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Introduction: TAVO412, a multi-specific antibody targeting epidermal growth

factor receptor (EGFR), mesenchymal epithelial transition factor (c-Met), and

vascular endothelial growth factor A (VEGF-A), is undergoing clinical

development for the treatment of solid tumors. TAVO412 has multiple

mechanisms of action for tumor growth inhibition that include shutting down

the EGFR, c-Met, and VEGF signaling pathways, having enhanced Fc effector

functions, addressing drug resistance that can be mediated by the crosstalk

amongst these three targets, as well as inhibiting angiogenesis. TAVO412

demonstrated strong in vivo tumor growth inhibition in 23 cell-line derived

xenograft (CDX)models representing diverse cancer types, as well as in 9 patient-

derived xenograft (PDX) lung tumor models.

Methods: Using preclinical CDX data, we established transcriptomic biomarkers

based on gene expression profiles that were correlated with anti-tumor response

or distinguished between responders and non-responders. Together with specific

driver mutation that associated with efficacy and the targets of TAVO412, a set of

21-gene biomarker was identified to predict the efficacy. A biomarker predictor

was formulated based on the Linear Prediction Score (LPS) to estimate the

probability of patients or tumor model response to TAVO412 treatment.

Results: This efficacy predictor for TAVO412 demonstrated 78% accuracy in the

CDX training models. The biomarker model was further validated in the PDX data

set and resulted in comparable accuracy.

Conclusions: In implementing precision medicine by leveraging preclinical

model data, a predictive transcriptomic biomarker empowered by next-

generation sequencing was identified that could optimize the selection of

patients that may benefit most from TAVO412 treatment.
KEYWORDS

EGFR cancer cells +, cmet, VEGF - vascular endothelial growth factor, antibodies, PDX
(patient derived xenograft), CDx, transcriptome
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Introduction

TAVO412 was a multiple specific antibody targeting epidermal

growth factor receptor (EGFR), mesenchymal epithelial transition

factor (c-Met), and vascular endothelial growth factor (VEGF-A).

In addition to the multiple target specificities, this antibody was

engineered to have enhanced effector functions such as antibody-

dependent cell-mediated cytotoxicity (ADCC), antibody-dependent

cell-mediated phagocytosis (ADCP), and complement-dependent

cytotoxicity (CDC) to potentiate its antitumor effects (1).

Dysregulated and/or mutated EGFR and c-Met lead to tumor

cell survival, proliferation, invasion, migration, and development of

drug resistance. Solid tumor growth and migration also involves

angiogenesis, where VEGF-A plays a key role in expanding tumor

neovasculature, aiding tumor growth and metastasis. VEGF-A

activates angiogenesis through the vascular endothelial growth

factor receptor 2 (VEGFR2) in an autocrine and paracrine

manner (2). The crosstalk among EGFR, c-Met, and VEGF signal

pathways are one of the major mechanisms of drug resistance (3–5).

Simultaneous shutting down EGFR, c-Met and VEGF signaling

showed promising results in preclinical animal models (6).

TAVO412 has demonstrated very promising antitumor activities

in animal models including non-small cell lung cancer (NSCLC),

gastric cancer (GC), pancreatic ductal adenocarcinoma (PDAC),

and triple negative breast cancer (TNBC) (1). In addition,

TAVO412 also demonstrated activities in tumor types with

dysregulated EGFR, c-Met, and VEGF signaling, such as head and

neck squamous cell carcinoma (HNSCC) (7–9), ovarian cancer

(OC) (10), hepatocellular carcinoma (HCC) (11), and small cell

lung cancer (SCLC) (12). Moreover, TAVO412 demonstrated

efficacies in NSCLC and SCLC PDX models with stronger

activities than amivantamab, an EGFR x c-Met bispecific antibody

recently approved for EGFR Exon 20 insertion–driven NSCLC (13).

Such a rich data set of TAVO412 in multiple tumor types in the
Abbreviations: ADCC, Antibody-Dependent Cellular Cytotoxicity; ADCP,

Ant ibody-Dependent Cel lu lar Phagocytos i s ; ADCT, Ant ibody-

Dependent Cellular Trogocytosis; CCLE, Cancer Cell Line Encyclopedia;

CDC, Complement-Dependent Cytotoxicity; c-Met, Mesenchymal

Epithelial transition factor; CPM, Counts per Million Reads; CRT,

ChemoRadioTherapies; EGF, Epidermal Growth Factor; EGFR, Epidermal

Growth Factor Receptor; ELISA, Enzyme-Linked Immunosorbent Assay;

ESCC, Esophageal Squamous Cell Carcinoma; FcgR, Fc gamma Receptor; FN1,

Fibronectin 1; GC, Gastric Cancer; GM-CSF, Granulocyte-macrophage Colony-

Stimulating Factor; HCC, HepatoCellular Carcinoma; HGF, Hepatocyte Growth

Factor; HNSCC, Head and Neck Squamous Cell Carcinoma; HRP, Horseradish

Peroxidase; IgG, Immunoglobulin G; LDH, Lactate Dehydrogenase; NSCLC,

Non-Small Cell Lung Cancer; OC, Ovarian Cancer; OS, Overall Survival; PBS,

Phosphate Buffer Saline; PDAC, Pancreatic Ductal Adenocarcinoma; PFS,

Progression-Free Survival; RPMI, Roswell Park Memorial Institute; SCLC,

Small Cell Lung Cancer; SDS-PAGE, Sodium Dodecyl Sulfate–Polyacrylamide

Gel Electrophoresis; SEC, Size Exclusion Chromatography; SOC, Standard of

Care; TKI, Tyrosine Kinase Inhibitor; TNBC, Triple Negative Breast Cancer;

TPM, Transcripts per Million; VEGF-A, Vascular Endothelial Growth Factor A;

VEGFR2, Vascular Endothelial Growth Factor receptor 2.
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preclinical models allows further explorations of potential

predictive biomarkers.

The responses to antitumor treatment can vary significantly

among individual patients (14), even with identified tumor-driving

mechanisms and targeted-therapies, due to the heterogeneity of

tumor cells and the tumor microenvironment, as well as the

complex interactions between the tumor and its surroundings.

Developing predictive biomarkers for patient selection is crucial

for a successful clinical development. Empowered by the recent

development of next-generation sequencing, transcriptome

profiling emerged as a powerful approach in oncology for the

predictive utilities in specific disease management. Differentiating

from genomic biomarkers, transcriptomic approaches can reflect

the dynamic status of tumor growth and its biologic environment

by presenting holistic information of gene expressions while

providing much improved continuity and ease in the analysis

compared to proteomics (15). Transcriptomic biomarkers can

provide a comprehensive benchmark for immune checkpoint

agents in the clinic (16). Examples of developing predictive

biomarkers using preclinical tumor models also have been

published (17).

During the preclinical development of TAVO412, the

antitumor effects were evaluated in various tumor cell line-

derived xenograft (CDX) models as well as in patient-derived

tumor (PDX) models with different EGFR and c-Met expression

levels and mutations. While TAVO412 demonstrated significant

tumor inhibition in most models, target expression alone was not

sufficient to explain the variability in the responses. To develop

predictive transcriptomic biomarkers, correlations between gene

expressions and efficacy responses were extensively analyzed. Based

on the RNA sequencing data of the CDX tumor tissues, a

comprehensive gene expression profiling identified 19 genes and

two mutational genes as potential predictive biomarkers for

TAVO412 efficacy. A prediction algorithm was then formulated

based on the gene expression level. This predictor exhibited high

accuracy in predicting efficacy in the CDX models and was further

validated using the PDX model data.
Materials and methods

Test antibodies and reagents

The TAVO412 trispecific antibody was made in a stable CHO

cell line, purified with Protein A and ion exchange chromatography,

and tested using size exclusion chromatography (SEC) and capillary

electrophoresis-sodium dodecyl sulfate (CE-SDS) (1). The

amivantamab analogue was created in-house through controlled

Fab-arm exchange (18), with its bispecific content confirmed using

Bio Mix chromatography. The human IgG1 isotype null control

antibody (isotype) was purchased from HAOKESAIYE (Beijing). In

our study, the amivantamab analogue was produced in-house using

the same amino acid sequences and glycosylation levels as

amivantamab (sequences referred to World Health Organization

Proposed INN List 121). Since this molecule was used for non-

clinical research and was not the clinically-used amivantamab, we
frontiersin.org
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referred to this benchmark molecule as an amivantamab analogue

for scientific accuracy.
In vivo studies

Twenty-three cell lines were employed to establish CDX models.

Eleven cell lines were procured from ATCC, namely NCI-H596,

FADU, NCI-H358, BXPC3, SKHEP1, DMS79, NCI-H226, NCI-

H1299, NCI-H460, HCC1806, and NCI-H1048. Nine cell lines were

obtained from NANJING COBIOER, including KYSE150, SCC4,

MDA-MB-231, BT20, A2780, TOV21G, HCC70, ASPC1, and EBC1.

HCC827, NCI-H1975, and NCI-H292 were sourced from the National

Collection of Authenticated Cell Cultures. All the cell lines were

authenticated using short tandem repeat profiling and were tested

for Mycoplasma contamination using the Myco-Lumi™ Luminescent

Mycoplasma Detection Kit (Beyotime, #C0297M). Tumor cells were

cultured in the corresponding medium with a 10% (v/v) fetal bovine

serum (Gibco, #10091148) at 37°C in a 5% CO2. FADU and SKHEP1

cells were cultured in EMEM medium (ATCC, #30-2003); MDA-MB-

231 and BT20 were cultured in DMEM medium (Gibco, #10566024).

SCC4 and NCIH1048 were cultured in DMEM/F12 medium (Gibco,

#10565042). TOV21G were cultured in completed medium purchased

fromCOBIOER (#CBP20292M). EBC1 was cultured inMEMmedium

(Gibco, #41090036). All the other cells were cultured in RPMI-1640

medium (Gibco, #61870036).

Nine PDX were utilized, with four (LU2503, LU1901, LU5381,

LU3075) performed by Crown Bioscience (Taicang, China), four

(LU-01-1377, LU-01-1623, LU-01-0506, LU-01-1649) by WuXi

AppTec (Suzhou, China), and one (LD1-0025-200717) by Lide

Biotech (Shanghai, China).

The CDX and PDX models were developed in BALB/c nude mice

(GemPharmatech Co., Ltd., China) or CB17 SCID mice (Beijing Vital

River Laboratory Animal Technology Co., Ltd., China) by injecting 5-

10 million tumor cells subcutaneously in the right flank for CDX

models and tumor fragment (2-3 millimeter in diameter) for PDX

models. Upon reaching a mean tumor volume in a range of 100–300

mm³, the tumor-bearing mice were randomized into various treatment

groups, with the initiation of dosing designated on Day 0. TAVO412,

amivantamab analogue (positive control), or an isotype antibody

(negative control) were administered via intraperitoneal injection

(IP) at a dose of 10 mg/kg, twice a week for a duration of 2 to 6

weeks. Tumor dimensions were regularly assessed using calipers to

measure the length (L) and width (W). Tumor volume was calculated

by 1/2 × length × width². Tumor growth inhibition (TGI%) was

determined using the formula 100 × [1- (average tumor volume of the

treatment group)/(average tumor volume of the control group)]. All

animal experiments conducted in this study were approved by the

Institutional Animal Care and Use Committee of the respective

research institutions and facilities.

Statistical analysis was performed between the control and

treatment group according to the tumor volumes at the last day

of each study by two-tailed Student’s t-test. All statistical analyses as

well as plotting were performed using GraphPad Prism 9.3.1.

(GraphPad Software). A p<0.05 (between the control and the

treatment group) was considered statistically significant. Asterisks
Frontiers in Immunology 03
indicated that the experimental p value was statistically significantly

different from the associated controls at *p<0.05; **p<0.01;

***p<0.001; ****p<0.0001.
Calculation of drug efficacy using
exponential growth rate ratio

eGR quantified an overall tumor growth rate during the entire

study duration based on the area under the time-growth curve

(19, 20). eGR was the numerically equivalent to the rate constant of

an exponential curve with equal area under the curve. Briefly, the area

under tumor’s logarithm-transformed growth curve was calculated by

the sum of the trapezoids and then subtracted by the rectangular area

(time period x log TV0) of the baseline. Then the resulted area was

normalized by ½ of squared observation period of time:

eGRi =  o
Ji
j=1(logTVj + logTVj−1 − 2logTV0 )  ∗  (Tj − Tj−1)=2

1
2  (TJi )

2

Where i was individual mouse i; j was individual measurement

and Ji was the total number of tumor measurements for mouse i

(except the measurement on day 0). TVj and Tj were the tumor

volume and specific study day in the jth measurement for mouse i;

TJi was the total duration of the study for mouse i. For drug efficacy,

we calculated the median of all possible ratios between the eGRs in

the treatment group and the eGRs in the control group. We used the

“get_Model_eGR” function in TuGroMix R package (version 1.1.0)

to conduct this calculation (21).
Whole-transcriptome sequencing

Formalin-fixed paraffin-embedded tumor samples from isotype

group of 9 PDX models were utilized for RNAseq. Total RNA

extraction followed the Qiagen Cat#73504 protocol. Concentration

and quality of extracted RNA were measured using Qubit and 2100

Bioanalyzer, respectively. The library construction for RNAseq was

performed with a matched kit (MGI, Cat:1000006384). Briefly,

mRNA was captured and purified by MGIEasy rRNA Depletion

Kit (MGI, Cat:100005953), followed by fragmentation using a

fragment buffer. cDNA was synthesized following the processes:

first strand cDNA synthesis, second strand cDNA synthesis; and

cleanup. End-repair and cleanup were then performed to purify the

double-stranded cDNA, followed by A-tailing, ligation of adapters,

and cleanup. The DNA fragments with adapters were selected and

amplified by a PCR. After cleaning up the product, a final library

was qualified and quantified by Qubit and 2100 Bioanalyzer again

before sequencing. A library with good concentration and fragment

size was sequenced using the MGISEQ-2000RS. The final library

was sequenced resulting in sequencing reading lengths of PE150.

The quality of RNAseq raw data was checked by FastQC software

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The

adapter and sequences with low quality were trimmed by

Trimmomatic software (22). The reads were mapped to human

(hg19) and mouse genome (mm10) by the STAR software (23). The
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data sets sorted after trimming and removing of mouse sequences

were used for subsequent analyses. The reads were mapped to

reference genes (ENSEMBL GRCh37.66) by the Bowtie software,

and the gene expression was calculated by MMSEQ software (3).

The gene expression values are represented as log2-transformed

counts per million reads mapped (log2 CPM) or log2-transformed

transcripts per million (log2 TPM).

The RNA-seq data of all CDX models was obtained from

Cancer Cell Line Encyclopedia (CCLE) (24).
Correlation analyses

The genes were first filtered based on the log2 TPM expression

level, resulting in ~10,000 genes for downstream analysis. Spearman

correlation coefficient and p-values were calculated for the

correlation between each gene’s expression (in the unit of log2

TPM) and drug efficacy (eGR ratio) in the 23 CDX models in R

(version 4.3.2). Genes were then sorted by p-values. A set of genes

that had most strong positive or negative correlation with efficacy

were used as the input to Enrichr (https://maayanlab.cloud/

Enrichr/) to identify enriched pathways. The genes with biological

relevance to cancer pathways were selected.
Differential gene expression analysis

Differential gene expression analysis was carried out between the 9

responder and the 5 non-responder CDX models. The genes were first

filtered with the criteria of CPM expression > 0.4 for each sample, and

the resulting ~10,000 genes were normalized by the TMM method in

the edgeR package (version 4.2.0) (25) in R (version 4.3.2). Gene counts

were then transformed to log2 CPM, and the differential expression

was fitted by linear regression. The resulting statistics were further

moderated by the Empirical Bayes method (26) which estimated

standard errors toward a global value, using the limma package

(version 3.60.3) (27) in R. Genes showing the most significant p-

values or large absolute log2 fold changes were submitted to Enrichr to

identify genes related to target pathways. Moreover, genes closely

associated with the target pathway, exhibiting an absolute log2 fold

change greater than 1, were also selected.
Driver mutation analysis

The driver mutations were selected using the whole exome

sequencing (WES) data processing (28) and the WES data of the

CDXmodels was obtained fromCCLE. The driver mutation status was

encoded as 0 when there was no driver mutation or 1 when there was

one. Spearman correlation analysis was conducted for all the candidate

genes that have driver mutation in at least one CDX model. The

resulting p-values were ordered, and the genes were selected based on

the p-values and their biological relevance to cancer.
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Linear regression analysis

Linear regression analysis was carried out using the “lm”

function in R (version 4.3.2). The log2 TPM expressions of

EGFR, c-Met, and VEGF-A, as well as the binary driver mutation

status of EGFR in CDX models were used as the prediction

variables, and the drug efficacy eGR ratio was used as the

dependent variable in the multiple linear regression.
Drug responsiveness prediction based on
linear prediction score (LPS)

The development of drug responsiveness prediction model took

a similar approach as previously published (29). Briefly, a t-statistic

was calculated from the t-test of each predictor gene between 9

responder CDXs and 5 non-responder CDXs. The t-statistics were

used as weights in the LPS summation. The LPS value was

calculated for all the 23 CDX models with the equation shown in

below, in which the gene expression value of log2 TPM (or driver

mutation status 1/0) are preprocessed by Z-score normalization:

Z =  
X − �X
ŝ

Where X was the observed value; �X was the estimated mean,

and ŝ   was the estimated standard deviation.

LPS(X) =o
K

j=1
ajZj

The LPS was a linear combination of gene expression values,

where Zj was the normalized gene expression of gene j, aj was a

scaling factor represented by the t-value from t-test. K was the

number of genes included in the prediction model. To predict the

responsiveness to the drug in the PDX models, gene expression and

driver mutation status in the PDX models were first preprocessed

by Z-score normalization using the model developed from the

training CDX data set. Then the LPS value of the PDX models

was calculated, and the likelihood of being a responder or non-

responder was calculated by applying Bayes’ rule:

Probability(X in group 1)

=  
f(LPS(X); m̂ 1, ŝ 2

1) 
f(LPS(X); m̂ 1, ŝ 2

1) + f(LPS(X); m̂ 2, ŝ 2
2)

where f(x;m,  s 2) represented the normal density function with

mean m, and variance s 2, and m̂ 1,  ŝ 2
1, m̂ 2,  ŝ 2

2 were the observed

mean and variance of the LPS values within response models (R)

and non-response models (NR), respectively.

Log odds were alternate ways of expressing probabilities,

therefore the probability was transformed to log-odds for better

presentation:

Log − odds  =  ln (probability=(1 − probability))
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Results

TAVO412 exhibited variable levels of tumor
growth inhibition across a panel of
CDX models

The antitumor activities of TAVO412 were tested in a total of

23 CDX models, including 9 NSCLC models, 4 TNBC models, 3

HNSCC xenografts, 2 xenografts for each of SCLC, PDAC, and

OC, and 1 xenograft of HCC (Supplementary Table 1). The

tumor-bearing mice were treated with TAVO412 or isotype

control at 10 mg/kg when the tumors were well established. For
Frontiers in Immunology 05
developing the biomarker profiles, the responses in these CDX

models to TAVO412 were classified into 3 categories - Responder

(R, TGI ≥ 70%), Partial Responder (PR, 30% ≤ TGI < 70%), and

Non-Responder (NR, TGI < 30%). Of the 5 out of 9 NSCLC

models, all 3 HNSCC models, and 1 of 2 PDAC models showed

TGI values greater than 70% and were categorized as responder

cell lines to TAVO412 (representative growth curves shown in

Figures 1A–C and TGI in Supplementary Table 1). Three out of 9

NSCLC models, 2 out of 2 OC, 2 out of 4 TNBC, 1 out of 2 SCLC

and I HCC model exhibited partial responses to TAVO412 with

the TGI values in the range of 36% to 66% (representative growth

curves shown in Figures 1D–F and TGI in Supplementary
FIGURE 1

TAVO412 demonstrated anti-tumor activities in tumor cell-line-derived xenograft models (representative data). Immunodeficient mice were
subcutaneously inoculated with corresponding tumor cells. Tumor bearing mice were randomized and treated with 10 mg/kg TAVO412, or isotype
control (i.p., BIW; black arrows indicated the first and last dosing days). Tumor growth was monitored twice weekly. The black points and curves
profiled the Isotype mAb; the violet points and curves profiled the TAVO412. The models were categorized into 3 levels based on the responses to
TAVO412: (A-C) Response models (R, TGI ≥ 70%), (D-F) Partial Response models (PR, 30% ≤ TGI < 70%) and (G-I) Non-Response models (NR, TGI <
30%). Statistical comparison (student’s t-test) run for each treatment group as compared to isotype control (ns, not significant; *p<0.05; **p<0.01;
****p<0.0001). For all graphs, the error bars represented standard error of the mean (SEM). The abbreviations were: NSCLC, non-small cell lung
cancer; HNSCC, head and neck squamous cell carcinoma; ESCC, esophageal squamous cell carcinoma; HCC, hepatocellular carcinoma; SCLC,
small-cell lung cancer; OC, ovarian cancer; PDAC, pancreatic ductal adenocarcinoma; TNBC, triple negative breast cancer; BIW, twice-weekly.
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Table 1). However, there were five models were binned as non-

responders to TAVO412 since they had TGI values less than 30%,

including 2 out of 4 TNBC cell lines, 1 out of 9 NSCLC, 1 out of 2

SCLC, and 1 out of 2 pancreatic cancer cell lines (representative

growth curves shown in F igures 1G– I and TGI in

Supplementary Table 1).

In summary, we have shown for the first time the strong to

moderate antitumor activities of TAVO412 in HNSCC, OC, HCC

and SCLC xenografts, in addition to the reported effective data on

NSCLC, GC, PDAC and TNBC models. These in vivo profiles

supported the potential utility of TAVO412 to treat patients with

these types of cancer. However, not all models within a particular

indication responded equally well to TAVO412. The diverse

responses to TAVO412 highlighted the necessity of developing a

biomarker strategy to assist in identifying patients who could be

more likely to derive benefit from TAVO412 treatment.
TAVO412 effectively suppressed tumor
growth in NSCLC PDX models with
various mutations

NSCLC patients with EGFR and c-Met mutations were the

primary patient population that could benefit from TAVO412

treatment. PDX models of lung cancers bearing a variety of

mutations were considered to be more clinically relevant

preclinical models than CDX models. Therefore, we assessed the

tumor inhibition effect of TAVO412 in PDX models of NSCLC that

represented diverse genetic mutation scenarios that could be found

in patients. These mutations included EGFR activating mutations in

the cytosolic domains encoded in exons 18 to 21. Point mutations in

exon 18 (G719A and E709A), in exon 20 (T790M and C797S), and

in exon 21 (L858R) were present in at least one of the PDX models.

In addition, exon 19 deletion and exon 20 insertions were also

identified in the samples. The activation of the MET pathway

resulting from overexpression, gene amplification, and MET exon

14 skipping mutations was also represented by the PDX models.

The antitumor activities of TAVO412 were evaluated in this panel

of PDX models harboring sensitive or resistant EGFR mutations as

well as models having c-Met amplification or exon 14 skipping

mutations (Supplementary Table 2). A SCLC model (LU-01-1377)

having EGFR L858R mutation and MET over-expression was also

tested along with the 8 NSCLC models.

TAVO412 demonstrated strong antitumor activities in five PDX

models with drug-sensitive EGFR mutations, including exon 18

G719A and E709A (LU1901 and LU-01-0506), exon 19 Del (LU-

01-1623), and exon 21 L858R mutations (LU-01-1649 and LU-01-

1377), achieving TGI in the range of 75% to 99% (Figures 2A–E,

Supplementary Table 2). The tumor growth control effects of

TAVO412 in these five models were superior when compared to

the amivantamab analogue at the same dose level, except in the LU-

01-1649 model, which showed comparable tumor growth inhibition

effects between the two antibodies (Figure 2D). LU-01-1377, a SCLC

having an EGFR L858R mutation, exhibited high sensitivity to

TAVO412 treatment compared to amivantamab analogue, whereas

the amivantamab analogue was not efficacious (Figure 2E).
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TAVO412 exhibited comparable antitumor activity with the

amivantamab analogue in two models bearing MET 14 skipping

mutations (LU2503 and LU5381), achieving TGIs of 99% and 75%,

respectively (Figures 2F, G, Supplementary Table 2). The PDX model

LDI-0015200717, harboring both T790M and C797S EGFR

mutations conferring resistance to EGFR-TKIs, still responded to

TAVO412 treatment, with a TGI of 51%, while the amivantamab

analogue showed no antitumor activity (Figure 2H, Supplementary

Table 2). The LU3075 model, carrying an EGFR exon 20 insertion

mutation (P772_H773insDNP), exhibited poor responses to EGFR-

TKIs and cetuximab (30). TAVO412 and the amivantamab analogue

inhibited tumor growth of LU3075 model achieving a TGI of 49%

and 44%, respectively (Figure 2I, Supplementary Table 2).

In conclusion, all nine PDXmodels exhibited positive responses

to TAVO412 treatment, demonstrating comparable or stronger

antitumor efficacy compared to the amivantamab analogue. These

results portend the therapeutic promise of TAVO412 in addressing

a spectrum of patients with varying genetic abnormalities of EGFR

and c-Met, regardless of their sensitivity or resistance to currently

utilized EGFR-TKIs or amivantamab.
Identification of predictive genes for
TAVO412 response in the CDX models

Since TAVO412 had a range of TGI in the panel of CDX models,

we investigated which gene expression profiles could be associated

with the responses to TAVO412. Identification of correlations could

assist in identifying patients that could be sensitive to TAVO412

treatment in the clinic. To implement this, the individual gene

expression levels of ~10,000 genes were analyzed for correlation

with efficacy endpoints. A group of genes that had the strongest

positive or negative correlations with efficacy were used as the input to

the Enrichr that could determine gene enrichment in pathway

databases. The eGR ratio of treated group to the PBS control was

used to serve as the efficacy endpoint instead of TGI to better capture

the dynamics of tumor growth in the animal models as compared to

TGI that only accounted for the data on the last day (20). The efficacy

results expressed in percent TGI based on the tumor volume on the

last data of the study were plotted against eGR ratio and the two

efficacy indices demonstrated very good inverse correlation with a

correlation coefficient of -0.94 (p<0.0001) (Supplementary Figure 1). A

total of five genes were identified with a Spearman correlation

coefficient of < -0.4 or > 0.4 (p<0.05), with 2 genes (OSMR and

RUNX1) predicting the efficacy of TAVO412, and 3 genes (PTK2,

PEBP1 and PPP1CC) predicting the resistance to TAVO412

(Figure 3A). Secondly, differentially expressed genes between the

responder (9 CDXs) and non-responder models (5 CDXs) were

investigated. Eleven genes having at least a two-fold difference in

gene expression between the R and NR models were identified; with 5

genes (FN1, ICAM1, AREG, ITGA5 and IGF1R) predicting the

response to TAVO412; and 6 genes (STMN1, GAB2, IGFBP3,

ITGB8, FGFR1 and TFEB) conferring resistance (Figure 3B).

Thirdly, we performed a correlation analysis between all the

annotated cancer driver mutations (28) and the eGR ratios and

found that the CEP290 mutation had a significant correlation for
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1505868
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jin et al. 10.3389/fimmu.2025.1505868
TAVO412 efficacy (Figure 3C). Lastly, since EGFR, c-Met, and VEGF-

A were the 3 targets of TAVO412, we assessed their correlation to

drug efficacy by a multiple linear regression model, in which the gene

expression levels of the three genes as well as EGFR mutation status

were served as the independent variables, and eGR ratio as the

dependent variable. This linear model explained 39% of the variance

in eGR ratio (R2 = 0.39), while VEGF-A expression was significantly

negatively correlated with eGR ratio (Figure 3D). For every increase of

VEGF-A expression (in units of log2TPM) while holding the other

three independent variables constant, eGRwas expected to decrease by

0.26. EGFR expression and EGFR mutation status were on the border

of significance for the associations. Interestingly, the c-Met expression

had a positive correlation with the eGR ratio (negatively correlated

with efficacy), although the p value was not significant. The target gene

expression level plus EGFR mutation were included in the final
Frontiers in Immunology 07
prediction gene set, although none was top ranked in either

correlation analysis or differentially expressed gene analysis.

In total, a predictor comprising of the expression level of 19

genes plus mutational status of 2 genes was obtained to predict the

efficacy of TAVO412, with 9 genes and 2 mutational genes for

TAVO412 sensitivity and 10 genes conferring resistance. The

relationship of the gene expression levels and the TGI of the 23

CDXs was illustrated in a heatmap by clusters (Figure 3E). The

TAVO412 sensitive models (R group) predominantly showed high

expression of genes predicting positive outcomes, while the resistant

models (NR group) showed higher expression of negatively

predicting genes and vice versa (Figure 3E, Supplementary

Figure 2A). The gene expression status of the partial response

models (PR group) fell in between that of the sensitive and

resistant models (Figure 3E, Supplementary Figure 2A).
FIGURE 2

TAVO412 demonstrated anti-tumor activities in patient-derived xenografts carrying EGFR and c-Met mutations. (A–I) Female BALB/c nude mice
were subcutaneously inoculated with corresponding tumor fragments. Tumor bearing mice were randomized and treated with 10 mg/kg TAVO412,
amivantamab analogue, or isotype control (IP – BIW; black arrows indicated the first and last dosing days). The black points and curves profiled the
Isotype mAb; the violet points and curves profiled the TAVO412; and the blue points and curves profiled the amivantamab analogue. Tumor growth
was monitored twice weekly. Statistical comparison (student’s t-test) run for each treatment group as compared to isotype control (ns, not
significant; *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001). For all graphs, error bars represent SEM. The abbreviations were: AMP, amplification; O/E,
overexpression; WT, wild type; BIW, twice-weekly.
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FIGURE 3

Identification of TAVO412 Predictive Genes in CDX Models. (A) Volcano plots of Spearman correlation (x-axis) and significance (y-axis) evaluated
between drug sensitivity (eGR ratio) and the expression of specific genes; Genes conferring enhanced TAVO412 sensitivity were depicted on the left:
oncostatin M receptor (OSMR) and Runt-related transcription factor 1 (RUNX1); Genes conferring resistance are depicted on the right: serine/
threonine-protein phosphatase PP1-gamma catalytic subunit (PPP1CC), Phosphatidylethanolamine-binding protein 1(PEBP1) and nonreceptor
protein tyrosine kinase 2 (PTK2); (B) Volcano plots based on log2 fold-change of gene expression (x axis) against -log10 p-value (y axis) showing the
proportion of differentially expressed genes between the responders (9 CDXs) and non-responders (5 CDXs); Genes conferring enhanced TAVO412
sensitivity were depicted on the right: Intracellular adhesion molecule-1 (ICAM-1), Insulin-Like Growth Factor 1 Receptor (IGF1R), Amphiregulin
(AREG), Fibronectin 1 (FN1) and Integrin Subunit Alpha 5(ITGA5); Genes conferring resistance are depicted on the left: Stathmin 1(STMN1),
Transcription factor EB (TFEB), GRB2 Associated Binding Protein 2(GAB2), Integrin Subunit Beta 8 (ITGB8), Insulin-Like Growth Factor Binding Protein
3(IGFBP3) and Fibroblast Growth Factor Receptor 1(FGFR1); (C) Volcano plots of Spearman correlation (x-axis) and significance (y-axis) evaluated
between drug sensitivity (eGR ratio) and the driver mutation. The mutation of the gene Centrosomal Protein 290 (CEP290) conferred TAVO412
sensitivity; (D) The coefficients of each drug target gene expression and EGFR mutation on the drug efficacy (eGR ratio) from multiple linear
regression. The red bars denoted a 95% confidence interval. The coefficient, standard error and p values for the coefficients for each independent
variable was listed in the table below. The expression of Vascular Endothelial Growth Factor A (VEGF-A) and Epidermal Growth Factor Receptor
(EGFR), plus EGFR mutation predict TAVO412 effectiveness, while MET Proto-Oncogene (c-Met) gene conferred resistance; (E) Heatmap illustrating
the expression levels of the identified predictive genes across 23 CDX models, categorized according to their response to TAVO412 (R, response
models; PR, partial response models; NR, non-response models). The color gradient for normalized expression values (Z-scores) and tumor growth
inhibition (TGI) values were shown. For TGI range, the colors ranged from white (less responsive) to dark blue (more responsive); for the expression
levels, the colors ranged from red (high Z-scores) to blue (low Z-scores).
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Formulation of a prediction model

Since the transcriptomic make-up was more complicated than

simplified responder or non-responder models, we developed a

method to quantitatively describe the gene expression levels of the

identified gene panel and to predict the probabilities of being

responsive to the therapy. We therefore harnessed a previously

reported prediction model – LPS, which is a linear combination of

gene expression values (29), to compute a score for each sample by

summing up the selected gene expression profiles. The weight of

each gene in the LPS model was the t-statistic from t-test

assessments (See Methods and Supplementary Figure 2B). The

probability of being sensitive to TAVO412 treatment was

estimated by the relative proximity of the sample’s LPS score to
Frontiers in Immunology 09
the LPS distribution of the R versus NR groups of the 23 training

CDXs (see details in Materials and Methods).

The LPS values and the probability (represented by log-odds as

described in method) of being drug-sensitive of the 23 training

CDXs were shown in Figures 4A, B. Three groups of models were

largely clustered based on the responsiveness to TAVO412, with the

responder models having the highest LPS score, the non-responder

models showing the lowest LPS score (Figure 4A). The LPS values

were significantly correlated with the eGR ratios with a Spearman’s

Rho coefficient of -0.79 (Supplementary Figure 3). From the

probability assessment (Figure 4B), all the 5 NR and 9 R models

were correctly predicted, while 4 out of 9 PR models were correctly

predicted, with three PR models (DMS79, A2780 and TOV21G)

underestimated and 2 PR models (BT20 and NCI-H226)
FIGURE 4

Performance of the TAVO412 efficacy predictor. (A) The expression score (LPS) was computed for each model based on the expression levels of the
selected 21 genes and the distribution of the LPS scores for all the 23 training CDX values and 9 PDXs was listed. (B) The probability that a model
was responsive to TAVO412 treatment was calculated for all the 23 training CDXs and 9 PDXs and was transformed to log-odds shown on y-axis. A
90% probability (corresponding to log-odds = 2.2) was used as a cutoff to define the testing PDXs’ responsiveness to TAVO412 treatment; The CDX
and PDX classifications were labeled in the x-axis as NR, non-responsive (red); PR, partial-responsive (yellow); R: responsive (blue); Test: PDXs
(violet); (C) The table contrasted the actual results of the assignments of the CDX training model versus the TAVO412 efficacy predictor. The
assignments were classified into the R, PR, and NR subgroups. (D) The table contrasted the actual results of the assignments of the PDX testing
model versus the TAVO412 efficacy predictor. The assignments were classified into the R, PR, and NR subgroups. The abbreviations were: LPS, linear
prediction score; PDX, patient-derived xenograft; CDX, cell line-derived xenograft; R, responsive models; PR, partial-responsive models; NR, non-
responsive models.
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overestimated using a cutoff of 90% probability to decide final

subgroup membership (response models: Probability ≥ 90%; partial

response models: 10% ≤ Probability <90%; non-response models:

Probability < 10%) (29). Therefore, the accuracy for the training

model set was 78% (18 out of 23 models were correctly

predicted; Figure 4C).
Validation of the predictor training set
from the PDX models

The predictive power within the training sets was anticipated,

given that half of the genes (11 out of 21) were selected from the

analysis of the differential expressed genes between R and NR

models. The selection process resulted in the distinct separation

of R versus NR sub-groups in the LPS score graph, while the

prediction for several of the PR models did not deviate far from the

actual responses. To further verify the strength of the predictor

developed based on the training set, we validated the prediction

algorithm using the results from the 9 PDX models. The responses

to TAVO412 in the 9 PDX models are shown in Figure 2. The LPS

scores of these PDXmodel were calculated and plotted to reveal that

the 9 PDXs fell within the range of responder CDX values

(Figure 4A). Subsequently, the probability of response to

TAVO412 treatment was calculated, and the results showed that

9 out of 9 PDX models were predicted to be responsive to

TAVO412. All were correct except for LD1.0025.200717 and

LU3075, which were overestimated since they were partial

response models (Figure 4B). Consequently, the prediction

accuracy of the validation PDX set showed the similar accuracy

compared to the training CDX model data set with an accuracy of

78% (7 out of 9 models were correctly predicted; Figure 4D).
Discussion

TAVO412 inhibited tumor growth in most of the CDX and

PDX models of NSCLC (Figures 1, 2, Supplementary Tables 1, 2).

Such a result was expected since EGFR was the key driver in NSCLC

progression. PDX models showed superiority in recapitulating the

molecular, genetic, and histological heterogeneity of the original

human tumor, thus holding greater translational value than the

CDX models (31). Therefore, it was encouraging to observe that

TAVO412 was particularly effective in the PDX models bearing

EGFR exon 18 mutations, exon 19 deletion, exon 21 L858R

mutation, and c-Met exon-14 skipping mutations (Figure 2).

Notably, TAVO412 exhibited superior antitumor activity

compared to amivantamab in the PDXs bearing exon 18

mutation (LU1901 and LU-01-0506) and exon 19 deletion (LU-

01-1623), suggesting a potential tumor control effect in patients that

did not fully respond to amivantamab (Figures 2A–C).

Additionally, TAVO412 mediated a near complete regression of

an SCLC tumor – LU-01-1377, which harbored an L858R mutation

(Figure 2E). SCLC with EGFR gene mutation typically manifested

as a transformation occurring after EGFR tyrosine kinase inhibitor

therapy, because primary SCLC showing EGFR mutation was rare.
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Indeed, the patient from whom the LU-01-1377 tumor originated

had a history of osimertinib treatment, and the LU-01-1377

xenograft tumor model exhibited resistance to EGFR-TKI

inhibitors (erlotinib, afatinib, and osimertinib; data not shown).

This profile led to a hypothesis that the patient could have

undergone a transformation from NSCLC to SCLC, further

highlighting the potential utility of TAVO412 in such a subgroup

of SCLC patients. Both TAVO412 and amivantamab displayed

moderate antitumor activities in the model with exon 20 insertion

(LU3075) (Figure 2I). TAVO412 demonstrated moderate tumor

inhibition in a PDX model with both T790M and C797S mutations

(LDI-0015200717), whereas amivantamab had no effects on this

tumor (Figure 2H). With HNSCC driven by EGFR aberrations, all

three CDX models exhibited sustained tumor growth control by

TAVO412 even after treatment cessation (Figure 1B,

Supplementary Table 1). The profile of TAVO412 tumor growth

inhibition effects in animal models of OC, HCC, and SCLC were

described in Figure 1 and Supplementary Table 1.

This rich in vivo antitumor dataset allowed sophisticated

quantitative correlation analyses to develop transcriptomic

biomarkers. In addition, a separate set of PDX models created an

opportunity to cross validate the prediction algorithm. A systematic

transcriptomic analysis identified a gene expression signature

strongly predictive for solid tumors that were highly susceptible

to TAVO412 treatment. The therapeutic responses from the 23

training CDX models to TAVO412 treatment were strategically

linked to individual gene expression levels. We focused on four

types of predictive gene profiles: individual genes that correlated

with the responses either positively or negatively (Figure 3A); genes

that differentially expressed between responders and non-

responders (Figure 3B); gene mutations that served an indicator

of the responses (Figure 3C); and genes that directly related to

TAVO412 target engagement (expression of EGFR, c-Met, VEGF-A

and EGFR mutation; Figure 3D). The resulting set of 19 gene

expression profiles plus two gene mutations formed the final

predicting gene sets (Figure 3E). Using the gene expression levels,

an LPS score was calculated for each tumor sample set to predict its

probability of response (Figures 4A, B). The prediction model

achieved a 78% accuracy in the training model data set

(Figure 4C). Furthermore, the model also predicted the PDX

models well in the validation run, resulting in similar accuracy of

78% (Figure 4D). Since there were no non-responders in the PDX

models, the validation for prediction of NRs may require more data.

In order to enhance the potential of predictability, the selection

of the final 21 genes was not only based on the strength of their

performance but also on their association with the target pathways

of TAVO412 since a subset of the markers could always randomly

correlate with some parameters being analyzed when handling

multiplexed ‘big’ data (32). We selected those biomarkers first by

screening genes by correlation analyses, then applied gene ontology

and pathway analyses of all top ranked genes, and finally manually

selected specific genes that were in the relevant pathways. Hence, we

presented a combination of objective (statistical screening and gene

ontology analyses) with known signaling biology in the literature.

While, these genes would be considered not to be specific and off-

target to TAVO412, we presented the results from multiple
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1505868
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jin et al. 10.3389/fimmu.2025.1505868
assessments to show that these “unspecific genes” could have some

role. The rationale behind the positive or negative predictive nature

of these genes was investigated (Supplementary Tables 3, 4)

thoroughly for the decision making. Circulating VEGF-A (gene:

VEGF-A) concentration was a predictive biomarker for

bevacizumab in breast, pancreatic, and gastric cancers (33).

Similarly, EGFR (gene: EGFR) expression, mutation status, and

amplification were predictive biomarkers for cetuximab in both

clinical and preclinical settings (20, 34, 35). Insulin-like growth

factor 1 receptor (IGF1R) has been identified as a mechanism of

resistance to EGFR-TKIs. However, its frequent co-expression with

EGFR across various cancer types may contribute to its designation

as a positive predictor (36, 37). Similarly, Oncostatin M receptor

(gene: OSMR), a member of the type I cytokine receptor family,

functions as a co-receptor for EGFR and enhanced EGFR signaling

in glioblastoma (38). Therefore, both IGF1R and OSMR expression

could correlate with the expression of EGFR. Amphiregulin (gene:

AREG), an EGFR ligand, could stimulate EGFR for a longer time

when compared to EGF‐stimulated EGFR. AREG engagement

could result in higher levels of activated EGFR protein from

either enhanced receptor stabilization or increased recycling to

the cell surface (39). Fibronectin 1 (gene: FN1), one of the key

genes upregulated by AREG-stimulated EGFR pathway. Higher

levels of FN1 mRNA and protein was observed in breast cancer

cell lines that also expressed high levels of AREG (40). The ITGA5

gene encoded the integrin subunit a5 that could interact with

ITGB1 to generate integrin a5b1 that was a receptor for FN1

(40). Therefore, while AREG was a ligand of EGFR, and both

fibronectin 1 and integrin a5b1 are the downstream effector

molecules of AREG stimulated EGFR; thus, their high expression

levels could indicate the activation of EGFR signal pathway.

Additionally, intracellular adhesion molecule-1 (gene: ICAM-1)

was a downstream molecule that could be up-regulated by the

PI3K/Akt signaling pathway through AREG activation of EGFR

(41). The RUNX1 gene encoded runt-related transcription factor 1

(RUNX1), which could promote the increased EGFR

phosphorylation and could upregulate EGFR transcription level

by directly binding to the EGFR gene promoter (42). Therefore, our

profiling showed that all those positive type genes had a positive

association with EGFR pathways in tumor cells, either through co-

expression or being upstream or downstream effector molecules of

EGFR pathways. The role of CEP290 gene in cancer was described

to have crucial roles in the proliferation, migration, infiltration, and

ferroptosis of hepatocellular carcinoma (HCC) tissues and various

liver cancer cell lines (43). IGF1R and ICAM1 were the top two

among those positively predicting genes, carrying the most weight

in the calculation of the LPS score (Supplementary Figure 2B).

There were ten genes negatively predicting responses to TAVO412

treatment (Supplementary Table 4). Five genes have been reported to

play a role in conferring EGFR-TKI resistance. Fibroblast growth factor

receptor 1 (gene: FGFR1) mediates a well-known alternative pathway

that complemented both EGFR and VEGF signaling, thus

conferring resistance to therapies targeting EGFR or VEGF (35, 44).

Nonreceptor protein tyrosine kinase 2 (gene: PTK2), stathmin1 (gene:

STMN1), GRB2-associated-binding protein 2 (gene: GAB2), and

integrin beta-8 (gene: ITGB8) have been reported to induce EGFR-
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TKI resistance in preclinical experiments (45–48). Additionally,

phosphatidylethanolamine-binding protein 1 (gene: PEBP1) (49) and

serine/threonine-protein phosphatase PP1-gamma catalytic subunit

(gene: PPP1CC) (50) were selected for negative prediction, albeit there

was no evidence showing their role mediating the resistance to EGFR

targeting therapies so far. Interestingly, c-Met, one of the targets of

TAVO412, which was supposed to be a positive predictor, showed a

trend of negatively predicting the response, although the association

between gene expression and eGR ratio was not significant (Figure 3D).

Consistent with our findings, the clinical significance of c-Met

overexpression as a useful biomarker for MET-targeted therapies was

not yet clearly established (51). Another gene showing confounding

results was transcription factor EB (gene: TFEB), which was a master

regulator of lysosomal function and autophagy. TFEB could increase the

cytotoxicity of anti-EGFR in in vitro assays, by recovering the

degradation process of EGFR under hypoxic conditions (52). Besides,

there were conflicting reports about the role of the insulin-like growth

factor-binding protein 3 (gene: IGFBP3) in EGFR-TKI resistance. On

one hand, IGFBP3 could act as a suppressor of IGF1R signaling by

binding to IGF1R ligands. Since IGF1R signaling was an alternative

pathway to EGFR, the downregulation of IGFBP3 was associated with

EGFR-TKI resistance (53). On the other hand, increased IGFBP3

expression could lead to afatinib resistance by enhancing IGF1R

activity and subsequent AKT phosphorylation in PC-9 cell line (54).

Those genes that had not elucidated a clear mechanistic relationship or

had contradictory information were incorporated in the prediction

algorithm based on their empirical values. TFEB and STMN1

ranked as the two most significant negatively predicting genes,

having the greatest influence on the LPS score calculation.

(Supplementary Figure 2B).

In summary, we identified genes linked to tumor associated

target pathways that had utility in predicting the efficacy of

TAVO412. Despite some genes lacking a direct link to EGFR, c-

Met, or VEGF engagement, their biologic role in cancer

development and response to TAVO412 treatment remains to be

elucidated. Furthermore, the prediction gene sets and the

computational algorithm, developed based on the animal data,

could be further adjusted with more data available from both

preclinical and clinical settings. Besides, developing a companion

diagnostic (CDx) could facilitate the application of the predictor for

favorable patient identification in the clinic. Despite these 21-gene

profiling that could serve as biomarkers, there were several

limitations to this study. We presented the efficacy of TAVO412

using xenograft models in immunodeficient nude mice. The

rationale for using these xenograft models to assess TAVO412

efficacy was to illustrate the three major mechanisms of action:

inhibition of EGFR/c-MET signaling, Fc effector functions (ADCC,

ADCP and CDC), and control of VEGF-A-induced angiogenesis.

The direct tumor inhibition effect by EGFR/c-MET signaling

blockade was presented in xenograft efficacy models of the

benchmark molecule amivantamab (55). Immunodeficient mice

that include nude and CB17 SCID mice retain NK cells and

macrophages, which can mediate ADCC and ADCP activities,

respectively, through human antibodies (56). Human IgGs

exhibited binding strengths to mouse FcgR that are comparable to

those observed with human ortholog receptors (57). Antibody Fc-
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CDC activity has been demonstrated in CB17 SCID mice (58).

However, research on the CDC activity of human IgGs in mouse

models is limited. There is no definitive conclusion regarding the

effectiveness of evaluating CDC activity using mouse complement

systems. Human tumor-derived VEGF can be systemically blocked

using specific antibodies, such as TAVO412 and avastin, resulting

in significantly suppressed tumor growth in mouse models (59).

TAVO412 only suppressed tumor-derived human VEGF-A, but not

the host-derived mouse VEGF-A, which was secreted from mouse

fibroblast and immune cells that surrounded the tumor mass

supporting residual angiogenesis and growth (59, 60). Therefore,

the function of anti-VEGF domain of TAVO412 may not be fully

evaluated in preclinical models.

Considering the complexity of cancer biology, the treatment

responses could be influenced by other factors beyond gene

expression. In addition, there could be resistance mechanisms

linked to the crosstalk between targeted pathways. Since

preclinical models may not fully replicate the human tumor

microenvironment, the clinical translation of these findings could

be limited. Caution is warranted in interpreting the prognosis

prediction algorithm derived from these animal studies.

Therefore, further validation of these biomarkers would be

required for patient selection to guide evaluation of TAVO412

clinical efficacy.
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