopulations (CM, IM,

NCM) from elderly individuals (60-70 years) compared with those

from young persons (21-30 years) (70). Hayashi et al. observed

a correlation of monocyte ROS content (measured with
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dichlorofluorescein and hydroethidine) and age in combined

exposed and unexposed Hiroshima atomic bomb survivors (65-95

years) (183). The monocyte ROS content also correlated with the

radiation dose implying that atomic bomb radiation accelerates

immunological aging. In our study on CD56+ monocytes, a

monocyte subpopulation associated with aging, we found

increased ROS content (measured with dihydrorhodamine 123) in

CD56+ monocytes compared to CD56- monocytes (83).
ROS and rheumatoid arthritis

Monocytes in RA are under high oxidative stress compared to

healthy controls as shown by Ostrakhovitch and Afanas’ev (184).

Oxygen radical production of RA monocytes and healthy controls

were measured by chemiluminescence with luminol or lucigenin.

PMA-stimulated RA monocytes showed 2.7 times more oxygen

radical production compared to controls. Monocytes from RA

patients also showed an increase in NADPH oxidase activity

compared to healthy controls. In addition, oxygen radical production

was decreased in monocytes from RA patients in the presence of

mitochondrial inhibitors rotenone and antimycin A, while normal cells

were unaffected, suggesting that mitochondrial superoxide production

is another source of oxygen radicals in RA monocytes.

Other studies also show that superoxide anion production is

increased in monocytes from RA patients compared to healthy

controls. Repo et al. showed that monocytes from untreated, early

RA patients showed significantly higher Luminol-enhanced

chemiluminescence to stimulation by FMLP, PMA or opsonised

zymosan particles compared to healthy controls (185). Hurst et al.

observed an increased superoxide anion production in RA monocytes

stimulated with IgG-treated zymosan or serum-treated zymosan (186,

187). No difference in basal rates of monocyte superoxide anion

production was observed between controls and RA patients. Mateen

et al. showed that RA patients have an increased ROS formation

compared to age-matched controls. They stained ROS with 2’, 7’-

dichlorofluorescein-diacetate (DCFH-DA) to observe the intracellular

ROS production (188). Nitric oxide (NO), an important component of

inflammatory oxidative burst, was also shown to be 1.56 times higher

in monocytes isolated from the blood of RA patients compared to

healthy individuals (189).
Monocyte metabolism

The bioenergetic status of monocytes and macrophages

determines cel lular functions, with pro-inflammatory

macrophages relying on glycolysis and the pentose phosphate

pathway and anti-inflammatory macrophages relying on oxidative

phosphorylation and fatty acid oxidation (FAO) (190). Monocytes

and macrophages can undergo metabolic reprogramming when

challenged with a stimulus and switch from an aerobic profile to

anaerobic glycolysis in a process called the Warburg effect. Aging

impairs oxidative phosphorylation and FAO pathways and this shift

might contribute to inflammaging (191, 192).
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Glycolysis and oxidative phosphorylation

Maoldomhnaigh et al. compared macrophages differentiated

from monocytes from adult blood (aged 18-69 years) and cord

blood (term neonates) (193). Both MDMs responded with a rapid

increase in glycolysis when activated with LPS, but only the MDMs

from adults showed a decrease in oxidative phosphorylation.

Wang et al. reported an increased glycolysis, impaired oxidative

phosphorylation, and mitochondrial dysfunction in all three

monocyte subsets in aged adults (70). These changes were most

prominent in non-classical monocytes, and the authors speculated

that the increased glycolysis is a result of the mitochondrial

dysfunction to meet the demand for energy metabolism.

Reduced cellular respiratory capacity with age has been attributed

to dysfunctional mitochondria (194). Saare et al. also reported lower

mitochondrial membrane potential despite higher mitochondrial mass

in aged subjects (105). The oxygen consumption rate (OCR), basal and

maximal of monocytes from young (mean age 29.6 years) and old

(mean age 82.3 years) individuals were measured to calculate the spare

respiratory capacity (SRC) which was significantly lower in the older

group. Pence and Yarbro also reported impaired mitochondrial

respiratory activity in classical monocytes from old individuals using

flow cytometry (120). Their monocyte isolation strategy included

CD16 depletion to only focus on classical monocytes. Both studies

showed that basal respiration remains largely unaffected by age but the

maximal respiratory capacity is reduced in monocytes of older

individuals which leads to lower SRC.

Additionally, gene expression studies in monocytes of young

(average age 35.7) and old individuals (average age 71.6 years) also

highlighted the downregulation of oxidative phosphorylation genes

PLA2G4B and ALOX15B in older individuals, while PDK4 which

inhibits pyruvate dehydrogenase complex was highly upregulated.

This correlates to a shift of glucose metabolism from oxidative

phosphorylation to lactate production in monocytes of older

individuals (195). Interestingly, the NADPH oxidase, the enzyme

involved in respiratory burst, is not affected by age (177).

However, Pence and Yarbro did not find conclusive evidence of

increased glycolysis in LPS-stimulated aged monocytes ex-vivo

(196). The microenvironment plays a significant role in age-

related changes which could be a reason for such an observation.

As the authors point out, there could be several epigenetic

modifications and alterations in sirtuin activity that could be

linked to metabolism.
FAO and lipid metabolism

There is an increase in circulating fatty acids in older adults

since aging leads to the redistribution of body fat from

subcutaneous to visceral, the latter being less efficient in the

storage of fatty acids (197). Additionally, Wang et al. reported

decreased FAO and increased presence of lipid droplets (LD) in

aged monocytes of mice and humans (198). They also observed that

PPAR-a expression was downregulated in monocytes of aged

humans (>60 years old) and subsequently were able to prove that
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this caused the FAO decrease and LD increase by downregulating

PPAR-a in young monocytes to similar effects. This also affects

monocyte polarisation as the accumulation of LD in aged

monocytes leads to a pro-inflammatory phenotype.
NAD+ metabolism

As an important regulator of metabolism, NAD+ is thought to

also undergo changes during aging. Endogenous NAD+ is depleted

during aging which eventually disrupts cellular metabolism (199).

NAD+ can be obtained by several pathways, the two most commonly

studied ones being de novo biosynthesis pathway, also called

kynurenine pathway (KP), or the salvage pathway through

nicotinamide precursors. Clement et al. showed that the NAD+

precursors remain stable with age, while NAD+ levels are reduced

(200). This suggests that the decline in NAD+ might be caused by an
Frontiers in Immunology 09
increase in the activity of NAD-consuming enzymes. It is currently

not clear which pathway is primarily responsible for providing NAD

+ in macrophages as previous reports show conflicting results based

on the characteristics of the macrophage studied. Liu et al. showed

that de novo synthesis majorly occurs in the liver (201). However,

Minhas et al. showed that decreased cellular NAD+ can also be

replenished by macrophages via de novo synthesis (202). Disruption

of the salvage pathway using a NAMPT inhibitor in human

monocyte-derived macrophages (MDMs) demonstrated a marked

increase in KP enzymes and metabolites. They also confirmed that

basal de novo NAD+ synthesis accounts for 40% of total NAD+, and

almost all when the salvage pathway is blocked by the NAMPT

inhibitor FK866. Furthermore, they also showed that loss of the KP

disrupts mitochondrial respiration by inhibiting KP enzymes IDO1

and QPRT. Peritoneal macrophages from IDO1- or QPRT-deficient

mice showed reduced cellular NAD+ amounts compared to wild type

controls, along with suppressed oxygen consumption and increased
FIGURE 1

Impact of healthy aging on monocytes and macrophages. Schematic diagram displaying the consequence of aging on the phenotype and functions
of monocytes and macrophages in healthy individuals. IL-6, interleukin-6, TNFa, tumor necrosis factor a, IL-1b, interleukin-1b, ROS, reactive oxygen
species (created in BioRender.com).
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glycolysis. This effect was reversed on supplementation with

kynurenine. Similarly, human MDMs also showed a decreased

NAD+ and mitochondrial respiration when IDO1 and QPRT were

inhibited. Additionally, loss of QPRT activity also elevated lactate,

pentose phosphate pathway intermediates and pro-inflammatory

TCA intermediates that favour IL-1b and IL-6 production. Analysis

of QPRT expression in humanMDMs derived from young (<35 years

old) and older (>65 years old) individuals showed a significant

decline in older macrophages, the older macrophages having a

metabolite profile similar to that observed in LPS-stimulated

macrophages. Suppression of NAD+ synthesis in aged mice

indicated that the KP derived NAD+ is critical in sustaining the

cellular concentration. The age-associated loss of this pathway likely

contributes to the proinflammatory shift of macrophages with age.

Macrophages after inflammation, however, seem to be dependent

on the salvage pathway for NAD+. Cameron et al. observed that

murine BMDM showed reduced NAD+ levels when stimulated by LPS

compared to resting M0macrophages or IL-4-stimulated macrophages

(203). NAMPT inhibition by FK866 treatment induced dose-

dependent cell death in LPS-stimulated macrophages while the

viability of M0 and IL-4 macrophages was affected to a lesser extent.

Inflammatory cytokines such as TNFa, IL-1b, IFNg induce the rate

limiting enzyme for the salvage pathway, NAMPT. The authors

reported that this is necessary to counter the rapid NAD+ depletion
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on LPS activation. As mentioned earlier, these cytokines also increase

with age which likely enables the macrophages to keep up with the

demand due to an increase in NAD+ consuming enzyme activities

resulting from glyceraldehyde-3-phosphate dehydrogenase activity and

Warburg metabolism.
Metabolic reprogramming in
rheumatoid arthritis

Several studies on RA monocytes and macrophages show a pro-

inflammatory metabolic profile. Metabolomic profiling showed an

increased presence of lactic acid, citrate and succinate in the synovial

fluid of RA (204). Shime et al. showed that lactic acid promotes pro-

inflammatory pathway (205). Succinate too is known to be induced on

LPS activation, as a result of the metabolic shift from oxidative

phosphorylation to glycolysis during inflammation leading to its

accumulation as a TCA cycle intermediate. These suggest that the

macrophages in the synovial fluid might show a pro-inflammatory

phenotype. Michopoulos et al. showed that itaconic acid is a marker of

RA using the Tg197 mouse model which correlates with findings from

Lampropoulou et al. who reported that itaconate is involved in the

regulation of succinate levels in LPS-stimulated mouse bone marrow-

derived macrophages (206, 207).
FIGURE 2

Premature aging in monocytes and macrophages in rheumatoid arthritis. Schematic diagram showing the effect of RA on age-related changes in
monocyte and macrophage phenotypes and functions. IL-6, interleukin-6, TNFa, tumor necrosis factor a, IL-1b, interleukin-1b, ROS, reactive oxygen
species, CM, classical monocytes, IM, intermediate monocytes, NCM, non-classical monocytes, NADPH, nicotinamide adenine dinucleotide
phosphate (created in BioRender.com).
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Yoon et al. described that Solute carrier family 7 member 5

(SLC7A5) is increased in RA patients (208). LPS-stimulated human

peripheral monocytes from RA patients showed a 5.85-fold increase

in SLC7A5 expression compared to healthy controls. LPS-mediated

expression was also observed in human macrophages. They further

reported the role of SLC7A5 in being involved in the glycolytic shift

and production of pro-inflammatory cytokines such as IL-1b.
McGarry et al. (30) showed that RA monocytes have increased

mitochondrial respiration and enhanced glycolysis after activation

with LPS. Blockade of glucose consumption resulted in an

inhibition of the release of pro-inflammatory mediators. They

also reported that RA monocytes have an increased number of

mitochondria and an increased mitochondrial respiration already

ex vivo without any stimulation. These above studies show that

monocytes in RA tend to have a pro-inflammatory metabolic

profile, and thus RA patients exhibit signs of premature aging.
Conclusion

Monocytes and macrophages as part of the innate immune

system are markedly influenced by aging. The myeloid biased

hematopoiesis leads to increased numbers of monocytes in the

peripheral blood, and the monocyte subpopulations are shifted

towards intermediate and non-classical monocytes during healthy

aging as well as in rheumatoid arthritis. Monocyte and macrophage

functions like phagocytosis and cytokine production are affected by

aging. The findings on healthy aging of monocytes and

macrophages are summarized in Figure 1 and aging of monocytes

and macrophages in RA in Figure 2. However, further research is

needed as there is still inconclusive data on the functional

consequences of healthy aging and premature aging in RA on

monocytes and macrophages.
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133. Cecıĺio CA, Costa EH, Simioni PU, Gabriel DL, Tamashiro WMSC. Aging
alters the production of iNOS, arginase and cytokines in murine macrophages. Braz J
Med Biol Res Rev Bras Pesqui Medicas E Biol. (2011) 44:671–81. doi: 10.1590/S0100-
879X2011007500067

134. Boyd AR, Shivshankar P, Jiang S, Berton MT, Orihuela CJ. Age-related defects
in TLR2 signaling diminish the cytokine response by alveolar macrophages during
murine pneumococcal pneumonia. Exp Gerontol. (2012) 47:507–18. doi: 10.1016/
j.exger.2012.04.004
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141. Gómez CR, Acuña-Castillo C, Nishimura S, Pérez V, Escobar A, Salazar-Onfray
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