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Invariant Natural Killer T (NKT) cells represent a unique subset of innate-like T

cells that express both NK cell and T cell receptors. These cells are rapidly

activated by glycolipid antigens presented via CD1d molecules on antigen-

presenting cells (APCs), including B cells, dendritic cells (DCs), and

macrophages, or through cytokine-dependent mechanisms. Their ability to

produce a wide range of cytokines and express costimulatory molecules

underscores their critical role in bridging innate and adaptive immunity. B cells,

traditionally recognized for their role in antibody production, also act as potent

APCs due to their high expression of CD1d, enabling direct interactions with iNKT

cells. This interaction has significant implications for humoral immunity,

influencing B cell activation, class-switch recombination (CSR), germinal center

formation, and memory B cell differentiation, thus expanding the conventional

paradigm of T cell–B cell interactions. While the influence of iNKT cells on B cell

biology and humoral responses is well-supported, many aspects of their

interaction remain unresolved. Key questions include the roles of different

iNKT cell subsets, the diversity of APCs, the spatiotemporal dynamics of these

interactions, especially during early activation, and the potential for distinct

glycolipid ligands to modulate immune outcomes. Understanding these factors

could provide valuable insights into how iNKT cells regulate B cell-mediated

immunity and offer opportunities to harness these interactions in

immunotherapeutic applications, such as vaccine development. In this review,

we examine these unresolved aspects and propose a novel perspective on the

regulatory potential of iNKT cells in humoral immunity, emphasizing their

promise as a target for innovative vaccine strategies.
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1 Introduction

Natural Killer T (NKT) cells represent a specialized subset of T

cells that integrate features of both the innate and adaptive immune

cells. NKT cells are classified into two categories based on TCR

diversity: type I NKT or invariant NKT (iNKT) and type II NKT or

diverse NKT (dNKT), for the purposes of this article here we will

focus on iNKT cells, although dNKT role in immune responses has

been addressed elsewhere (1–3). In mice, iNKT cells express a TCR

composed of a Va14-Ja18 a-chain paired with Vb2, Vb7, or Vb8.2
b-chains (4). In humans, iNKT cells possess a TCR consisting of a

Va24-Ja18 a-chain associated with a Vb11 b-chain (5). This

receptor recognizes lipid antigens presented by the non-

polymorphic CD1d molecule, rather than peptide antigens

presented by major histocompatibility complex (MHC) molecules

(6). Upon activation, iNKT cells rapidly produce large quantities of

cytokines, including interferon-g (IFN-g), interleukin-4 (IL-4), IL-

10, and IL-17, enabling them to orchestrate diverse immune

responses (7, 8). iNKT cells are capable of activating quickly after

antigen encounter, this is in part due to their innate origin,

characterized by a pre-activated phenotype, without requiring

differentiation or priming by dendritic cells (DCs), unlike

conventional T cells (9). Additionally, NKT cells have pre-formed

mRNAs, being therefore capable of rapidly produce and secrete

several cytokines (10, 11). This phenotype, coupled with their

functional heterogeneity, positions iNKT cells as central

regulators in various immunological processes, such as anti-

tumor activity, pathogen defense, and immune modulation in

autoimmune diseases. Recent advances have classified iNKT cells

into subsets based on their transcriptional and functional profiles,

including iNKT1, iNKT2, and iNKT17, among others, each

contributing uniquely to the immune landscape (12, 13).

The relative expression of transcription factor promyelocytic

leukemia zinc finger (PLZF) in iNKT cells, has been shown to

drive the differentiation into different subsets, and strong TCR

signals are shown to regulate PLZF expression (14, 15). In this

regard, iNKT1 cells have been classified as PLZFLOW/T-bet+/

RORgt-/GATA-3+/-, and known to produce IFN-g, and at low levels

IL-4 (16). iNKT1 cells express IL2Rb, and IL2Rb-mediated IL-15

signaling is essential for their differentiation (17). iNKT2 have been

described as PLZFHIGH/T-bet-/RORgt-/GATA-3+, prominently

producing IL-4, whereas iNKT17 are classified as PLZFINT/T-bet-/

RORgt+/GATA-3+, producing mainly IL-17 (18–20). The complete

absence of TGF-b signaling led to total loss of RORgt+ iNKT17 cells
(21, 22). Both iNKT2 and iNKT17 cells express IL-17RB (IL-25

receptor), which is essential for the production of IL-13, IL-9, IL-10,

and IL-17 after TCR-mediated stimulation (23), demonstrating that

the cytokine production of activated iNKT cells is also influenced by a

signal through this receptor.

Studies have also discovered additional subsets, such as iNKT

follicular helper (iNKTfh) and iNKT10. Like T follicular helper

(Tfh) cells, iNKTfh cells are characterized as Bcl-6+/CXCR5+/PD-

1+/ICOS+ and produce mainly IL-21 (24, 25); and as to iNKT10,

these cells are characterized PLZFHIGH/E4BP4+, producing IL-10

and therefore having anti-inflammatory role (26, 27). Although the
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mechanisms of this differentiation remain unknown, the plasticity

and heterogeneity of iNKT cells make them a promising target for

modulating immune responses in the context of infectious,

carcinogenic, autoimmune, and other diseases (12, 13, 28).

A key feature of iNKT cells is their interaction with antigen-

presenting cells (APCs), particularly DCs. These interactions not

only drive the maturation of DCs through cytokine-mediated

mechanisms but also enhance their ability to prime conventional

T cells. Through this crosstalk, iNKT cells significantly amplify

CD4+ and CD8+ T cell responses, promoting robust immunity in

different contexts. Moreover, the discovery of the glycolipid a-
Galactosylceramide (a-GalCer) and its synthetic analogues led to a

great understanding iNKT cell biology, allowing researchers to

manipulate their activity for therapeutic purposes (29, 30). The

activation of iNKT cells by a-GalCer enhances antigen-specific

immune responses and has demonstrated its potential in cancer

immunotherapy and vaccine adjuvant development, underscoring

their clinical relevance.

In addition to their interactions with DCs, iNKT cells play a

pivotal role in regulating humoral immunity. iNKT cells influence

the activation of B cells through direct engagement via CD1d

molecules and promotes their differentiation into germinal center

B cells, long-lived plasma cells, and memory B cells, which are

essential for sustained antibody production (31–34). This

interaction also complements the classical pathway of B cell

activation, mediated by Tfh cells. By bridging innate and adaptive

immunity, iNKT cells provide critical signals that enhance

antibody-mediated responses, with implications in infectious

diseases, vaccine efficacy, and autoimmune regulation. This article

examines the complex mechanisms by which iNKT cells interact

with B cells during the humoral immune response. It highlights how

these interactions, along with the involvement of distinct APCs and

the use of different a-GalCer analogues, can be harnessed to

modulate B cell activation and shape the resulting humoral

immune response.
2 Functional modulation of iNKT cells
by glycolipid ligands

2.1 Cytokine bias in the activation of
iNKT cells

iNKT cells can produce a diverse array of cytokines, each with

distinct roles in modulating immune responses. Multiple

mechanisms have been proposed to contribute to the cytokine

bias of iNKT cells, including the strength of the interaction with

the invariant TCR (35), TCR-dependent stabilization of preformed

cytokine mRNAs (11), antigen presentation by distinct APCs (36),

location where the antigens are loaded onto CD1d molecules and

whether they are presented in lipid rafts or not (37). In this regard,

plasma membrane glycolipid rafts facilitate a-GalCer presentation
on CD1d, which are also required for efficient signal transduction,

specially at low ligand densities (38, 39). In addition,
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microenvironmental signals may also influence iNKT cell activation

considering their tissue-specific distribution (19, 40, 41).

Irrespective of this debate, the existence of different iNKT cell

subsets is clear and as mentioned initially, they have a signature

expression of transcription factors and cytokines, which may be

targeted by different glycolipid ligands.

a-GalCer is the most studied glycolipid ligand of iNKT cells due

to its remarkable activating properties, which have led to significant

advancements in studying this non-convential population of

lymphocytes (42). Although initial studies showed that this

glycolipid had promising results in promoting anti-tumoral

activity and pathogen-specific immunity, the simultaneous

production of cytokines with opposite properties such as IL-4 and

IFN-g (43), represents a counterproductive effect considering that

this may elicit unpredictable immune responses (44–46).

Modifying the backbone of a-GalCer can result in significant

changes in cytokine profiles produced by iNKT cells. The

development of synthetic a-GalCer analogues, either through

experimental or in silic designs (47) that can induce a Th1- or

Th2- biased cytokine response holds therapeutic potential for

treating conditions such as pathogen infections, autoimmunity,

cancer, and allergies, where imbalanced or polarized cytokine

production often drives disease pathogenesis (42, 48, 49).
2.2 a-GalCer analogues modulate iNKT
cell activation

Among the synthetic ligands known to polarize toward a Th2-

like response or that induce iNKT2 cell activation, OCH is one of

the most studied. This glycolipid contains a truncated acyl and

sphingosine chains, inducing a higher production of IL-4 upon

injection in mice when compared to a-GalCer, with mild or non-

detectable production of IFN-g, which is observed in both mouse

and human iNKT cells, being used effectively in autoimmune

murine models (13, 50–53). Recently, OCH has been used in

SARS-CoV-2 studies showing that prevents has therapeutic effects

in the late stage of infection (54), and also, the first-in-human

clinical trial of this glycolipid in the context of multiple sclerosis

showing promising results (55). On the other hand, the analogue a-
GalCer C20:2 has a truncated and unsaturated acyl chain, inducing

higher production of IL-4 in comparison to a-GalCer, and although
it does induce the production of IFN-g, levels are lower compared to

a-GalCer, however, these results have been observed only in mouse

iNKT cells (56–58).

Regarding analogues proven to induce a Th1-like response or

promoting iNKT1 cell activation, most studied are a-C-GalCer and
7DW8-5, and to a lesser extent the recently reported glycolipids

AH10-7 and C34. a-C-GalCer has a CH2-based glycosidic linkage

rather than the oxygen-based glycosidic linkage of a-GalCer, which
promotes a higher production of IFN-g and IL-12, with almost non-

detectable production of IL-4 compared to a-GalCer, although these

effects has been observed only in mouse iNKT cells (49, 59, 60).

Additionally, this glycolipid was shown to be up to 1000-fold more

potent than a-GalCer in terms of causing protection against

malaria, influenza virus, and melanoma metastasis in mouse
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models (49, 59, 61), and also being used in the design of BCG

vaccine (62). Further studies by Tsuji’s group led to the identification

of several C-Glycoside analogues, in which the galactose had an a-

linked E-alkene connecting to the ceramide portion, inducing strong

IFN-g production in bothmouse and human iNKT cells (63). 7DW8-

5 has a fluorinated benzene ring at the end of a C8 length fatty acyl

chain, which generates a higher activation of both mouse and human

iNKT, with higher IFN-g production, when compared to a-GalCer,
being used in cancer studies (64–66). This glycolipid has

demonstrated a superior adjuvant effect compared to a-GalCer in
HIV and malaria vaccines in mice, and recently it has been shown to

block SARS-CoV-2, respiratory syncytial and influenza virus in mice

and hamsters (64, 67).

The glycolipid AH10-7 has also shown promising results. This

glycolipid has a modification in the galactose, with a hydrocinamoyl

ester group on carbon 6, and also lacks the hydroxyl group on

carbon 4 of the sphingosine, leading to an overall response polarized

toward IFN-g production by mouse and human iNKT cells, and

showing strong anti-tumoral effect against B16-F10 melanoma (68).

This glycolipid has also proven to be effective in a partially

humanized mice model expressing human CD1d (68). As to C34

analogue, it contains two phenyl rings on the acyl chain compared

to a-GalCer and elicited a strong IFN-g production, with anti-

tumoral effects against breast, lung, melanoma, and neuroblastoma

cancer (69, 70). Recently, several analogues have been designed

using computational analysis and a humanized mouse model in

which cells express the human aTCR chain sequence and human

CD1d, aiming to improve the identification of strong iNKT cell

agonists for subsequent clinical trials (71).

More recently, diether moieties have demonstrated a structure-

activity relationship that selectively promotes the secretion of IL-17

over other cytokines. This finding suggests potential protective

effects against pathogens, likely driven by iNKT17 cells (72).

Numerous intriguing analogues have been developed to polarize

the iNKT cell response (73), although the specific mechanisms by

which they are processed and presented onto CD1d molecules

remain unclear for most of them (37, 74–76).

Although some reports have shown that structural analogues of

a-GalCer enhance the humoral response, it has not yet been

discussed whether differential activation of iNKT cells by different

glycolipids ligands can modulate the outcome of B cell activation

and ultimately antibody production.
3 Where and how do iNKT and B
cells interact?

In mice, iNKT cells become detectable in the thymus by days 5–

6 after birth and in peripheral tissues starting around day 8 (6, 77).

Later in adulthood, the frequency of iNKT cell from total

lymphocytes is 12-30% in the liver, 1-3% in the spleen, 5-10% in

the lungs, 0.5-1% in the thymus, 0.4-8% in the bone marrow, 0.2-1%

in lymph nodes, 0.05-0.6% in the intestine and 0.2% in the blood

(78–82). As has been suggested previously, their location defines

their features and functions (41).
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Peripheral iNKT cells exhibit tissue-specific characteristics and

interactions. In adipose tissue, they predominantly engage with

CD1d-expressing adipocytes, macrophages, and DCs, with

additional interactions involving eosinophils, regulating pro

and anti-inflammatory signals in obesity-associated inflammation

(83–85). In the lungs, iNKT cells interact with various APCs,

including alveolar macrophages, CD11b+ DCs, CD103+ DCs, and

monocyte-derived DCs, playing a crucial role in host defense

against pathogens and allergic asthma (28, 86, 87). In the

intestine, they primarily engage with CD1d-expressing CD11c+

cells, which play a critical role in maintaining spatial separation

between the microbiota and epithelial cells (88). In the liver, iNKT

cells are predominantly localized on the luminal surface of

sinusoidal endothelial cells, where they interact with CD1d-

expressing Kupffer cells (89). Beyond these tissue-specific roles,

iNKT cells contribute significantly to immune functions within

lymphoid tissues such as the spleen and lymph nodes.
3.1 Dynamics between iNKT cells and
CD1d-expressing APCs in secondary
lymphoid organs

The spleen is a highly organized organ consisting of red and

white pulp, with the latter serving as the primary residence for

mature T and B cells, localized within distinct regions known as the

T and B cell zones, respectively. This organ acts as a blood filter,

maintaining continuous contact with blood-borne antigens (90).

Between the red and white pulp exists an area called marginal zone

(MZ), which lies just outside of the lymphocyte-residing white pulp

and contains MZ B cells, DCs, MZ macrophages (CD209b+,

MARCO+, SR-A+, ER-TR9+) and metallophilic macrophages

(Siglec-1+, CD68+) (90–95). These APCs are the main ones

responsible for initiating an immune response against particles

and pathogens in the blood (95–97). Humans also have a

structure similar to mice MZ which is defined as perifollicular

zone, surrounding B cell zones where MZ B cells are located, and

therefore their characteristics differ (98).

During resting state, splenic iNKT cells are widely distributed

throughout the parenchyma, including the T and B cell zones, and

around the MZ (24, 99). These cells exhibit unique recirculation and

homing properties between B and T cell zones, driven by a

combination of molecular mechanisms. The transcription factor

PLZF promotes the expression of integrins such as LFA-1, which, in

conjunction with its ligand ICAM-1, facilitates the residence of

iNKT cells in extravascular areas and the T cell zones of the spleen

and lymph nodes (100). This localization is further refined by

chemokine signaling and other microenvironmental factors (41).

In response to exogenous stimulation, such as a-GalCer or

Sphingomonadaceae-derived glycosphingolipid (GSL-1)

administered intravenously, iNKT cells are recruited to the

marginal zone within 4 hours, and around 8 hours when mice are

infected with S. pneumoniae, however, when addressing indirect or

cytokine-mediated activation through the administration of IL-12

and IL-18, these cells distribute homogenously in the different zones

(99). Disruption of MZ severely impacts iNKT cell activation (101),
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migrate to MZ requiring antigen presentation by CD1d-expressing

APCs facilitating their rapid access to blood-borne antigens.

Key questions in this dynamic are which specific MZ-resident

APCs interact with iNKT cells during the initial activation phase

and how these interactions influence iNKT cell activation shaping

the resulting humoral response (Figure 1).

Among professional APCs, MZ B cells are those that express the

highest levels of CD1d, and also high levels of costimulatory

molecules such as CD40, CD80, B7-H1 and ICOS-L (102).

Initially, in vitro assays using spleen sorted MZ B cells for a-
GalCer antigen presentation showed that these cells required DCs

to promote the activation of lin–CD4+CD3+NK1.1int sorted NKT,

having a collaborative role in this process (103). However, latter

assays have pointed out that MZ B cells induced higher proliferation

of NKT cells when compared to conventional DCs (cDCs),

Follicular B cells (FO B) and B-1 B cells (32, 102). Additionally,

MZ B cell-mediated activation of NKT cells leads to a significantly

higher production of IL-4 during the first 4 hours compared to

cDCs, with IL-4 levels becoming comparable at 16 and 72 hours.

IFN-g production exhibits the opposite pattern, since only cDC-

mediated activation promoting its production at 16 and 72 hours,

whereas both APC promoted the production of IL-13 (102).

Interestingly, ICOS-ICOSL blockade in these assays selectively

inhibited IL-4 and IL-13 production (102). This has also been

reported previously in ICOS-/- iNKT cells, however, it also affected

the production of IFN-g, IL-10 and IL-5 (104).

As to macrophages and DCs, experiments using spleen-

enriched SIGN-R1+ macrophages and CD11chi DCs loaded with

a-GalCer, efficiently activate NKT cell hybridoma DN32.D3. In line

with these results, mice treated with clodronate liposomes (CLL),

which depletes MZ macrophages, metallophilic macrophages, and

DCs from the MZ and red pulp, there is a significant reduction of

IFN-g-producing iNKT cells (101). Same results were shown in

other study, however, three weeks after treatment with clodronate,

when DCs had been restored in the MZ, IFN-g+ iNKT cells were

recovered (~ 40%), but no the maximum level observed with no

depletion (~ 50%), showing that although DCs are important for

IFN-g production by iNKT cells, macrophages could act

synergically with these cells (99).

As to the contributing of these cells to IL-4 production by iNKT

cells, further studies using mixed bone marrow chimeras—where B

cells lacked CD1d expression—showed no alteration in IL-4

production by splenocytes in response to in vivo administration

of a-GalCer. Additionally, a-GalCer administration 24 hours after

treatment with clodronate resulted a complete reduction of IL-4

production by splenocytes (from 0.5% to <0.1% approximately)

(99). However, when examining IL-4 production specifically by

iNKT cells (CD1d-tetramer+ splenocytes), the same experiment

revealed that administering a-GalCer 24 hours after clodronate

treatment significantly reduced IL-4 production by iNKT cells

(from 20% to 5% approximately). Despite this, a small percentage

of IL-4+ iNKT cells remained (5% compared to 0-1% observed in

the treatment with vehicle). In contrast, three weeks post-treatment

with clodronate, when DCs had been restored in the MZ, IL-4

production was recovered almost to maximum level observed with
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no depletion (99). These findings highlight the critical role of DCs

in IL-4 production by iNKT cells and suggest that MZ B cells could

also contribute to this process.

The role of CD8+ DCs has been shown to be essential for early

iNKT cell activation. These cells are critical for iNKT mediated

IFN-g production in response to pneumococcal infection (99). This

has also been addressed by another study by using L363 mAb,

which recognizes CD1d/a-GalCer complex, where CD8+ DEC205+

DCs were shown to be the main population taking up exogenous

glycolipid antigens when administered intraperitoneally and mainly
Frontiers in Immunology 05
CD8+ and CD8- DCs promoted the expression of CD69 in iNKT

cells, whereas B cells didn’t (105). Batf3-/- mice lacking CD8+ DCs,

generated less serum levels of IFN-g and IL-4 when compared to

WT mice, however, there wasn´t a complete reduction in the

production of these cytokines, suggesting the presence of

compensatory mechanisms by other APCs (105).

Lymph nodes (LNs) are other important secondary lymphoid

organs and also organized like filters to capture antigens. They

house various lymphoid and myeloid cells that transport particulate

material from the afferent lymph into the subcapsular sinus of the
FIGURE 1

Interactions between APCs and iNKT cells during the course of humoral response, and differences in cytokine response, costimulatory molecules,
and iNKTfh formation by different a-GalCer analogues. (A) In the first hours and days following the administration of the iNKT cell ligand, it has been
observed that at the level of secondary lymphoid organs, iNKT cells migrate to the spleen marginal zone (MZ) and concentrate in this area, which
also occurs in the subcapsular sinus zone of the lymph nodes. Diverse APCs that express CD1d are present in these areas, including MZ B, DCs,
MZ macrophages, and metallophilic macrophages. Interactions between MZ B and iNKT cells have been shown to depend on ICOS and ICOS-L
signaling, which primarily promotes IL-4 production. In addition, early MZ B cell activation would generate an extrafollicular response and early
class-switch recombination. Regarding DCs, and specifically CD8+ subset, this interaction has been shown to be dependent on CD40-CD40-L,
CD28-CD80/CD86, which generally induces the production of both IL-4 and predominantly IFN-g. As to MZ macrophages, there appears to be a
predominant induction of IFN-g, whereas subcapsular sinus macrophages, it is not clear yet, however, in the context of viral response are associated
with iNKT-mediated IL-4 production. (B) While it remains unclear whether different APCs differentially process a-GalCer analogues or direct antigen
presentation toward specific iNKT cell subsets, these analogues have been reported to influence the kinetics of cytokine production and the
expression of costimulatory molecules. Th2-biased a-GalCer analogues such as OCH and C20:2 predominantly stimulate the production of IL-4 in
mouse iNKT cells, however, in the case of human iNKT cells, only OCH has been shown to induce this effect. In the case of OCH it has been shown
to promote the expression of PD-L1 and PD-L2 in DCs. Th1-biased a-GalCer analogues, such as 7DW8-5 and AH10-7 predominantly stimulate the
production of IFN-g and IL-12 in mouse and human iNKT cells, and only in mouse iNKT cells in the case of a-C-GalCer, and although not evaluated
it is proposed that these analogues promote the expression of CD40-L. It has been reported that a-C-GalCer promotes an increase in the
expression of CD80, CD86 and CD70 in DCs. (C) In the later stages, between 3 and 7 days after iNKT cell activation, iNKTfh cells are induced
through interactions with B cells. Depending on whether this interaction is cognate or non-cognate, it can drive CSR, germinal center formation
with further CSR, and the generation of long-lived (LL) plasma cells along with memory B cells. (D) The induction of iNKTfh cells has been addressed
after stimulation with different glycolipids, and only a-GalCer and a-C-GalCer were shown to induce the generation of these cells, being higher for
a-C-GalCer, whereas OCH wasn´t capable to induce this phenotype. ± It is controversial whether a-GalCer stimulation promotes germinal center
and memory response in the absence of Tfh cells. As to other Th1- or Th2-biased glycolipid analogues indicated in the figure, it has not been
addressed whether they induce the formation of germinal center and memory B cell responses.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1505883
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Palacios et al. 10.3389/fimmu.2025.1505883
lymph node (106). In popliteal LNs at steady state, endogenous

iNKT cells localize in the interfollicular region and medulla but not

in the T cell-rich paracortex (51, 107), and when they are activated

with silica particles coated with antigenic lipids, they migrate to

make contact with CD1d-expressing CD169+ macrophages lining

the subcapsular sinus (91). This is critical during the initiation of

antiviral B cell mediated immunity, since macrophages prime iNKT

cells in the interfollicular areas promoting an early production of

IL-4 necessary for appropriate immune response (108).

The redistribution of activated iNKT cells leads to the contact-

dependent maturation of macrophages, which can limit potential

pathogen spreading in secondary lymphoid organs, and of DCs,

which relocate to T cell zones and promote downstream adaptive T

and B cell responses, resulting in the so-called non-cognate iNKT

cell help, as will be addressed in the next sections (50, 52).
3.2 Role of costimulatory pathways in the
activation of iNKT cells

Regarding classical costimulatory pathways involved in iNKT cell

activation such as CD28-CD80/CD86 and CD40-CD40L (CD154),

CD28-/- mice receiving an intraperitoneal administration of a-GalCer
showed reduced production of IFN-g and almost no production of IL-4

compared to WT mice. On the other hand, CD40-/- mice showed

reduced production of IFN-g, and notably, and enhancement on IL-4

production compared to WT mice (109). In vivo assays have shown

that Th2-biased analogue OCH generates a lower expression of CD40L

compared to a-GalCer, although the kinetics of expression it’s not

clear, since some reports showed an early expression at 2 hours

whereas others show a peak induction at 24 hours (56, 110, 111).

Further assays showed that the absence of CD40-CD40L and IFN-g
signaling in the treatment with OCH results in no systemic production

of IL-12. Additionally, simultaneous administration of OCH and IL-12

promotes IFN-g production in iNKT and NK cells (110). This suggests

that Th1-biased analogues might promote the expression of CD40-L in

iNKT cells.

Other reports have evaluated the expression of costimulatory

and coinhibitory molecules on CD11c+ CD8+ DCs in vivo after

intraperitoneal administration of a-GalCer, OCH and a-C-GalCer.
Both a-GalCer and a-C-GalCer promoted an increase in the

expression of CD70, CD80, CD86 and Rae-1 at 20-40 hours,

being higher for a-C-GalCer, whereas OCH only induced a slight

increase in CD80 and Rae-1 (105). On the other hand, OCH

promoted an increase in the expression of PD-L1 and PD-L2 20

hours after immunization, whereas a-GalCer and a-C-GalCer only
generated a mild increase in the expression of PD-L1, being lower

for a-C-GalCer (105). These results support the regulatory role of

costimulatory molecules in APCs controlling the outcome of iNKT

cell activation during early stages, although it is still unclear whether

this applies to other APCs and if this result from engaging different

iNKT cell subsets.

Together these findings suggest that during early stages, distinct

APCs may engage iNKT cells and with specific costimulatory

molecules, with each specific APC influencing the activation of

different iNKT cell subsets, based on the observed cytokine profiles.
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For instance, MZ B cells predominantly mediate the production of IL-4

and IL-13, which may be driven by iNKT2 activation by engaging

ICOS-ICOSL and PD-1-PD-L1/PD-L2. At the same time, cDCs

promote both the production of IFN-g and IL-4, indicative of iNKT1

and probably iNKT2 activation, regulated through CD28-CD80/CD86,

CD27-CD70 and NKG2D-Rae-1 signaling. Still, it is most likely that

multiple APCs can synergistically enhance iNKT cell responses,

collectively shaping their immunological outcomes (Figures 1A, B).

Despite this proposed model, the precise relationships between

APCs, cytokine outputs, and the full spectrum of activation of iNKT

subsets by a thoroughly characterization using signature markers for

each one have not been addressed yet to be fully characterized.

Importantly, initial interactions between iNKT and APCs might have

an impact on early humoral response, probably through MZ B cells.
3.3 Follicular and marginal zone
B cell responses

Secondary lymphoid organs predominantly contain two subsets

of B cells: FO B cells, and as mentioned previously, MZ B cells. FO B

cell are present in circulating B cells in the bone marrow and blood

(112). Although these cells are present in mice and humans, their

surface markers exhibit different expression patterns (113, 114). These

cells are the most abundant and are located mainly in the follicles of

secondary lymphoid organs. These cells are responsible for primarily

responding against protein antigens with the assistance of Th cells;

therefore, this response is classified as T-dependent, where they have

been shown to contribute to the formation of germinal center, class-

switch recombination (CSR), and somatic hypermutation (SHM),

leading to affinity maturation and the production of high-affinity

antibodies within days to weeks (115, 116).

T cell-activated B cells will seed the germinal center located in

the center of the follicle, where they will initiate rapid proliferation.

At the same time, two compartments, known as Light Zone (LZ)

and Dark Zone (DZ), are being developed (117). In the DZ, B cells

in the fast division, known as centroblasts, undergo SHM of the

genes encoding their BCR (118, 119). Once germinal center B cells

have undergone SHM in the DZ, they will migrate to LZ to receive

positive selection signals from Tfh cells and FDCs (120, 121)

because this mutational process can be deleterious to the

centroblasts. The selection signal will ensure that only B cells

bearing a BCR with an improved affinity for antigen differentiate

into long-lived antibody-secreting cells and memory B cells (116).

Regarding CSR, this is an intrachromosomal DNA

rearrangement of the immunoglobulin IgM-IgD heavy-chain

locus in B cells when activated either in the extrafollicular zone or

within germinal centers (122). As a result of this process, B cells will

be able to express different isotypes of antibodies including IgG

subtypes, IgA, or IgE, without altering their specificity for the

antigen (123).

MZ B cells also play a crucial role in humoral response as they

are strategically positioned to serve as the first line of defense

against blood-borne pathogens and systemic antigens (94). In

humans, these cells circulate, whereas in mice, they reside in the

spleen’s marginal zone, a crucial area between the bloodstream and
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lymphoid tissue (124). MZ B cells are distinguished by high CD21/

35 receptor expression, which corresponds to complement receptor

2, and low expression of the CD23 receptor (CD21HIGHCD23LOW).

Notably, the CD21/35 receptor forms a complex with the B cell

receptor (BCR) and CD19 receptor, reducing the activation

threshold of these cells. This lowered activation threshold enables

MZ B cells to respond rapidly upon antigen recognition, providing a

distinct advantage over other B cell subsets (125).

This subset can produce rapid and early immune responses in

minutes to hours once they encounter microbes or exogen particles.

Their phenotype is heterogeneous, composed of naive and memory

B cells, and are particularly important in T-independent humoral

response, consisting mainly of non-protein polymeric antigens, and

their recognition will promote their rapid differentiation into short-

lived extrafollicular plasma cells to generate low-affinity antigen-

specific IgM or in some cases IgG3 (94, 126). Memory B cells, also

located in the MZ, participate in recall T-dependent responses after

immunization with the same antigens (127).

Interestingly, MZ B cells can differentiate into FO B cells in

response to T-dependent antigens, shuttling between the marginal

zone and follicles to deliver blood-borne antigens to follicular DCs

(FDCs) (128, 129).

As addressed in the previous section, during the early stages of a

productive humoral immune response, iNKT cells are likely

interacting with MZ B cells, either through cell contact-dependent

or independent, modulating extrafollicular antibody production. As

will be addressed next, iNKT cells require B cells to differentiate into

iNKTfh cells and thus be able to migrate to the follicles and interact

with FO B cells, influencing their activation and the subsequent

germinal center responses (Figure 1C). Interestingly, various a-
GalCer analogs have been found to elicit diverse effects on the

differentiation of iNKT cells into iNKTfh cells, which may impact

on the quality and outcome of the humoral response (Figure 1D).

Considering that iNKT cells are also located in the peritoneum

where B-1 B cells reside, we wanted to address, although briefly, the

importance of this subset and the impact of iNKT cells in their

function. Similar to MZ B cells, B-1 cells are associated with T-

independent humoral response, since their capacity to produce

natural antibodies to the blood stream and to respond rapidly after

antigen encounter (130). Although these cells are also present in the

spleen, their main location is pleural and peritoneal cavities in mice

(90, 131). An interesting connection between iNKT cells and B-1

cells has been identified in the context of cutaneous contact

sensitivity, where this interaction plays a key role in the initiation

of this response (132–134). Contact sensitivity activates iNKT cells,

prompting them to produce IL-4, which in turn coactivates B-1

cells, leading to the production of antigen-specific antibodies. This

mechanism is particularly significant in allergic and autoimmune

diseases, where infections can exacerbate T cell responses to

allergens or autoantigens, potentially worsening disease

symptoms (132).

The majority of CD5+ B cells located in the peritoneal cavity are

known to express CD1d and are closely linked to autoimmune

diseases (135). In this line, CD1d-expressing B-1 B cells are reported

to produce IL-10, having a regulatory phenotype, commonly linked

to regulatory B cells (Bregs) (136–138). Interestingly, CD1d knock
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mouse, have reduced frequency of IL-10-producing B cells in the

spleen and peritoneal cavities, compared to wild type mouse, which

also produce higher levels of proinflammatory cytokines (139). In

contrast, studies on the pathological accumulation of CD5+ B cells,

such as in chronic lymphocytic leukemia (CLL), have shown that

CD1d expression and iNKT cells are not essential for the

development, expansion, or IL-10 competence of CD5+ B cells in

mice prone to benign or leukemic CLL-like B cell proliferation

(140). However, studies examining the impact of iNKT cell absence

on the formation and function of B-1 cells in non-pathological

contexts, such as in Traj knock-out mice (which lack iNKT cells),

have not yet been conducted.
3.4 Cognate and non-cognate help
between iNKT and B cells

iNKT cells promote productive humoral responses by assisting

B cells through two well-characterized mechanisms: cognate and

non-cognate interactions.

Cognate help involves direct cell-to-cell interaction between

iNKT and B cells. This process has been evaluated through BCR-

mediated antigen engagement to promote lipid internalization and

subsequent presentation by the CD1d molecule, facilitating the

interaction between both cells (34). These interactions promote the

formation of extrafollicular plasma cell foci, enhancing antibody

responses, and also limited germinal center formation in the

absence of Th cells (32, 34, 141).

Cognate interactions also drive the differentiation of iNKT cells

into iNKTfh cells. These cells closely resemble Tfh cells, expressing

transcription factor Bcl-6, which regulates their migration via

chemokine receptors (24, 142). Both human and murine iNKTfh

cells express markers such as CD4, CXCR5, PD1, and IL-21 (143, 144).

Within follicles, these cells engage in prolonged interactions with B

cells, mediated by SLAM-SLAM interactions in a signaling

lymphocyte activation molecule (SAP)-dependent manner, along

with costimulatory signals from CD40L and CD28 (31, 32, 114, 145).

The formation of iNKTfh cells requires Bcl-6, CD28, CD1d, and

B cells, since in their absence the generation of this phenotype and

cognate interaction is abrogated (24, 25). In addition, cognate help

requires IL-21 production by iNKT cells, otherwise antibody

production is reduced (144). Cytokines such as IFN-g, IL-4, BAFF
and APRIL are also produced by iNKT cells during cognate

interaction and are especially important for CSR and long-term

plasma cell survival (Figure 2A) (32, 146, 147).

While this mechanism accelerates the primary IgG response

through germinal center-like structures and affinity maturation, it

typically does not produce long-lived plasma cells or memory B

cells, with some exceptions (148, 149). In these cases, the antigen

was delivered through liposomal nanoparticles containing the NKT

cell ligand and coated with antigens on their surface, suggesting that

particulate delivery of the glycolipid antigen would promote

these processes.

Non-cognate help occurs when iNKT cells indirectly promote B

cell responses. This is often observed during immune responses to

protein antigens in the presence of iNKT ligands, such as a-GalCer,
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FIGURE 2

Improvement of humoral responses via iNKT cell activation occurs via cognate and non-cognate interactions. (A) During cognate help, B cells uptake
and present glycolipid antigen in CD1d molecule to iNKT cells, this direct interaction via CD1d/glycolipid complex and TCR is supported by costimulatory
molecules such as CD40/CD40-L, CD28/CD80-86, and other costimulatory signals, triggering iNKT cell activation and cytokine production including
IL-4, IFN-g, APRIL, BAFF, and IL-21. B cell activation results in extrafollicular plasmablast, early class-switch recombination (CSR), early germinal-center
formation, and regarding memory response, there is controversial data. (B) Non-cognate or indirect help is triggered against protein antigens when using
glycolipids as adjuvants, therefore requiring initial activation of iNKT cells by CD1d-expressing glycolipid-presenting DCs (1) and further DCs licensing to
promote antigen presentation to CD4+ T cells via MHC-II. (2) Antigen-specific Th cell activation and differentiation into Tfh cells. (3) Finally, canonical
activation of B cells is initiated. Protein-specific B cells will receive help from Tfh cells, resulting in the generation of plasmablasts, germinal centers,
robust affinity maturation, class-switched antibody production by plasma cells (PC) and memory B cells.
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used as adjuvants. In this mechanism, DCs presenting glycolipid

antigens on CD1d interact with iNKT cells, leading to DC

“licensing.” Licensed DCs upregulate MHC-II, CD40, and other

costimulatory molecules, enabling them to activate naïve CD4+ T

cells. These T cells subsequently differentiate into Tfh cells, which

interact with B cells to drive CSR, germinal center formation, long-

term antibody production, and memory B cell generation

(Figure 2B) (150, 151).

Other APCs, such as CD169+ macrophages, can also be

activated via CD1d-antigen interactions and IL-18 secretion. This

activation facilitates iNKT cell migration to follicular borders,

where they release IL-4 to support early germinal center

formation (91, 108). However, these interactions do not induce

an iNKTfh phenotype (152).

Both cognate and non-cognate interactions involve cytokine-

mediated processes that drive DC licensing and CSR in B cells (52).

Licensed DCs activate naïve T cells into Tfh cells, allowing both

iNKTfh and Tfh cells to cooperatively activate B cells (153). iNKT-

mediated responses can alter T-independent B cell activation. For

example, glycolipid-containing antigens internalized via BCRs or

low-density lipoprotein receptors (LDL-Rs) are presented on CD1d

molecules by B cells, facilitating cognate interactions with iNKT

cells (32, 34, 154). This bypasses the typical T-independent

response, which usually produces short-lived IgM antibodies

without CSR or germinal center formation. iNKT ligands can

induce iNKTfh cells in a T-independent context, promoting

processes similar to T-dependent responses, such as enhanced
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antibody production, germinal center-like activity, and affinity

maturation. These mechanisms result in high titers of specific

IgM and class-switched antibodies, albeit short-lived and without

memory formation (24, 99, 141).

By integrating both direct and indirect pathways, iNKT cells

significantly enhance B cell responses, highlighting their versatile

role in shaping humoral immunity.
4 Can the differential activation of
iNKT cells influence the B cell fate?

4.1 T helper functions in germinal center
and CSR

B cells that have received T cell help may undergo a variety of

differentiation states as short- and long-live plasma cells with high-

affinity antibodies andmemory B cells. Interaction between both cells is

critical to induce germinal center formation into secondary lymphoid

organs upon and invader pathogens or after the immunization with a

T-dependent antigens. To initiate germinal center development, B cells

must first recognize the antigen directly via their BCR or on the surface

of FDCs (155, 156). Activated B cells will migrate to the interface

between the B cell follicle and the T cell zone. There, B cells are ready to

present the peptides derived from the antigens, and endocytosed

previously, on MHC-II molecules to Th cells, which provide them

with costimulatory survival signals (157, 158).
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The first cognate interaction between Th cells and naive B cells

occurs when lymphoblasts are generated before germinal center

formation, which is when CSR initiates (122, 159).

The activation of extrafollicular B cells produces an early

neutralizing antibody response mounted by short-lived plasma

cells, which is necessary to control the spreading of an infection on

time (108). Although T-independent stimuli, like polysaccharides or

TLR agonists, can participate in short-lived plasma cell formation

(126), cognate interactions with antigen-specific Th cells greatly

facilitate CSR (160). Notably, only class-switched plasmablasts

derived from germinal center selection can give rise to long-lived

plasma cells, which either migrate to the bone marrow to receive

survival signals or remain in the follicles where they originated (161).

A critical component of CSR is the enzyme Activation-Induced

Cytidine Deaminase (AID), known as Aicda in mice or AID in

humans, which is responsible for rearrangements in the IgH locus

of B cells. The Ig heavy chain IgM-IgD locus has distinct promoters

containing elements responsive to various transcription factors,

primarily induced by BCR, CD40, and cytokines. These elements

lead to the transcription of germline transcripts (GLTs), essential

for CSR, and determine the antibody isotype that will be produced

(122, 162). Cognate interactions with Th cells provide two types of

CSR-inducing stimuli. The primary CSR stimuli are mediated by

CD40L, which increases its expression following T-cell activation

and induces AID transcription (114). Cytokines command the

secondary CSR stimuli and will drive this process toward the best

isotype required. Two of the significant cytokines secreted by Tfh

cells are IL-4 and IL-21. Both cytokines are crucial for selecting

high-affinity antibody-producing B cells and expressing central

genes in CSR, such as Bcl-6 and Aicda (163, 164). Cytokines such

as IFN-g and IL-10 can also be produced by Tfh cells (165, 166). In

the case of IL-4 and IFN-g, they have been described to promote

CSR toward IgG1 and IgG2a/c isotypes in mice, respectively,

highlighting their close cooperation (167, 168).
4.2 Improvement of T helper responses by
iNKT cells

Tfh cells are uniquely equipped to support germinal center

reactions; however, their differentiation occurs through multiple

stages (169). The first step begins when Th cells are primed by

costimulatory signals and peptides loaded in MHC molecules of

resident DCs, known as licensed DCs, and then they migrate

towards the border between T and B cells. In the second step,

migratory cDC2 (CD11b+ CD8a-) cells that reside in this site will

support pre-Tfh cell differentiation alongside other migratory DCs

through the expression of ICOSL and OX40L (170, 171). Finally, In

the third step, activated Th cells upregulate the transcription factor

Bcl-6 (172) and the chemokine CXCR5 to migrate toward the

border of follicles where SAP-dependent interactions with activated

B cells being the major APC in this final step to complete Tfh cell

differentiation (142).

The a-GalCer-activated iNKT cells contribute to DC licensing

in vivo, resulting in increased cell surface expression of MHC-II, the
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costimulatory molecules CD40, CD80, CD86, and the endocytic

receptor DEC-205 (150). As mentioned previously, CD8a+DEC-

205+ DCs are the most competent presenters of glycolipid

antigens in vivo, and for a range of a-GalCer analogues that

polarize the cytokine responses. Th1- or Th2-biased glycolipids

led to markedly different changes in the expression of costimulatory

and coinhibitory molecules on these cells in response to various

chemical forms of a-GalCer, as addressed in the previous sections

(105). The interaction between iNKT cells and DCs is bidirectional

through direct interaction and cytokine production (173). Thus,

direct cellular contact between DCs and iNKT cells in a CD40-

CD40-L-dependent manner provides a strong feed-forward signal

depending on the chemical structure of the CD1d ligand as well as

the nature of the APC (150).

Moreover, the interaction of NKT cells with immature DCs

promotes tolerance, while mature DCs promote IFN-g and IL-4 by

NKT cells (174). iNKT cells constitutively express the IL-12

receptor, and TLR-mediated secretion of IL-12 by DCs triggers

Stat4 phosphorylation and consecutive IFN-g secretion in iNKT

cells (175).

These Th-polarizing cytokines produced by NKT cells influence

the outcome of naive T-cell differentiation (150). The interaction of

different human iNKT cell subsets with DC can influence the

polarization of T-cells toward different subsets. For example,

when double-negative NKT cells interact with a-GalCer-loaded
DCs, they produce IL-5 and IL-13 cytokines, typically produced by

Th2 cells. In contrast, the interaction of CD4+ NKT cells with a-
GalCer-DCs leads to the generation of IFN-g, typically produced by

Th1 cells (176). Additionally, cytokines delivered by iNKT cells will

promote the polarization of Th cells since they either increase or

suppress the adaptive immune response and cell polarization that

promotes immunity or pathogenesis.
4.3 Can iNKT cells determine the quality of
B cell responses?

It is generally accepted that, unlike classical Tfh cells, iNKTfh cell

help cannot promote long-lived plasma cells and B-cell memory

formation (24, 141, 144). However, two independent studies have

demonstrated otherwise. Immunization with liposomes containing

a-GalCer analogue PBS57 (which elicit both IFN-g and IL-4

production) and coated with a polysaccharide derived from

Streptococcus pneumoniae, promoted the production of IgM, IgG3,

IgG1 and IgG2c, where this last one was induced after a boost (148).

In this study, the absence of CD1d expression on DCs and B cells

impaired the production of IgG1. Interestingly, there was no

induction of iNKTfh cells (PD-1+ CXCR5+), but rather there was

an induction of PD-1+ ICOS+ iNKT cells. This two-dose stimulation

resulted in the induction of a long-term memory response (148).

Since polysaccharide antigens usually don’t trigger Th cell activation,

its suggested that this response was uniquely dependent of iNTK cells.

Similarly, immunization with liposomes containing a-GalCer
and coated with ovalbumin antigen showed an increase in the

avidity of OVA-specific antibodies, suggesting the generation of
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SHM and therefore affinity maturation. Additionally, in the absence

of Tfh cells, these nanoparticles were capable of inducing the

generation of memory iNKTfh cell and promoted recall immune

response (149). Notably, the generation of memory iNKTfh cells

required interaction solely with DCs, whereas B cells were crucial

for germinal center formation and secondary antibody responses

(149). This has also been reported with liposomes containing a-
GalCer and a protease derived from MERS Coronavirus, where this

formulation promoted strong antigen-specific humoral and cellular

immune response inducing a memory response after a second

immunization (177).

This highlights the importance of using particulate delivery of

glycolipid antigen, and specifically liposomes coated with B cell

antigen, either T-dependent or independent, to induce memory

response. In these cases, coated antigens would probably enhance

their recognition and uptake by B cells through BCR promoting

concomitant activation of B and iNKT cells. These requirements

would be necessary to induce stable and prolonged germinal center,

where memory B cells are usually generated (120). Studies have

shown that particulate antigens, like virus-like particles (VLPs) or

liposomes, mimic natural pathogens by presenting repetitive epitopes

that enhance BCR cross-linking, thus it has been seen that bacterial

phage Qb-derived virus-like particles (Qb-VLPs) could induce Bcl-6

expression in pre-germinal center B cells independently of T cell help,

and lead to isotype-switched and somatically mutated memory B cells

(178). On the other hand, coengagement of BCR and TLR receptors

on B cells, has been shown to induce CSR, SHM, germinal center-like

differentiation, neutralizing antibodies and memory response (179).

Therefore, the particle-based co-administration of glycolipids and B

cell antigens may enhance the generation of memory iNKTfh cells,

thereby promoting prolonged germinal center activity and memory

formation. Additionally, this approach could facilitate the co-

engagement of BCR and TLR receptors, which, in conjunction with

the iNKT cell response, might further amplify the humoral immune

response. However, this hypothesis requires further validation.

On the other hand, a previous study has shown that iNKT cell-

derived BAFF and APRIL were critical for the maintenance of

antibody titers after stimulation with NP-KLH/a-GalCer, therefore,
promoting memory plasma cell survival (147, 180). Further

research is needed to determine whether particulate antigen

delivery enhances the production of BAFF and APRIL by iNKT

or iNKTfh cells, or if a-GalCer analogues differentially regulate the
secretion of these cytokines. Such investigations will provide deeper

insights into the mechanisms underlying iNKT-mediated immune

responses and aid in the design of more effective strategies for

inducing protective immunity.

The importance of iNKTfh cells induction for a protective

immune response has also been addressed in the context of T-

independent antigens such as NP-Ficoll and Clostridium difficile-

derived polysaccharide (181). Mice lacking Bcl-6 and therefore

iNKTfh were unable to generate class-switched antibodies after

immunization with a-GalCer and NP-Ficoll, and in addition, the

absence of IL-21 also resulted in a reduced antibody response (182).

In line with this, Chang and colleagues showed differential

induction of iNKTfh cells with a-GalCer analogues. The glycolipid
OCH was unable to induce the generation of iNKTfh cells
Frontiers in Immunology 10
compared to a-GalCer, whereas a-C-GalCer promoted a higher

expansion of this population compared to a-GalCer (24). While

further validation with other a-GalCer analogues is necessary, these
findings suggest that Th1-biased or iNKT1-activating glycolipid

analogues are potent inducers of iNKTfh cells. As previously

proposed, this could promote the stable and sustained formation

of germinal centers, ultimately supporting the development of long-

lived plasma cells and memory B cells. Of note, it has also been

described that memory response can be induced in a GC-

independent manner (183).

Interestingly, a recent study demonstrated that during the early

phase (three days) following vaccination with pneumococcal surface

protein A and a-GalCer, Gr-1+ CD11b+ monocytes andmacrophages

in the spleen’s red pulp promote iNKT cell activation, proliferation,

and differentiation into iNKTfh cells (CXCR5+ PD-1+), which

produce IL-4 and IL-21 (184). This process is mediated by IL-27

production by Gr-1+ cells, stimulating mitochondrial metabolism in

iNKT cells required for their differentiation. Notably, IFN-g secretion
by iNKT cells enhances IL-27 production by Gr-1+ cells, as IFN-g
neutralization with an anti-IFN-g antibody significantly reduced IL-27
levels (from ~9% to ~3%) and completely abolished iNKTfh cell

formation. This vaccination strategy conferred protection against

systemic S. pneumoniae infection, however further studies are

require to clarify the dependency of pneumococcal surface protein

A in the mechanism of iNKT cell differentiation, and also the role of

iNKTfh cells in the immune response generated against this pathogen

(184). Beyond highlighting the critical role of iNKT cells, cytokines,

and innate immune cells in shaping an effective immune response,

these findings reveal a novel mechanism of iNKTfh differentiation.

This mechanism aligns with the previously mentioned association

between Th1-biased a-GalCer analogues and iNKTfh formation,

suggesting that Gr-1+ APCs and IL-27 production may play a key

role in this process.
4.4 Can iNKT cells direct the Ig isotypes
and subtypes produced by B cells?

Another question addressed in some reports is whether iNKT

cell ligands, such as a-GalCer or its analogues, can modulate CSR

through cytokine production, thereby influencing the antibody

composition when used as adjuvants in responses to model or

pathogen-derived antigens.

As mentioned previously, it is known that IFN-g drives the

production of IgG1 and IgG3 subtypes in humans, whereas in mice

it generates the production of IgG2a/c and IgG2b (168, 185–187).

These subtypes have undergone thorough characterization due to

their effector functions associated with opsonization, phagocytosis,

and complement activation. Therefore, are essential in the context

of bacterial and viral infections, making these IgG subtypes highly

effective in combating infectious diseases (Figure 3) (188, 189).

On the contrary, IL-4 and IL-21 are involved in the production

of IgG4 in humans, and IgG1 in mouse, whereas only IL-4 is

implicated in the generation of IgE (168, 190, 191). As to IgG1, this

isotype has been associated in the immune response against

extracellular pathogens, such as helminths; whereas IgE is
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produced in response to allergens, therefore, mediating allergic

reactions (Figure 3) (192).

In this regard, C57BL/6 mice immunized with a-GalCer
together with tetanus toxoid (TT), diphtheria toxoid (DT), or

influenza H3N2 antigen, enhanced antibody production in an

iNKT-dependent manner. As to the antibody isotypes produced,

the main IgG subtypes produced were IgG1 and IgG2c, and at lower

levels IgG2b and IgG3 (31). This has been reported in other studies

(31, 34, 149). To address the implications of IL-4 and IFN-g in

antigen-specific IgG subtype production, IL-4-/- or IFN-gR-/- mice

were immunized showing that in the absence of IL-4, the

production of IgG1 and IgG2a wasn´t affected, whereas in the of

IFN-g receptor, only IgG2a production was profoundly affected

(31). As to other isotypes, a-GalCer has also been shown to induce

IgA, which is proposed to me induced by TGF-b and retinoic acid

(193–195).

The analogue 7DW8-5 has exhibited a more prominent

adjuvant effect than a-GalCer, resulting in a robust humoral

response when administered alongside HIV and Malaria vaccines.

However, the precise composition of the induced antibodies was not

specified (64). The intranasal administration of 7DW8-5 before

SARS-CoV-2 infection has demonstrated significant efficacy in

preventing infection by this virus, and this effect was dependent

on CD1d and IFN-g. Moreover, this approach has also effectively

countered infections caused by respiratory syncytial and influenza
Frontiers in Immunology 11
viruses (67). Similar studies have shown that this analogue was able

to induce both IgG2a and IgG1 in BALB/c mice when being used as

an adjuvant in the co-administration of a commercial influenza HA

vaccine, reflecting the induction of both Th1-like and Th2-like

immune response, however, the genetic background of BALB/c

mice associated to a Th2 response could highly influence the

production of IgG1 (196, 197).

a-C-GalCer was also evaluated in this regard. Its adjuvant

effects were assessed when co-administered with a live attenuated

influenza virus vaccine in BALB/c mice. This showed a pattern

similar to that of 7DW8-5, inducing Th1-like and Th2-like

associated isotypes, with IgG2a levels being more pronounced

than IgG1, resulting in reduced morbidity and mortality after a

challenge with the virus (61). Despite these results, further assays

are required using different mice strains to evaluate the full potential

of these analogues in CSR.

On the contrary, the use of Th2-biased analogues will induce

the production of IL-4, which is involved in the generation of IgG4

and IgE in humans, and IgG1 and IgE in mouse (190, 191). As to

IgG1, this isotype has been associated in the immune response

against extracellular pathogens, whereas IgE mediates immune

response against parasites and also is implicated in the induction

of allergy (Figure 3) (192).

The analogue OCH has been reported to induce higher levels

of IL-4 and lower levels of IFN-g compared to a-GalCer, and
FIGURE 3

Possible role of a-GalCer or its analogues in the activation of iNKT cells and the modulation of B cell class-switch recombination (CSR) towards
different antibody isotypes. Co-administration of protein or polysaccharide antigens together with glycolipid ligands ofi NKT cells, enhances the
humoral immune response and influences the induction of class-switch recombination (CSR), resulting in different antigen-specific immunoglobulin
isotypes based on the cytokine profiles secreted by iNKT cells subsets. Upon activation with a-GalCer, iNKT cells produce a combination of Th1-
biased and Th2-biased cytokines, such as IFN-g and IL-4, resulting in the so called Th0 cytokine profile. This profile generates a diverse array of
antibody isotypes at varying levels. iNKT1-inducing or Th1-biased analogues of a-GalCer, like 7DW8-5 and a-C-GalCer, strongly stimulate the
production (indicated by a big arrow) of IgG2a/c (depending on mouse strain), IgG2b, and IgG3. These analogues also induce IgG1 production to a
lesser extent (indicated by a small arrow), which is associated with IL-4. In contrast, iNKT2-inducing or Th2-biased analogues of a-GalCer, such as
OCH, primarily promote the production of IgG1 and to a lesser extent IgG2a/c, IgG2b, and IgG3. Isotypes associated with proinflammatory
responses are well-documented for their role in pathogen elimination and control. In contrast, anti-inflammatory associated isotypes are recognized
for their involvement in autoimmune disorders, and parasite control. Very few studies have investigated the impact of a-GalCer analogues on the
induction of IgA antibodies. (a) Additional analogues that, even though they can induce polarized cytokine secretion, have not been studied for their
influence on generating various antibody isotypes. (b) While not yet explored in the generation of IgG3, it is hypothesized that these analogues might
lead to the mentioned effects. *The isotypes and subtypes mentioned correspond to mouse Ig.
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it is being evaluated for treating experimental autoimmune

encephalomyelitis (EAE) in mice. The administration of a-GalCer
induces the production of IFN-g, promoting the generation of both

IgG1 and IgG2a at the same levels. On the other hand, the OCH

glycolipid shifts the response towards a Th2-like profile, enhancing

the production of IgG1 over IgG2a, in which the overall response

results in the suppression of EAE (198).

The same tendency was observed in prevention of insulitis and

diabetes in NOD mice, where the administration of OCH

influenced the humoral response generated against autoantigens

(anti-GAD antibodies) as part of the autoimmune condition,

promoting a significant increase in the ratio between IgG1 and

IgG2a compared to a-GalCer. Overall, this study showed that OCH
could prevent the development of diabetes and insulitis in this

mouse model (199).

Despite these reports, many a-GalCer analogues remain

unexplored in their capacity to induce or regulate CSR toward

other antibody isotypes, particularly IgE and IgA. Addressing these

gaps would enhance our understanding of iNKT-B cell interactions

in various pathologies and contribute to vaccine development and

therapeutic approaches (Figure 3). Furthermore, the impact of a-
GalCer analogues on germinal center formation and the generation

of memory humoral responses remains an open question. Based on

the information presented, we propose that targeting specific iNKT

cell subsets using tailored a-GalCer analogues could be a novel and

effective strategy to modulate humoral responses. This approach

could facilitate the induction of specific antibody isotypes, as well as

promote germinal center formation and memory responses, thereby

highlighting the immunotherapeutic potential of iNKT cells.

Additionally, although efforts have been made to develop

vaccines containing a-GalCer analogues targeting viruses such as

SARS-CoV-2 and Influenza, as well as bacterial pathogens like S.

pneumoniae and C. difficile, with varied results, further research is

needed on germinal center formation, antibody isotype switching,

and the specific iNKT cell subsets involved in these responses

(61, 67, 146, 148, 181). A deeper understanding of these

mechanisms is crucial to improving immune responses against

these pathogens and advancing the development of more

effective vaccines.
4.5 iNKT cells shape antibody composition,
immune regulation, and disease
pathogenesis in humans

Human B cells are heterogeneous. The main subsets identified

are B1 (CD5+), mature (CD22+), naïve (CD27-IgD+), plasma cells

(CD38hi) and memory (CD27+), and among memory, these can be

classified as unswitched memory (CD27+IgD+), switched memory

(CD27+IgD-) and CD27- memory B cells (CD27-IgD-) (200). CD1d

expression is uniform among different subsets, ranging from 60 to

80% CD1d-expressing B cells (201).

Human iNKT cells are located mainly within the thymus, liver,

bone marrow, spleen, and peripheral blood (40). Similar to B cells,

human CD3+Va24+Vb11+ iNKT cells can be divided into different

subsets based on the expression of CD4 and CD8 coreceptors.
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CD4+CD8-, CD4-CD8+, and CD4-CD8- (double negative) subsets

(202, 203). Interestingly, CD8+ subset is found in humans and rats,

but not in mice (202, 204, 205). The effector phenotype of CD4+

iNKT cells has been associated with iNKT2 cells, since they produce

mainly Th2-associated cytokines such IL-4, whereas CD8+ and

double negative iNKT cells are associated with iNKT1 cells, given

that they exhibit predominantly a Th1-associated phenotype with

IFN-g production and cytotoxic activity (202, 203, 206). Of note,

iNKT cell frequency is very low, between 0.003-0.71% CD3+/

Va24+/Vb11+ cells and 0.019-0.776% CD3+/6B11-stained cells

(monoclonal antibody that recognize an epitope of the CDR3

formed by the germ-line configuration of the Va24 and Ja18 of

the TCRa locus) of peripheral blood T cells of healthy Caucasian

children from 7 months to 18 years of age (207). In healthy adult

individuals, the frequency of circulating iNKT cells ranges between

0.01-0.92%, based on the staining with 6B11 mAb, with no

differences between male and female subjects (208).

One of the first reports addressing iNKT cell impact on human

B cell functions were made by Galli et al. (209). In these assays,

culturing sorted iNKT cells with autologous CD20+, CD20+CD27+

(memory), or CD20+CD27− (naïve) B cells for five days led to the

expansion of these subsets in a CD1d-dependent manner, with a-
GalCer further enhancing proliferation. IgM production was

strongly dependent on the presence of both a-GalCer and CD1d,

although polyclonal stimulation of iNKT cells with anti-CD3

antibodies induced a modest increase. Regarding IgG production,

only the IgG1 subtype was evaluated. a-GalCer significantly

increased IgG1 levels in a CD1d-dependent manner; however,

CD1d blockade did not completely inhibit IgG1 production,

mirroring the partial effect observed with anti-CD3 stimulation.

Additionally, comparisons between CD4+ and double-negative

iNKT cells in B cell activation revealed that both subsets

expressed basal levels of CD40-L. While both subsets promoted B

cell expansion and CSR, CD4+ iNKT cells demonstrated superior

IgM and IgG1 production (209). These results correlate with the

iNKT2-associated phenotype of CD4+ iNKT cells. Of note, IgE

production was not detect in this context, although it has been

described in other studies using CD4+ iNKT cells (201, 210). These

findings suggest that optimal human B cell activation requires direct

interaction with iNKT cells, complemented by costimulatory signals

and cytokine production, to effectively drive activation and

induce CSR.

Another study by Zeng, et al. has also described differential

outcomes on the interaction of iNKT cell subsets and B cells (201).

For instance, human CD4+ iNKT cells cocultured with B cells were

capable of inducing the production of IgM, IgG and IgA, in the

absence of a-GalCer, whereas CD8+ subset promoted the

production of IgM and IgG, and double negative subset only

promoted IgM production. Additionally, CD4+ subset induced

the expansion of CD1d+CD5+ b cells and only modest increase of

CD24HIGHCD38HIGH B cells, and also promoted the upregulation of

CD40 and CD86 in the presence of a-GalCer. Interestingly, double
negative iNKT cells displayed a significant increase of CD107a

presumably to kill autoreactive B cells. Of note, fewer than 2% of

three distinct iNKT populations were able to produce IL-21, a

hallmark of the iNKTfh phenotype (201). Although iNKT cells
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enhanced the expression of costimulatory molecules on B cells, the

findings suggest that the response may occur in an extrafollicular

manner, given the absence of iNKTfh cells.

Further characterization of B and iNKT cell dynamics in human

contexts is challenging due to limited sample availability, the low

frequency of these cells in peripheral blood, and the constraints of in

vitro functional assays, which fail to fully replicate the complexity of

cellular interactions in humans (211, 212). Recent efforts to address

these challenges have focused on developing partially humanized

mouse models that more accurately replicate human iNKT cell

frequency, distribution, and function, enhancing the translation of

findings to human contexts. One of the earliest models developed was

the human CD1d (hCD1d) knock-in mouse, where the mouse CD1d

gene was replaced with the human counterpart. In this model, hCD1d

is expressed in a native tissue distribution pattern, supporting the

development of iNKT cells that closely mirror human iNKT cells in

frequency, phenotype, and reduced CD4 expression. The responding

iNKT cells predominantly express Vb8, homologous to the human

Vb11 rearrangement (213). Additionally, iNKT cells in this mouse

model demonstrated strong antitumor activity (68, 213). Further

humanization led to the replacement of mouse invariant TCRa-chain
with the orthologous human Va24Ja18 invariant TCRa-chain into

hCD1d mice (214). This humanized mouse model developed a subset

of CD8+ iNKT cells, akin to those found in humans, originating in the

thymus. This subset exhibited a Th1-biased cytokine response and

demonstrated cytotoxic activity against tumor cells, highlighting the

model’s ability to replicate the phenotypic and functional

characteristics of human iNKT cells (214).

While these advances mark significant progress in developing

robust humanized mouse models, Porcelli’s group has recently

introduced a novel model defined as VaKI (215). This mouse model

features a deletion of the Ja18 locus (Traj18) to specifically eliminate

the expression of endogenous mouse iNKT cell invariant TCRa chains.

As a result, it develops functional iNKT cells with frequencies,

phenotypes, and functions closely resembling those of humans, while

maintaining a normal immune system, including conventional T cells.

Notably, its activation pattern closely mirrors that of human iNKT

cells, with the analogue 7DW8-5 inducing stronger activation

compared to AH10-3 and other analogues, as evidenced by increased

IFN-g production and antitumoral activity (215).

The use of these mouse models offers a powerful tool to study

iNKT cell dynamics, enabling the evaluation of humoral response

processes such as CSR, germinal center formation, and memory

responses. Additionally, it provides a platform to assess the

potential effects of a-GalCer analogues on these processes, which

could be pivotal for optimizing translational therapies. This was

already addressed by Saavedra-Avila et al., who utilized

computational analysis to identify an a-GalCer analogue with

higher stimulatory activity in VaKI mice, which had been

overlooked in earlier studies in WT mice (71).

The use of a-GalCer in clinical trials has been proven to induce

therapeutic effects. a-GalCer-pulsed DCs when administered in twelve

patients with metastatic malignancy lead to activation of both innate

and adaptive immunity, resulting in the modulation of NK, T and B

cells, and increased serum levels of IFN-g (216). A Phase I/II trial

involving forty patients with chronic hepatitis C demonstrated that a-
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GalCer, administered at doses ranging from 0.1 to 10 mg/kg, was well
tolerated without causing any side effects. However, these doses were

ineffective in eliminating HCV-RNA levels (217). As mentioned in the

previous sections, OCH was recently used in the first-in-human

clinical trial for the treatment of multiple sclerosis, showing to be

safe and with anti-inflammatory effects (55).

The role of iNKT cells in pathological contexts has also been

addressed extensively (218–224). Metabolic disorders associated

with obesity lead to the accumulation of T-bet+ B cells in human

adipose tissue, a process supported by IFN-g-producing iNKT cells.

These T-bet+ B cells contribute to inflammation and exacerbate

metabolic dysfunction by producing IgG2c antibodies and the

chemokine CXCL10 (225). It remains unclear whether T-bet+ B

cells receive assistance from iNKTfh or Tfh cells via cytokine

production and costimulatory signals, or if the class-switched

IgG2c-producing T-bet+ B cells arise from germinal center

formation or extrafollicular interactions.

Recent reviews highlight how viral infections often regulate

CD1d expression, thereby influencing iNKT cell-mediated immune

responses (224, 226). Subjects with iNKT cell deficiencies or

reduced CD1d expression have intensified symptoms after viral

infections (227–229). During the recent COVID-19 pandemics,

data showed that patients with SARS-CoV-2 infection had

reduced iNKT cell in peripheral blood, which expressed higher

levels of the exhaustive marker Tim-3 (230, 231). Similarly,

incubation of human iNKT cells with HSV-1 infected human

keratocytes impaired iNKT cell activation both through cytokine-

and TCR-dependent activation (232). In the context of dengue

virus, NKT cell deficiency skews the immune response, leading to

elevated levels of Th2-associated IgG1 over Th1-associated IgG2a.

This imbalance fails to provide protection against homologous

DENV rechallenge and promotes antibody-dependent

enhancement of disease during secondary heterologous infections.

Similarly, in humans, Th2-dominated immunity, characterized by a

higher IgG4/IgG3 ratio, has been linked to increased disease severity

during secondary dengue infections (233).

In certain pathologies caused by human herpesvirus 8 (HHV-8)

infection, where iNKT cell frequency is reduced, there is also a lower

number of circulating MZ B cells and memory B cells (CD27+IgD+/-)

(234). Conversely, apoE-deficient (apoE-/-) mice, with inefficient lipid

capture and CD1d presentation by DCs activation, show increased

MZ B cells related to a decreased apoptotic cell death (235). Thus,

iNKT cells could be relevant in maintaining a correct balance in B-

cell subsets.

On the other hand, genetic pathologies related to antibody

production such as Common variable immunodeficiency (CVID)

have also been linked to iNKT cell function. CVID is the

commonest symptomatic primary antibody deficiency, in which

most of the patients with this pathology have a reduced number of

memory B cells and failure of antibody production, characterized by

reduced levels of serum IgG, IgA, and in some cases of IgM, making

them highly susceptible to infections (236, 237). Patients diagnosed

with CVID have reduced number of iNKT cells compared to

healthy individuals, in which their phenotype was predominantly

CD4+, with a higher and lower number of IFN-g and IL-17-

producing cells, respectively, compared to control after PBMC
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stimulation with a-GalCer (238), although other reports show

otherwise (239). Additional studies have examined whether the

reduced frequency of iNKT cells is more pronounced in patients

who also exhibit decreased frequencies of isotype-switched memory

B cells. However, findings have been conflicting, with reports

presenting opposing results (240, 241).

Further studies aiming to characterize iNKT cells in patients

with CVID showed reduced number of CD4+, double negative, and

CCR5+/CXCR3+ iNKT cells in blood, together with higher

frequency of CD40-L+ iNKT cells and iNKTfh cells, compared to

healthy individuals (241). In addition, reduced expression of SAP

was observed in iNKT, NK, and T cells of CVID patients compared

to healthy individuals, which could be associated with the retention

of high number of iNKTfh cells in the peripheral blood of these

patients (241). Moreover, additional experiments are necessary to

evaluate whether iNKT cells can interact and induce B cell

activation in these patients. Additional perspectives on this topic

have been addressed elsewhere (242).

Therefore, iNKT cells play a crucial role in modulating B-cell

functions and antibody responses, influencing immune regulation

in health and disease. Their interactions with B cells, driven by

cytokines, costimulatory signals, and direct contact, are pivotal in

shaping CSR and antibody composition. Pathologies like obesity,

viral infections, and autoimmune conditions reveal how iNKT cell

dysfunction can lead to imbalanced humoral responses,

exacerbating disease severity. Advancements in humanized mouse

models and computational tools provide valuable platforms to

study these mechanisms and explore the therapeutic potential of

a-GalCer analogues. Understanding the impact of antibody

composition on disease progression remains essential for

improving immunotherapies, vaccines, and translational medicine.
5 Concluding remarks

Unlike classical Tfh cells, iNKT cells offer unique mechanisms to

optimize humoral immunity through their innate-like rapid

activation by glycolipid antigens presented on CD1d molecules.

Their ability to engage in direct synaptic interactions with B cells

and other APCs such as DCs, and macrophages, coupled with diverse

cytokine production and costimulatory molecule expression,

highlights their versatility as modulators of immune responses.

During the early stages of an immune response, distinct

APCs may engage iNKT cells using specific costimulatory

molecules. Each type of APC influences the activation of different

iNKT cell subsets, as evidenced by the observed cytokine profiles.

For instance, MZ B cells predominantly mediate the production of

IL-4 and IL-13, likely driven by iNKT2 activation through

ICOS-ICOSL and PD-1-PD-L1/PD-L2 signaling. Conversely, DCs

promote the production of both IFN-g and IL-4, indicative of

iNKT1 and potentially iNKT2 activation, via pathways such as

CD28-CD80/CD86, CD27-CD70, and NKG2D-Rae-1. These

findings highlight the potential for multiple APCs to

synergistically enhance iNKT cell responses, collectively shaping

their immunological outcomes in the early response. Despite this

proposed model, the precise relationships between APCs, cytokine
Frontiers in Immunology 14
outputs, and the full spectrum of iNKT subset activation remain

incompletely characterized. A comprehensive analysis of the

expression of signature transcription factors and cytokines

specific to each iNKT subset is essential to fully understand these

interactions. iNKT cells likely interact with MZ B cells through both

cell contact-dependent and contact-independent mechanisms,

thereby influencing the characteristics of extrafollicular antibody

production, promoting CSR, and potentially inducing the

formation of transient germinal center B cells. In this regard,

iNKT cells rely on B cells for their differentiation into iNKTfh

cells, a process that enables their migration to follicles, where this

differentiation may be driven by interactions with MZ B cells

considering that they differentiate into FO B cells and migrate to

follicles. Within the follicles, iNKTfh cells interact with FO B cells,

influencing their activation and the subsequent germinal center

responses. Interestingly, various a-GalCer analogues have been

shown to elicit distinct effects on iNKT cell differentiation into

iNKTfh cells, specially Th1-biased analogues such as a-C-GalCer,
which has been proved to induce a higher frequency of this

phenotype compared to a-GalCer, whereas OCH didn´t have an

impact on this cells, therefore the use of Th1-biased analogues may

impact the quality and outcome of the humoral immune response.

On the other hand, recent findings emphasize that glycolipid-

based particulate delivery systems, particularly liposomes, enhance

germinal center dynamics and memory responses by promoting

iNKT cell activation, and possibly inducing iNKTfh generation.

This approach has been shown to promote CSR and SHM, and

although it is still very controversial, it also promoted robust and

long-lasting antibody responses inducing memory B cells.

Furthermore, the activation of different iNKT cell subsets using

various a-GalCer analogues may influence the specific antibody

isotypes or subtypes, particularly within the IgG class, produced in

response to clinically relevant antigens. Since each isotype plays a

distinct role in immune responses, the use of these analogues could

offer a promising approach for vaccine development.

Despite significant progress, knowledge gaps persist regarding

the role of antibody composition and class switching in disease

pathology, particularly in contexts such as obesity, viral infections,

and autoimmune conditions. Although advanced humanized

mouse models and computational tools help to replicate and

analyze human-specific iNKT cell activation, further strategies are

required to integrate this info into B cell activation and

humoral responses.

A deeper understanding of iNKT cell biology and its influence

on B-cell dynamics could enhance immune responses across diverse

clinical contexts. These advancements promise to optimize vaccine

strategies, advance targeted immunotherapies, and address unmet

challenges in translational medicine, ultimately improving

outcomes across a broad spectrum of diseases.
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