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Integration of histopathological
images and immunological
analysis to predict M2
macrophage infiltration and
prognosis in patients with
serous ovarian cancer
Ling Zhao1†, Jiajia Tan1†, Qiuyuan Su1† and Yan Kuang1,2*

1Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, China,
2Department of Gynecology, Guangzhou First People’s Hospital, Guangzhou, China
Objective: Investigating the effect of M2 macrophage infiltration on overall

survival and to use histopathological imaging features (HIF) to predict M2

macrophage infiltration in patients with serous ovarian cancer (SOC) is

important for improving prognostic accuracy, identifying new therapeutic

targets, and advancing personalized treatment approaches.

Methods: We downloaded data from 86 patients with SOC from The Cancer

Genome Atlas (TCGA) and divided these patients into a training set and a

validation set with a ratio of 8:2. In addition, tissue microarrays from 106

patients with SOC patients were included as an external validation set. HIF

were recognized by deep multiple instance learning (MIL) to predict M2

macrophage infiltration via theResNet18 network in the training set. The final

model was evaluated using the internal and external validation set.

Results: Using data acquired from the TCGA database, we applied univariate Cox

analysis and determined that higher levels of M2 macrophage infiltration were

associated with a poor prognosis (hazard ratio [HR]=6.8; 95% CI [confidence

interval]: 1.6–28, P=0.0083). External validation revealed that M2 macrophage

infiltration was an independent risk factor for the prognosis of patients with SOC

(HR=3.986; 95% CI: 2.436–6.522; P<0.001). Next, we constructed four MIL

strategies (Mean probability, Top-10 Mean, Top-100 Mean, and Maximum

probability) to identify histopathological images that could predict M2

macrophage infiltration. The Mean Probability Method was the most suitable

and was used to generate a HIF model with an AUC, recall rate, precision and F1

score of 0.7500, 0.6932, 0.600, 0.600, and 0.600, respectively.
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Conclusions: Collectively, our findings indicated that M2 macrophage infiltration

may increase prognostic prediction for SOC patients. Machine deep learning of

pathological immunohistochemical images exhibited good potential for the

direct prediction of M2 macrophage infiltration.
KEYWORDS

serous ovarian cancer, histopathological image features, ResNet18, M2 macrophage
infiltration, deep learning artificial intelligence
1 Introduction

Ovarian cancer (OC) is one of the most common gynecological

cancers globally and the eighth leading cause of cancer-related

death in women. OC accounted for approximately 3.7% of all

cancer diagnoses and 4.7% of global deaths in 2020 (1). It is

estimated that more than 150,000 OC-related deaths occur

globally each year, and that approximately 12,740 of the US

population will die from this malignancy by 2024 (2). Most cases

(90%) of OC involve epithelial OC, a condition that can be divided

into serous OC, mucinous OC, clear cell carcinoma, and

endometrioid carcinoma; of these, the most common form is

high-grade serous OC (SOC) (3). Due to the strong anatomical

concealment of serous OC, most patients are diagnosed at an

advanced stage of disease. The 5-year survival rate of patients

with advanced OC remains low (4). Therefore, it is critical that

we identify new prognostic characteristics for patients with SOC,

improve individualized treatments, and promote the development

of novel research.

A tumor is a highly complex system, composed predominantly

of heterogeneous cancer cells, a variety of infiltrating immune cells,

stromal cells, and a vascular structure, collectively referred to as a

tumor microenvironment (TME), which can exert significantly

effects on the occurrence, progression and metastasis of tumors

and treatment responses (5). Macrophage polarization refers to the

different functional states of macrophages in different immune

microenvironments according to stimulation by different signals

and cytokines. The most common polarization states are classical

M1 and M2, which correspond to different immune responses and

tissue repair processes, respectively. Typically, M1 macrophages are

usually stimulated by pro-inflammatory cytokines (such as IFN-g
and TNF-a) and microbial products (such as LPS), which exert

strong antibacterial and antiviral effects, and can promote the

inflammatory response, mainly by producing a large amount of

nitric oxide (NO), reactive oxygen species and cytokines (such as

IL-1b and IL-6).

M2 macrophages are formed under the action of specific

cytokines, such as IL-4 and IL-13, which are usually associated

with tissue repair, and anti-inflammatory/immune regulation (6, 7).
02
Some studies have shown that M2 macrophages support tumor

growth and metastasis by secreting a variety of tumor-promoting

factors, such as IL-10, TGF-b, and VEGF (8, 9). These cells not only
promote angiogenesis and inhibit the immune response, but also

enhance the invasiveness of tumor cells by remodeling the TME

(10). In addition, M2 macrophages can destroy the basement

membrane by secreting matrix metalloproteinases, thus helping

tumor cells to invade the surrounding tissues (11). Recent studies

have also shown that the polarization state of macrophages is not

fixed, but has a high degree of plasticity and diversity. Even in

different pathological environments, macrophages may exhibit a

mixed phenotype of M1 and M2 types (10).

Based on the development of digital pathology and the

advancement of computer algorithms, such as convolutional

neural networks (CNN), fully convolutional networks, recurrent

neural networks and generative adversarial networks, deep learning

artificial intelligence is increasingly being applied in diagnostic

disciplines based on image analysis, including pathology,

ultrasound, radiology, ophthalmology and skin disease diagnosis

(12). Following the introduction of full slide scanners in 1999, the

application of artificial intelligence and computational methods in

digital pathology has developed rapidly to digitally analyze full slide

images. The creation of large-scale digital slide libraries, such

as The Cancer Genome Atlas (TCGA), has promoted the

substantive investigation of digital pathology and oncology by

artificial intelligence (13). The ResNet18 network was first

proposed by He et al. (14), which significantly improved the

training effect and performance of deep networks by introducing

a residual learning mechanism. The application of deep learning

artificial intelligence in pathology helps us to overcome the

limitations of subjective visual assessments by pathologists and

integrate multiple measurements, including cells related to the

tumor microenvironment (TME) for the precise treatment of

tumors (15). Some studies have used machine learning to extract

and identify pathological images for the diagnosis and classification

of breast cancer (16). In another study, Javier et al. obtained

automatic classification results for health, adenocarcinoma and

squamous cell carcinoma based on the machine deep learning of

lung histopathological images (17). These successful machine
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learning models provided a reference for us to introduce machine

learning to investigate SOC. However, the integration of pathology

into research involving the TME, which represents a nurturing

ground for cancer, remains a largely uncharted domain. In this

context, the focus on M2 macrophages, a specific subset of immune

cells that represent a minor but significant fraction of the TME, is

particularly lacking. These cells, despite their numerical minority,

play an indispensable role in the immunosuppressive landscape of

the TME and hold significant promise as therapeutic targets. To

address this gap, we propose an approach that combines

histopathological imaging for the analysis of M2 macrophages to

enhance the predictive accuracy of prognosis for patients with SOC.

This strategy promises to shed light on intricate dynamics within

the TME and paves the way for more targeted and effective

cancer therapies.

The purpose of this study was to investigate the effect of M2

macrophage polarization on the prognosis of patients with SOC, the

prognostic value of histopathological image features (HIF), and the

specific relationship between histopathology and M2 macrophage

polarization. We analyzed data from the TCGA database and an

external validation database, and demonstrated that M2

macrophage polarization represented an independent risk factor

for SOC patients. In addition, the ResNet18 network was used to

perform deep learning on the HIF to predict the level of M2

polarization in SOC patients. Finally, the prognostic performance

was verified by internal and external validation sets to determine

robustness and reliability.
Frontiers in Immunology 03
2 Materials and methods

2.1 Sources and processing of data

Figure 1 depicts the processing of pathological images, the

evaluation of infiltrating immune cells, and the establishment of

models based upon the features of M2 macrophages. Data relating

to cases from the TCGA data were divided into a modeling group

and an internal verification group according to a ratio of 8:2. Step 2

used “CIBERSORT” (https://cibersort.stanford.edu/) to calculate

the high and low infiltration of M2 macrophages. Step 1 used

ResNet18 machine language to cut the Hematoxylin-Eosinstaining

(HE) map from each case, identify characteristics of segmented

images related to the high and low infiltration of M2, and perform

repeated machine learning modeling. Step 3 involved internal and

external data verification by identifying HE-segmented images to

group cases with high and low infiltration of M2.

Formalin-fixed paraffin embedded (FFPE) sections are the gold

standard for the diagnosis of diseases. Compared with frozen

sections, FFPE sections are clearer and more suitable for

computer analysis. FFPE slice images from 86 SOC patients in

The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/)

were obtained from The Cancer Imaging Archive (TCIA, http://

cancerimagingarchive.net/). We also downloaded corresponding

clinical feature data, gene expression and tumor immune

microenvironment data from TCGA. Finally, 106 SOC patients

with histopathological images and immune infiltration were used to
FIGURE 1

The Schematic of features extraction and construction of M2 macrophage infiltration prediction model. 1. The histopathological images of SOC
patients were segmented into sub-images of 224x224 pixels and processed with ResNet18 to extract histopathological image features. 2. The M2
macrophage infiltration was calculated by CIBERSORT. The prognosis of patients with M2 macrophage infiltration was analyzed by univariate
analysis, and M2 macrophage infiltration was predicted by image features. 3. By integrating the image features in the TCGA training set, a prediction
model was established, and the independent risk factors and survival analysis of patients with M2 macrophage infiltration were analyzed by univariate
and multivariate analysis. The TCGA test set and external data were used to evaluate its predictive value.
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predict the features of M2 macrophages. In addition, we used an

SOC tissue microarray and obtained associated clinical features

from Shanghai Zhuoli Biotech Company (Shanghai, China). This

tissue microarray included 106 SOC patients who underwent

surgical and pathological diagnosis between April 2008 and

September 2014. Follow-up ended upon the death of a patient or

on the 30th of July 2020. The study was approved by the ethics

committee and received ethical approval (number: LLS M-15-01),

and all patients provided informed consent.
2.2 Acquisition of histopathological
imaging characteristics

Histopathological images in the TCGA database were in SVS

format with extremely high resolution; consequently, these whole

images could be used directly for feature acquisition. The ResNet18

model (Residual Network), a deep convolutional neural network

widely used for image recognition tasks, was used to extract

histopathological features from images. ResNet18 features 18 layers

of depth, starting from a neural layer and four Res blocks. Each Res

block contained two basic blocks and each basic block contained two

convolutional layers and a final fully connected layer (1 + 4 × 4 + 1 =

18) (18) This was able to effectively extract important features from

tissue images, including area, shape, intensity, granularity, texture

and some complex measurement features, help pathologists make

more accurate diagnoses and improve the efficiency of the diagnostic

process. Key feature types of ResNet18 include: (1) Low-Level

Features (Early Convolutional Layers) maninly contains (a) Layer 1

edge/texture primitive detection is to detect basic gradients, edges,

and local textural patterns (e.g. nuclear membrane boundaries,

cytoplasmic granularity). (b) Layer 2-3 intermediate textural

complexity: captures co-occurrence of nuclei and stromal textures

via larger receptive fields. Haralick-like features (contrast, entropy)

emerge implicitly to quantify tumor-stroma interface irregularity. (2)

High-level features (deep layers):Layer 4 or higher layer is to Identify

morphological constel lations: (a) Macrophage-specific

patterns:”Clockface” chromatin patterns in macrophage nuclei and

spatial clustering of small, round nuclei within fibrotic stroma. (b)

Immune-stromal interaction features: lymphocyte exclusion zones

around macrophage aggregates and collagen alignment adjacent to

M2-rich regions.
2.3 Assessment of the
immune microenvironment

Next, we used the CIBERSORT algorithm in R software 4.3.1

and the transcriptome profile of 86 patients with SOC in the TCGA

database to calculate the proportion of different immune cells,

especially the polarization and infiltration of M2 macrophages.

The CIBERSORT algorithm (19) uses the principle of linear

support vector regression to deconvolute the expression matrix of

immune cell subtypes to estimate the abundance of immune cells.

Using the calculated mean proportion of M2 macrophage
Frontiers in Immunology 04
infiltration as the boundary, we divided the 86 patients with SOC

into a high M2 macrophage infiltration group and a low M2

macrophage infiltration group.

CD163 is a specific marker of M2 macrophages; therefore, using

the external validation data, we performed immunohistochemistry

on tissue microarrays prepared from 106 patients with SOC.

Immunohistochemistry was performed by dewaxing in xylene at

room temperature and hydration in a graded series of ethanol

concentrations. Antigen retrieval was applied by microwave heating

at 96°C to 98°C with antigen retrieval solution (sodium citrate

buffer). Endogenous peroxidase in the tissue was inactivated by

incubation with 3% hydrogen peroxide for 10 min. Tissue sections

were incubated with blocking solution to block non-specific sites,

and then incubated overnight at 4°C with anti-CD163 primary

antibody (Abcam, ab182422). After washing with PBS, we added

anti-rabbit IgG conjugated with horseradish peroxidase (HRP) and

incubated at room temperature for 30 minutes. Finally, after

washing with PBS, the sections were stained with 3 ’-

diaminobenzidine (DAB) reagent. All sections were re-stained

with hematoxylin, and sealed for microscopic examination after

dehydration. The positive quantitative analysis of CD163 staining

was performed by Image J software (Color Deconvolution), and

mean values were calculated to divide the 106 patients with SOC

into high and low infiltration groups.
2.4 Statistical analysis

2.4.1 Data preprocessing
First, we attempted to use immunohistochemical image features

to predict M2macrophage infiltration. After matching the calculated

M2 macrophage infiltration group with immunohistochemical

images, we excluded 21 SOC patients without M2 macrophage

infiltration and included the remaining 65 SOC patients in our

final analysis. First, we set the environment, checked the need to use

CUDA (Compute Unified Device Architecture), and gave priority to

the use of GPU (Central Processing Unit) to accelerate training. This

is a common practice in deep learning, because GPU is more

efficient than CPU in processing parallel operations. Next, we used

the Python “HE_Patches_Dataset” to create the dataset, and the

“torch.utils.data.Dataset” to process the image file, from which the

path and label of the image were read from the CSV file. All patch

images were uniformly scaled to 224 × 224 pixels, converted to

Tensor format, and normalized to match the input requirements of

the pre-trained ResNet18 model. Next, we used “train_test_split” in

Python to divide the dataset into a training set and a validation set,

with a ratio of 80% training set and 20% validation set. Then,

“DataLoader” in Python was used for data batch processing, and

“shuffle=True” was applied to the training set to disrupt the data,

which was helpful for model learning.
2.4.2 Model construction
Next, the model was initialized, and the pre-trained ResNet18

model was applied. The pre-trained model accelerated the training
frontiersin.org
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process and improved model performance. The output feature

number of the last fully connected layer was modified to two to

adapt to the binary classification task. Further training settings

included the “cross entropy loss function” for classification

problems. Using the Stochastic Gradient Descent (SGD)

optimizer with momentum, the learning rate was set to 0.001 and

the momentum was 0.9. Momentum helped to accelerate the

convergence of SGD in the relevant direction and suppress

oscillations. The model was trained for 25 epochs. At each epoch,

we calculated the cumulative loss and accuracy, and the model was

evaluated with the validation set. After each epoch, the best model

was saved by comparing accuracy with the validation set, which

prevented model overfitting. The final model was saved only when

the highest accuracy was achieved with the validation set.

2.4.3 Evaluation and optimization of the model
The accuracy, recall rate, precision, F1 score and Area Under

the Receiver Operating Characteristic Curve (AUC-ROC) values

were used to evaluate the performance of the model, and accuracy

was used as the main index. In the training process, the accuracy of

the validation set was continuously compared to ensure the

generalization ability of the model on the unseen data. Grad-

CAM (20) was used to generate a heat map to visualize the area

of interest in the model. In multiple instance learning (MIL), the

diagnosis of patients was usually based on information extracted

from multiple tissue samples or a “patch.” Here, each patient could

be considered as a “bag,” and each patch was an “instance” in the
Frontiers in Immunology 05
bag. Based on the prediction of these examples, we used four

methods (Mean Probability, Top-10 Mean, Top-100 Mean and

Maximum Probability) for preliminary evaluation, and then

selected the best strategy to determine the overall prediction

results for each patient.
3 Results

3.1 Determination of immune infiltration

First, we used the CIBERSORT algorithm to calculate immune

cell infiltration in SOC patients extracted from the TCGA database

(Supplementary Table 1). The immune cell types included native B

cells, memory B cells, plasma cells, CD8 T cells, naïve CD4 T cells,

memory resting CD4 cells, CD4 memory activated T cells, follicular

helper T cells, regulatory Tregs T cells, gamma delta T cells, resting

NK cells, activated NK cells, monocytes, M0 macrophages, M1

macrophages, M2 macrophages, resting dendritic cells, activated

dendritic cells, resting mast cells, activated mast cells, eosinophils

and neutrophils. The overall composition of immune cell

infiltration is shown in Figure 2. Compared to other cells, the

proportion of CD4 memory resting T cells was the highest, followed

by M2 macrophages. Univariate Cox regression analysis was used to

evaluate the effect of macrophages M1 and M2 on the overall

prognosis of patients with SOC. Analysis revealed that a high

proportion of M1 macrophages was associated with improved
FIGURE 2

The composition and corresponding proportion of immune microenvironment in SOC patients in TCGA database.
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prognosis (HR=0.018, 95% CI: 0.0014–0.25, P=0.0028) and high

level of M2 macrophages was related to poor prognosis (hazard

ratio [HR]=6.8; 95% CI [confidence interval]: 1.6-28; P=0.0083).
3.2 Deep learning modeling of
immunohistochemical images

Next, we attempted to directly detect the histopathological

features of SOC by using CNN to predict M2 macrophage

infiltration, and downloaded scanned images of tumor pathology

from TCGA for further data preprocessing. These tissue

pathological sections were cut into small images of 224 × 224

pixels, and each image was standardized using specific means

(0.485, 0.456, 0.406) and standard deviations (0.229, 0.224, 0.225)

to match the input format of ResNet18. In order to ensure that each

patch had a complete organizational structure and reduce the

proportion of background, we calculated the color value of each

patch. Since the background was white, the lower the color value of

the patch map, the greater the background. Therefore, we set the

color threshold to reduce the background map of 95% patches, and

extract the next feature of the remaining patch (Figure 3).

Therefore, the acquired images were used for in-depth learning

and to train CNN. Then, we divided the SOC patients into an 80%

training set and a 20% validation set, and used the last three blocks

(18 layers) of ResNet18 to train the images.
3.3 Accuracy and robustness of the model

Grad-CAM was able to accurately identify and highlight which

regions of input images were important for the prediction of high

and low M2 macrophage infiltration for the network. This method
Frontiers in Immunology 06
utilized the activation of the last convolutional layer to generate

class activation mapping, retained the architecture of the deep

model, and provided visual interpretation without affecting

accuracy. The left side of Figure 4A shows the HE staining

images after segmentation, while the right side shows the Grad-

CAM images, in which the red and yellow areas of the HE image

were important for the prediction of the network’s classification of

M2 polarization infiltration. Grad-CAM decoded the importance of

each feature map for the classification of M2 polarization

infiltration by analyzing the gradient in the last convolution layer.

For pathological application, four MIL methods (Mean

Probability, Top-10 Mean, Top-100 Mean, and Maximum

Probability) were used to predict a patient’s disease status based

on the features extracted from multiple pathological sections. For

example, we were able to classify each image based on specific

features (such as cell morphology and tissue structure) extracted

from each image, and used one of the MIL strategies to synthesize

this information, and finally obtain an overall diagnosis of the

patient. The Mean Probability Method assumes that each instance

in the bag is equally important, and the final prediction of the bag is

determined by calculating the mean of the prediction probabilities

for all instances in the bag. When we used the Mean Probability

strategy, the histopathological image features (HIF) model exhibited

a good AUC of 0.7500; accuracy, recall rate, precision and F1 score

were 0.6932, 0.600, 0.600, and 0.600, respectively (Figure 4B). The

Top-10 Mean Method only considered the predictions of the 10

most likely instances in the bag and averaged these probabilities.

This method is more diagnostically valuable for some scenarios

(such as abnormal tissue samples) than for other scenarios. In this

study, the Top-10 Mean was also used for the HIF model with an

AUC, accuracy, recall rate, precision and F1 score of 0.7250, 0.3846,

1.000, 0.3846, and 0.5556, respectively (Figure 4C). Similar to the

Top-10 Mean model, the Top-100 Mean method considered more

instances (100) when selecting instances for averaging, which may
FIGURE 3

Background reduction and features extraction from patches.
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FIGURE 4

Validation of the model using four multiple instance learning strategies for M2 macrophage infiltration prediction. (A) Segmented HE Staining and
Grad-CAM Images for extracting and predicting M2 macrophage infiltration. (B-E) The AUC area with Mean probability, Top-10 mean, Top-100
mean, and Maximum probability strategy in the TCGA test set.
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be more appropriate with a large number of instances. Using the

Top-100 Mean Method for the HIF model, the AUC, accuracy,

recall rate, precision, and F1 score of the HIF model were 0.7250,

0.4615, 0.8000, 0.4000, and 0.5333, respectively (Figure 4D). The

Max Probability Method takes the prediction of the instance with

the highest probability in the bag as the prediction for the whole

bag. When employing the Max Probability Method for the HIF

model, the AUC, accuracy, recall rate, precision and F1 score were

0.5500, 0.3846, 1.0000, 0.3846, and 0.5556, respectively (Figure 4E).

Therefore, after comprehensive evaluation, we chose the Mean

Probability Method to apply the MIL as this was more suitable

for our specific samples.
Frontiers in Immunology 08
3.4 External validation of the model

The left side of Figure 5A shows the HE staining image after

cutting in the verification set, while the right side shows the

corresponding Grad-CAM image. By performing clinical survival

analysis, we found that the survival of patients with a high infiltration

level of M2 macrophages was poor (Figure 5B). Univariate and

multivariate Cox analysis also demonstrated that M2 macrophage

infiltration was an independent risk factor affecting the prognosis of

patients with OC (HR=3.986; 95% CI: 2.436–6.522; P<0.001) (see

Figure 6 for further details). When applying the Mean Probability

Method, the corresponding AUC was 0.5534 (Figure 5C).
FIGURE 5

The verification of deep machine learning model in external data. (A) Segmented HE Staining and Grad-CAM Images for predicting M2 macrophage
infiltration. (B) Kaplan-Meier method was used to analyze the survival analysis of high and low infiltration groups of M2 macrophage in the external
data. (C) The AUC area with Mean probability method in the external data.
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4 Discussion

In the present study, we found that the level of M2 macrophage

polarization was an independent risk factor for patients in SOC

patients, as determined by univariate and multivariate Cox analysis.

Next, we used the ResNet18 network to learn pathological images

from SOC patients, and extracted a series of important image

features. These image features were then used by machine
Frontiers in Immunology 09
learning to identify the level of M2 macrophage polarization in

tumors. Finally, we constructed a model to determine the level of

M2 polarization with image feature prediction by machine training,

and used internal and external validation groups to verify the

predictive effect of the model, further demonstrating that the

constructed model had good accuracy and robustness.

The existence of M2 macrophages is closely related to the

malignant characteristics of SOC (21). M2 macrophages have
FIGURE 6

Univariate and multivariate COX analysis of the relationship between clinical characteristics and overall survival was performed in external
validation data.
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been shown to enhance tumor angiogenesis and immune escape

mechanisms by secreting pro-tumor factors, which are considered

to be key factors for increased cancer invasiveness and a poor

prognosis (10, 22, 23). Emerging pan-cancer studies highlight

mechanisms that reinforce the prognostic significance of M2

macrophages in SOC. EPHB2, identified as a predictive

biomarker for immunotherapy response and survival across

cancers (24), may modulate M2 macrophage polarization, linking

their immunosuppressive functions to therapeutic resistance.

Similarly, strategies targeting T cell exhaustion (25) underscore

the role of M2 macrophages in fostering immune evasion. LMNB2,

a diagnostic and prognostic biomarker in lung cancer (26),

correlates with genomic instability and proliferation potentially

amplified by M2-derived cytokines. Furthermore, multi-omics

analyses of malignant cell-associated ligand–receptor networks

(27) reveal crosstalk between tumor cells and stromal

components, suggesting M2 macrophages may drive SOC

progression through similar paracrine signaling. By transcending

traditional markers, this integrative approach highlights novel

therapeutic targets and reinforces M2 macrophages as pivotal

prognostic determinants. In this study, both the internal data set

and the external data set proved that the polarization level of M2

macrophages was associated with the prognosis of SOC patients; the

higher the level, the worse the prognosis. Although the findings of

previous studies were consistent with the results generated by our

study, few studies have verified this method as an independent

prognostic indicator by analyzing large-scale databases and

applying efficient image analysis techniques. Our study not only

verified the role of M2 macrophages in SOC, but also provided a

quantitative basis for the prognostic evaluation of M2 macrophages

for the first time by applying pathological image analysis facilitated

by artificial intelligence.

The gold standard for the diagnosis and treatment of cancer

patients is based on the pathological diagnosis of tissues.

Histopathological images contain information relating to the

morphological characteristics of tumor cells and their

microenvironment, and may represent important biomarkers for

the survival outcomes of cancer patients (28). However, at present,

pathological examination reports are diagnosed by multiple

pathologists based on their experience, and this type of subjective

evaluation often ignores the large quantity of information provided

by pathological sections. With the continual improvement of

computer algorithms, deep learning machines have been

developed to assist feature extraction from images of pathological

sections, and these features have been shown to be related to the

prognosis of tumors (29–31). Additionally, the automatic extraction

of image features by a machine not only improves efficiency and

reduces costs, but also reduces the occurrence of misdiagnosis and

missed diagnosis. Notably, cutting-edge advances underscore the

transformative potential of converging machine learning with

multi-omics analytics. Ye et al. engineered the iMLGAM

framework that synergistically integrates genetic algorithms and

machine learning to decode tumor microenvironment dynamics

from multi-omics data, yielding critical insights for predicting

immunotherapy responses across malignancies (32). Machine
Frontiers in Immunology 10
deep learning has also been used to investigate the pathology of

SOC. In a previous study, Boehm et al. collected multimodal data

sets from 444 patients with primary advanced high-grade SOC, and

performed risk stratification for patients by integrating

histopathological, radiological and clinical genomics machine

learning models (33). In another study, Zeng et al. established

models for BRCA1 mutation, BRCA2 mutation, high microsatellite

instability, microsatellite stability, and different molecular subtypes

(proliferative, differentiated, immunoreactive, and interstitial) by

performing machine learning on pathological tissue images held by

the TCGA database (34). These previous studies mainly focused on

the pathological features of SOC, including tissue structure, tumor

grade, and molecular subtype. However, few deep learning studies

have focused on immune cells in combination with pathology.

Second, previous studies (35, 36) have focused on the role of M2

macrophages in SOC and their relationship with the TME and

patient prognosis. The existing literature generally utilized

immunohistochemistry, flow cytometry, and other methods to

quantitatively analyze macrophage infiltration. Zheng et al. (37)

used single cell analysis to analyze the significance of the density,

spatial distribution and gene expression of tumor-associated

macrophage phenotypes as a prognostic factor for the overall

survival of patients with lung cancer. However, most of these

studies relied on traditional immunological analysis methods, and

there was a clear lack of research on the integration of HIF and

immunological data. In terms of model selection, the present study

utilized four different MIL strategies to process histopathological

images. Compared with the traditional method used to analyze

single image features, the MIL method can effectively process image

data containing complex information, and then select and fuse

features through different strategies, thus improving the

generalization ability and predictive performance of the model.

Although previous studies have mostly utilized deep learning

networks, such as CNN (12, 38) for image classification, the MIL

strategy applied in this study was able to better capture the

distribution pattern of M2 macrophages in the TME by

integrating multiple local instance information, thus providing a

new method for the precision clinical management of OC.

Although this study has achieved important results, there

are also some limitations that need to be considered. First, the

limited sample size may have influenced the universality of

our findings. The two cohorts in this study provided a relatively

small cohort, and may have influenced the performance of

the model. Notably, in the verification queue, the accuracy and

stability of the machine learning model were limited. The small

sample size may have led to a higher degree data fitting to the

model, thus affecting its generalization ability in new and untested

data. This phenomenon was particularly significant in the

validation cohort, which may manifest manifested as the

overfitting of the model to specific data features, resulting in a

decline in predictive performance. On the contrary, the validation

data for M2 polarization quantification was derived from

immunohistochemistry, which may have differed from the

sequencing data in modeling. Second, this study mainly focused

on the number and distribution of M2 macrophages, but did not
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investigate the specific functional mechanism involved. For

example, we still need to investigate how M2 macrophages might

affect the biological behavior of tumors through specific signaling

pathways. This type of research will help to reveal the specific role of

M2 macrophages in the TME, thus providing a theoretical basis for

the development of targeted therapy. Moreover, while we utilized

HIF to elucidate the role of M2 macrophages within the TME, it is

crucial to acknowledge the complexity of the TME, a system that is

influenced by a multitude of factors that extend well beyond the

scope of M2 macrophages alone. The TME comprises a dynamic

interplay of various cell types, signaling molecules, and metabolic

pathways, all of which contribute to the heterogeneity and

complexity of the tumor niche. Therefore, it is imperative for

future research to place a strong emphasis on the comprehensive

diversity of the TME. Such an approach is essential if we are to gain

a more comprehensive understanding of how the TME influences

tumor progression and may lead to the identification of novel

therapeutic targets. Finally, The external dataset (TCGA) differs

from our internal cohort in demographic and clinical

characteristics, such as age distribution, cancer stage, and

treatment protocols. These discrepancies may introduce

unmeasured confounding effects, altering risk associations. To

improve clinical applicability, we propose that future iterations of

the model incorporate treatment-related covariates and validate it

in prospectively annotated, multi-institutional cohorts with

standardized therapeutic protocols. However, despite this

limitation, our current findings still have important clinical

and scientific value. The integration of histopathological images

and immunological analysis provided a new concept to

comprehensively investigate the immune characteristics of the

TME, especially the role of M2 macrophages. This method not

only provides strong support for the prognostic prediction of SOC,

but also provides a reference for the analysis of immunological

characteristics of other tumor types. Although the small sample size

may have limited the generalization of the model, the collection and

analysis of high-quality data ensured the reliability and rigor of our

results. Our findings provide a solid foundation for future research;

once the sample size has been expanded, the accuracy and stability

of the model may be further improved.
Conclusion

In this study, we demonstrated that the level of M2

macrophages was an independent risk factor for the prognosis of

patients with SOC. In addition, we confirmed the potential ability of

features extracted from histopathological images to predict the

polarization level of M2 macrophages in patients with SOC. Our

findings are expected to help pathologists and clinicians to evaluate

the prognosis of SOC patients and provide valuable reference for

individualized treatment.
Frontiers in Immunology 11
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The studies involving humans were approved by The studies

involving human participants were reviewed and approved (NO.

LLS M-15-01) by the ethics committee. The studies were conducted

in accordance with the local legislation and institutional

requirements. The participants provided their written informed

consent to participate in this study.
Author contributions

LZ: Conceptualization, Data curation, Methodology, Project

administration, Writing – original draft, Writing – review & editing.

JT: Data curation, Formal analysis, Investigation, Writing – review &

editing. QS: Data curation, Investigation, Writing – review & editing.

YK: Conceptualization, Supervision, Writing – review & editing.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. The study was supported

by the National Natural Science Foundation of China (Project

Approval 81960466 and 82260566).
Acknowledgments

We acknowledge the support from the National Natural Science

Foundation of China.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1505509
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2025.1505509
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Frontiers in Immunology 12
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2025.

1505509/full#supplementary-material

SUPPLEMENTARY TABLE 1

The immune cell infiltration of SOC patients in the TCGA database.
References
1. Webb PM, Jordan SJ. Global epidemiology of epithelial ovarian cancer. Nat Rev
Clin Oncol. (2024) 21:389–400. doi: 10.1038/s41571-024-00881-3

2. Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA A Cancer J Clin.
(2024) 74:12–49. doi: 10.3322/caac.21820

3. Shih I-M, Wang Y, Wang T-L. The origin of ovarian cancer species and
precancerous landscape. Am J Pathol . (2021) 191:26–39. doi: 10.1016/
j.ajpath.2020.09.006

4. Lheureux S, Gourley C, Vergote I, Oza AM. Epithelial ovarian cancer. Lancet.
(2019) 393:1240–53. doi: 10.1016/S0140-6736(18)32552-2

5. Jin M-Z, Jin W-L. The updated landscape of tumor microenvironment and drug
repurposing. Sig Transduct Target Ther. (2020) 5:166. doi: 10.1038/s41392-020-00280-x

6. Wynn TA, Chawla A, Pollard JW. Macrophage biology in development,
homeostasis and disease. Nature. (2013) 496:445–55. doi: 10.1038/nature12034

7. Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: An
immunologic functional perspective. Annu Rev Immunol. (2009) 27:451–83.
doi: 10.1146/annurev.immunol.021908.132532

8. Zhu X, Liang R, Lan T, Ding D, Huang S, Shao J, et al. Tumor-associated
macrophage-specific CD155 contributes to M2-phenotype transit ion,
immunosuppression, and tumor progression in colorectal cancer. J Immunother
Cancer. (2022) 10:e004219. doi: 10.1136/jitc-2021-004219

9. Chen S, Lu K, Hou Y, You Z, Shu C,Wei X, et al. YY1 complex in M2macrophage
promotes prostate cancer progression by upregulating IL-6. J Immunother Cancer.
(2023) 11:e006020. doi: 10.1136/jitc-2022-006020

10. Chen S, Saeed AFUH, Liu Q, Jiang Q, Xu H, Xiao GG, et al. Macrophages in
immunoregulation and therapeutics. Sig Transduct Target Ther. (2023) 8:207.
doi: 10.1038/s41392-023-01452-1

11. Zhou J, Liu L, Hu X, Feng R, Zhao N, Zhang L, et al. Matrix metalloproteinase-21
promotes metastasis via increasing the recruitment and M2 polarization of
macrophages in HCC. Cancer Sci. (2023) 114:423–35. doi: 10.1111/cas.15368

12. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-
level classification of skin cancer with deep neural networks. Nature. (2017) 542:115–8.
doi: 10.1038/nature21056

13. Gutman DA, Cobb J, Somanna D, Park Y, Wang F, Kurc T, et al. Cancer digital
slide archive: An informatics resource to support integrated in silico analysis of TCGA
pathology data. J Am Med Inform Assoc. (2013) 20:1091–8. doi: 10.1136/amiajnl-2012-
001469

14. Ren S, He K, Girshick R, Zhang X, Sun J. Object detection networks on
convolutional feature maps. IEEE Trans Pattern Anal Mach Intell. (2017) 39:1476–
81. doi: 10.1109/TPAMI.2016.2601099

15. Jain RK, Mehta R, Dimitrov R, Larsson LG, Musto PM, Hodges KB, et al.
Atypical ductal hyperplasia: Interobserver and intraobserver variability.Modern Pathol.
(2011) 24:917–23. doi: 10.1038/modpathol.2011.66

16. Carvalho ED, Filho AOC, Silva RRV, Araújo FHD, Diniz JOB, Silva AC, et al.
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Muñoz-Saavedra L, Rodrıǵuez Corral JM. Non-small cell lung cancer diagnosis aid
with histopathological images using explainable deep learning techniques. Comput
Methods Programs Biomed. (2022) 226:107108. doi: 10.1016/j.cmpb.2022.107108

18. Chen Z, Jiang Y, Zhang X, Zheng R, Qiu R, Sun Y, et al. ResNet18DNN:
Prediction approach of drug-induced liver injury by deep neural network with
ResNet18. Briefings Bioinf. (2022) 23:bbab503. doi: 10.1093/bib/bbab503

19. Ciavarella S, Vegliante MC, Fabbri M, De Summa S, Melle F, Motta G, et al.
Dissection of DLBCL microenvironment provides a gene expression-based predictor of
survival applicable to formalin-fixed paraffin-embedded tissue. Ann Oncol. (2018)
29:2363–70. doi: 10.1093/annonc/mdy450

20. Font-Clos F, Zanchi M, Hiemer S, Bonfanti S, Guerra R, Zaiser M, et al.
Predicting the failure of two-dimensional silica glasses. Nat Commun. (2022)
13:2820. doi: 10.1038/s41467-022-30530-1
21. Hensler M, Kasikova L, Fiser K, Rakova J, Skapa P, Laco J, et al. M2-like
macrophages dictate clinically relevant immunosuppression in metastatic ovarian
cancer. J Immunother Cancer. (2020) 8:e000979. doi: 10.1136/jitc-2020-000979

22. Chen Y, Zhang S, Wang Q, Zhang X. Tumor-recruited M2 macrophages
promote gastric and breast cancer metastasis via M2 macrophage-secreted CHI3L1
protein. J Hematol Oncol. (2017) 10:36. doi: 10.1186/s13045-017-0408-0

23. Xia Y, Rao L, Yao H, Wang Z, Ning P, Chen X. Engineering macrophages for
cancer immunotherapy and drug delivery. Adv Mater. (2020) 32:2002054. doi: 10.1002/
adma.202002054

24. Xu S, Zheng Y, Ye M, Shen T, Zhang D, Li Z, et al. Comprehensive pan-cancer
analysis reveals EPHB2 is a novel predictive biomarker for prognosis and immunotherapy
response. BMC Cancer. (2024) 24:1064. doi: 10.1186/s12885-024-12843-0

25. Liu X, Xi X, Xu S, Chu H, Hu P, Li D, et al. Targeting T cell exhaustion: emerging
strategies in non-small cell lung cancer. Front Immunol. (2024) 15:1507501.
doi: 10.3389/fimmu.2024.1507501

26. Xu S, Lu Z. The role of LMNB2 as a diagnostic and prognostic biomarker in lung
adenocarcinoma. Asian J Surg. (2024) S1015-9584. doi: 10.1016/j.asjsur.2024.08.056

27. Xu S, Chen X, Ying H, Chen J, Ye M, Lin Z, et al. Multi-omics identification of a
signature based on Malignant cell-associated ligand-receptor genes for lung
adenocarcinoma. BMC Cancer. (2024) 24:1138. doi: 10.1186/s12885-024-12911-5

28. Ben Hamida A, Devanne M, Weber J, Truntzer C, Derangère V, Ghiringhelli F,
et al. Deep learning for colon cancer histopathological images analysis. Comput Biol
Med. (2021) 136:104730. doi: 10.1016/j.compbiomed.2021.104730

29. Zhou Z, Ren Y, Zhang Z, Guan T, Wang Z, Chen W, et al. Digital
histopathological images of biopsy predict response to neoadjuvant chemotherapy
for locally advanced gastric cancer. Gastric Cancer. (2023) 26:734–42. doi: 10.1007/
s10120-023-01407-z

30. Li Y-J, Chou H-H, Lin P-C, Shen M-R, Hsieh S-Y. A novel deep learning-based
algorithm combining histopathological features with tissue areas to predict colorectal
cancer survival from whole-slide images. J Transl Med. (2023) 21:731. doi: 10.1186/
s12967-023-04530-8

31. Alirezazadeh P, Dornaika F. Boosted additive angular margin loss for breast
cancer diagnosis from histopathological images. Comput Biol Med. (2023) 166:107528.
doi: 10.1016/j.compbiomed.2023.107528

32. Ye B, Fan J, Xue L, Zhuang Y, Luo P, Jiang A, et al. iMLGAM: integrated
Machine Learning and Genetic Algorithm-driven Multiomics analysis for pan-cancer
immunotherapy response prediction. iMeta. (2025) 4:e70011. doi: 10.1002/imt2.70011

33. Boehm KM, Aherne EA, Ellenson L, Nikolovski I, Alghamdi M, Vázquez-Garcıá
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