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Bioengineering, College of Engineering, Northeastern University, Boston, MA, United States
The development of effective vaccines is crucial for combating current and

emerging pathogens. Despite significant advances in the field of vaccine

development there remain numerous challenges including the lack of

standardized data reporting and curation practices, making it difficult to

determine correlates of protection from experimental and clinical studies.

Significant gaps in data and knowledge integration can hinder vaccine

development which relies on a comprehensive understanding of the interplay

between pathogens and the host immune system. In this review, we explore the

current landscape of vaccine development, highlighting the computational

challenges, limitations, and opportunities associated with integrating diverse

data types for leveraging artificial intelligence (AI) and machine learning (ML)

techniques in vaccine design. We discuss the role of natural language processing,

semantic integration, and causal inference in extracting valuable insights from

published literature and unstructured data sources, as well as the computational

modeling of immune responses. Furthermore, we highlight specific challenges

associated with uncertainty quantification in vaccine development and

emphasize the importance of establishing standardized data formats and

ontologies to facilitate the integration and analysis of heterogeneous data.

Through data harmonization and integration, the development of safe and

effective vaccines can be accelerated to improve public health outcomes.

Looking to the future, we highlight the need for collaborative efforts among

researchers, data scientists, and public health experts to realize the full potential

of AI-assisted vaccine design and streamline the vaccine development process.
KEYWORDS

vaccine platform technologies, correlates of protection, machine learning, artificial
intelligence, large language models, computational methods, data harmonization,
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1 Introduction

The development of effective vaccines against pathogens is a

critical priority for global health. The emergence of novel

pathogens, such as SARS-CoV-2, present significant challenges to

global health response strategies, highlighting the pressing need for

accelerated vaccine development (1–3). Traditionally, vaccines have

been developed and tested empirically by immunization with

inactivated or live-attenuated microorganisms or toxins (4).

While traditional approaches to vaccine development have been

successful in the past, they often face challenges when dealing with

rapidly evolving pathogens, especially those with high mutation

rates. Traditional vaccine designs have several drawbacks including

adverse reactions, safety concerns with undefined or proprietary

preparations, reversion to virulence, and lengthy manufacturing

timelines (5). The advent of next-generation vaccine technologies

with defined antigens and delivery systems eliciting desired immune

responses has revolutionized the field of vaccine design. The

benefits of shifting from empiricism to rational vaccine design are

already becoming apparent and offer new opportunities to address

these challenges and advance our understanding of vaccine efficacy

and durability (6).

State-of-the-art vaccine platform technologies, such as mRNA

vaccines, viral vector-based vaccines, and structure-based antigen

designs (7) have shown great potential as new vaccine candidate

developments in protecting against emergent pathogens. These

technologies have enabled the rapid design and production of

vaccines for immediate short-term protection, as exemplified by

the unprecedented speed at which COVID-19 vaccines were

developed and deployed. Traditional approaches to vaccine

platform selection and optimization are often time-consuming

and resource-intensive, which cannot match the speed of

pathogen mutation rates.

Due to the availability of exascale computing platforms, next

generation hardware and advanced software infrastructure, artificial

intelligence and machine learning (AI/ML), and other computational

tools are becoming increasingly important in vaccine development (8–

10). These computing resources and tools can be leveraged to help

identify potential vaccine targets, predict vaccine effectiveness, and

optimize vaccine formulations. The combinatorial problem of vaccine

design for selecting antigens, platforms, adjuvants, dosage, and

scheduled delivery make it challenging to test all possible parameters

experimentally. AI/ML solutions to determine optimal conditions

could accelerate vaccine design and development and assist in

experimental refinements. For instance, ML algorithms can analyze

large datasets of pathogen sequences and identify conserved epitopes

that can serve as vaccine targets (11). Computational models can also

simulate immune responses based on different vaccine formulations,

aiding in epitope selection of promising candidates.

While we refer to several recent reviews describing the prospects

of artificial intelligence (AI) and machine learning (ML) in speeding

up research in vaccine design (12, 13), clinical trial design (14), and

other applications of machine learning in vaccine design and

development (11, 15), our review provides a comprehensive

analysis of the data integration challenges and opportunities

specific to vaccine development. We focus on the critical
Frontiers in Immunology 02
knowledge gaps in the application of next-generation vaccine

technologies and computational tools and propose directions for

future research to address these challenges. Importantly, He et al.

highlight the importance of databases and data integration

approaches supporting such AI and ML techniques (16).

However, the use of ML and computational tools in vaccine

development still present significant technical challenges (9, 17).

A major challenge is the aggregation of existing data and

knowledge relevant for vaccine design to ensure accurate and

reliable models are designed and trained using information from

trustworthy resources. For example, there have been over 2,000

vaccine clinical trials registered in the U.S. alone over the past

decades and there is important data scattered across different

regional clinical registries globally. These data may provide insight

into which factors contribute to successful vaccine design. As it is

critical to understand why a vaccine was successful, systematically

understanding why vaccine trials fail is pivotal for improving future

research methodologies, ensuring efficient resource allocation, and

enhancing public health preparedness. Lessons learned from these

failures can lead to faster and more effective vaccine development in

the future. This, however, requires a streamlined process for

comprehensive data integration. More generally, vaccine

development involves integrating data from various sources,

including genomic, immunological, and clinical data, which can be

heterogeneous, incomplete, or inconsistent (18, 19). Aggregating and

harmonizing the contents of these resources to create a more refined

and comprehensive knowledgebase is a challenging task and would

require the development of novel standardized ontologies, data

sharing protocols, and manual curation processes (20). Another

challenge is the lack of standardized benchmarks and evaluation

metrics for assessing the performance and accuracy of ML models in

vaccine development (21).

Focusing on data integration, this review aims to identify and

discuss critical knowledge gaps in the application of next-

generation vaccine technologies and computational tools for the

development of vaccines against emerging pathogens. We provide

an overview of the current state of the art, highlight the challenges

and limitations faced by the field, and propose directions for future

research to address these challenges (Figure 1). Furthermore, we

highlight the need for development of a novel knowledgebase that

integrates diverse data sources to guide data-driven decision-

making in vaccine development.
2 Understanding vaccine development

Emerging and re-emerging infectious diseases have threatened

public health throughout history and have persisted into modern

times (22). Vaccines are an important tool in the prevention of

disease outbreaks, epidemics, and pandemics. In fact, the

development of safe and effective vaccines against infectious

diseases has been one of the most impactful scientific advances to

human health of the 21st century (23). However, recent climate,

geodemographic, and technological shifts have altered the

landscape of infectious disease risk. For example, trends in

international airline travel had nearly doubled in the decade prior
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to the COVID-19 pandemic, increasing from two billion travelers in

2000 to over four billion travelers in 2019, leading to greater global

connectivity in enabling pathogens to reach new environments and

hosts (24). In addition to recent pathogenic transformation trends,

there is an increased risk of infectious disease outbreaks because of

delays in vaccine development and production. The vaccine

lifecycle, from discovery to licensure, can cost billions of dollars

and requires nearly a decade of approval processes for authorization

with only an average ~6% success rate pre-pandemic (25).

A wide collection of vaccine platform technologies exists, from

traditional vaccines to next-generation platforms (26, 27). Vaccine

technology developments have significantly improved in eliciting

targeted immune responses and have streamlined the processes

enabling rapid scalability for the deployment of novel interventions.

Emerging vaccine platform technologies include nucleic acid-based

vaccines (28–30), recombinant vector vaccines (31, 32), whole-

pathogen adapted vaccines (33–35), cellular vaccines (36), subunit

vaccines (37, 38), engineered vaccines (39–41), and a suite of

adjuvant-driven or synthetically derived vaccine combinations (42)

leveraging the strengths of more than one platform technology

(Figure 2). Vaccine platform technologies (43) are widely discussed

but inconsistently classified as both the complexity of the technology

and the scientific jargon used to describe these vaccines are disparate.

Vaccine platform technology selection is only one part of a

more comprehensive protective design. Additional protective
Frontiers in Immunology 03
vaccine design components (44) have various ingredients

including active substances, antibiotics, adjuvants, preservatives,

stabilizers, and other trace components (Figure 3) (30, 45).

These protective ingredients often play an immunogenic role

(structural, functional, or biological) in a given design product

for subsequent downstream safety and immunogenicity

interrogation (46, 47).

Recent advancements in vaccine development continue to

improve vaccine manufacturing and accessibility for global

distribution (48). However, despite recent efforts to improve

vaccine product accessibility, there remains a large gap in vaccine

product information, including metadata resources required for

harmonizing cross-protective vaccine study information supporting

new insights from ongoing interventional studies.

The limited union of metadata standards, reporting guidelines,

and shared terminologies outlined by varying governmental and

scientific resources (49, 50) make it challenging to accurately

capture, extract, and integrate valuable knowledge required for

protective insight discovery supporting new durable vaccine

designs. The rate of disseminated research results reported in

journal articles, corresponding to clinical trials registered to study

outcomes, is limited. This creates large gaps in quality information

tracking making it challenging to identify promising preclinical vs.

clinical vaccine candidate development for rapid pandemic

response (51–54).
FIGURE 1

An overview of key computational methods for data integration supporting modern vaccine development. Leveraging existing data on vaccines and
pathogens poses multiple challenges (top left) that can be addressed using methods for the automated extraction and integration of knowledge (top
right). These enable the use of computational methods including machine learning and artificial intelligence (middle) to ultimately lead to better
prediction of vaccine-pathogen compatibility and an improved vaccine development process.
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3 Challenges and limitations of
vaccine development

3.1 Pathogen genetics, mutation rates, and
immune evasion strategies

The early stages of vaccine development rely heavily on

computational tools for pathogen surveillance, DNA/RNA

sequencing, protein repertoire prediction, and epitope prediction

(55–57). These tools play a crucial role in identifying potential

vaccine targets and designing effective immunization strategies

against emerging pathogens. Emergent lethal human viruses pose

many unique challenges for vaccine design and development due to

their genetic diversity, mutation rates, and immune evasion

strategies (21, 58, 59). The genetic variability of emerging

pathogens can impede the identification of consistent vaccine

targets and can lead to reduced vaccine efficacy and the need for

frequent vaccine updates. For example, RNA viruses, such as

influenza and HIV, rapidly mutate, making it challenging to

identify vaccine targets (60, 61). Pathogens known for their high

mutation rates often have shifting antigenic properties, heavily

influencing target vaccine antigen selection and efficacy. These

unpredictable mutations often lead to a loss of vaccine

effectiveness over time and requires new vaccine formulations.

For instance, influenza virus undergoes antigenic drift and shift,

necessitating annual updates to ensure protection against

circulating strains (62–65).

Vaccine development efforts are further complicated depending

on immune evasion strategies that pathogens employ. Pathogens
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evade the host immune response by antigenic variation, immune

system suppression, and the shielding of vulnerable epitopes. HIV,

for example, employs multiple immune evasion strategies, including

the rapid mutation of its surface proteins, the masking of conserved

epitopes, and the depletion of CD4+ T cells, which are critical for

mounting an effective immune response (66). To overcome these

challenges, vaccine development strategies should focus on

identifying conserved regions of the pathogen that are less

susceptible to mutation and immune evasion. This can involve

the use of structure-based antigen design to create immunogens

that elicit broadly neutralizing antibodies, as well as the

development of novel adjuvants and delivery systems to enhance

the immune response. Bioinformatics tools and machine learning

algorithms can aid in the identification of potential vaccine targets

and the prediction of vaccine efficacy, by speeding up the research

and discovery knowledge aggregation process and eliminating

manual redundancy.
3.2 Computational approaches to
modeling and predicting correlates
of protection

Correlates of protection (CoPs) are biomarkers or immune

responses that are statistically associated with protection against

infection or disease. The identification, estimation, and modeling of

correlates of protection plays a critical role in informing the design

and evaluation of vaccines and serves as a benchmark for regulatory

approval and public health policy. The immune response to

infection or vaccination involves complex interactions among
FIGURE 2

This figure showcases a variety of emerging vaccine platform technologies, including nucleic acid-based vaccines, whole pathogen vaccines, vector-
based vaccines, engineered vaccine, cellular vaccines and nanoparticle-based delivery systems. The selection of an appropriate vaccine platform is a
critical step in the vaccine development process and is guided by factors such as the nature of the pathogen, the desired immune response, and the
target population. Each platform offers unique advantages in terms of safety, immunogenicity, and rapid manufacturing, enabling the development
of targeted vaccines against a wide of pathogens. Created using BioRender.com.
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various cell types—dendritic cells, T cells, B cells—and the

molecular signals they exchange, such as cytokines and

chemokines (67). Determining correlates of protection therefore

presents a significant challenge in the field of vaccine development

(68–71) and requires principled statistical analysis based on an

understanding of the underlying immunological mechanisms. The

heterogeneity of data sources and the nuances of individual

immune responses pose obstacles to the reliable evaluation of

CoPs, making it a specialized and challenging aspect of vaccine

research. This section provides an overview of the various

computational approaches to modeling and predicting CoPs,

including their evaluation from clinical study results, uncertainty

quantification, and data model frameworks.

Evaluating CoPs from clinical study results involves aggregating

data on study designs, immunological assays, host factors, and

clinical endpoints. However, the lack of standardized data formats

and reporting guidelines poses challenges for integrating and

analyzing this information (70, 71). Shared representational

frameworks and ontologies surrounding CoPs have not yet been

established, posing reproducibility challenges for data integration

and statistical analyses. There is still a significant knowledge gap in

identifying CoP for many vaccines, however, some CoPs have been

determined for certain vaccines, such as neutralizing antibody titers

for influenza vaccines (72).

CoPs enable computational analyses that support running

clinical trials in silico and help answer a variety of relevant questions

for vaccine development, such as the extrapolation of results from

animal studies tohumans. For example, immunobridginganalysis uses

correlates of protection to predict the effect of existing vaccines in

protecting against a known pathogen for a given host to give insight

into the effect of a candidate vaccine against a novel pathogen in a

potentially different host using a different CoP (73–76). While CoPs
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have historically been leveraged for these analyses by ad-hocmethods

(77–80), recent theoretical formulationsof causal inference have paved

the way for new generic frameworks that can be readily applied for

identifying CoPs and enabling their estimation in the face of known

sources of uncertainty such as unobserved confounding, sample

selection bias, external validity, missing data, measurement error,

variability in individual responses, and immunobridging (81–86).

The next generation of methods that can provide tight bounds on

the estimates of vaccine efficacy in the presence of all these sources of

uncertainty (87) has the potential for high impact in the design of

vaccines and clinical trials. Recent statisticalmethods for assessment of

immune correlates of protection from randomized, controlled, vaccine

efficacy trials highlighting the importance of careful experimental

design planning, pre-registration, and the application of a

standardized statistical analysis plans improve access to results data

supporting predictive analyses (88).

3.2.1 Uncertainty quantification analysis for
vaccine development

Uncertainty quantification (UQ) plays a critical role in the

modeling of vaccine efficacy and safety by providing a framework to

assess the reliability of computational predictions. It helps in

identifying the bounds within which the model’s predictions can be

considered accurate, thereby guiding decision-making in vaccine

development. However, quantifying uncertainty in vaccine

development is challenging due to limited data, complex biological

interactions, and the lack of negative data from failed vaccine

candidates. In this section, we explore the role of UQ in vaccine

development (89), the challenges faced, and howAI/ML tools can help

in better understanding and mitigating these uncertainties.

Vaccine efficacy is typically assessed through clinical trials, where

the vaccine’s ability to prevent disease or reduce its severity is
FIGURE 3

Common vaccine components (antigen, adjuvant, and delivery system) representing specific roles these ingredients play in the overall design of a
given vaccine product for enhancing protection against an emerging infectious disease. Red lines indicate the two main contributors having a direct
influence on vaccine efficacy and immune systems responses, where flexible combinations of these two ingredients enable improved vaccine
efficacy and effectiveness depending on the optimal technology platform selected. The optimal combination of these components is crucial for
developing safe and effective vaccines that elicit robust and long-lasting immune protection. Created using BioRender.com.
frontiersin.org

http://www.BioRender.com
https://doi.org/10.3389/fimmu.2025.1502484
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Anderson et al. 10.3389/fimmu.2025.1502484
evaluated. Safety is assessed through the monitoring of adverse events

following immunization. Uncertainty in these models can arise from

various sources, such as measurement errors, variability in individual

responses, and the extrapolation of results from animal studies to

humans (81). Quantifying these uncertainties helps in determining

the confidence intervals around the predicted efficacy and safety

outcomes, which is crucial for regulatory decision-making and risk-

benefit assessments (90). Moreover, the lack of data from failed

vaccine candidates in the public domain poses a significant challenge

in UQ. Negative data refers to information about vaccine candidates

in public domain that failed or were withdrawn at any stage of

development. Understanding the reasons behind the failure of these

candidates is crucial for improving future vaccine designs and

optimizing resource allocation.

ML tools have emerged as powerful approaches for understanding

and mitigating uncertainties in vaccine development. By integrating

data from different stages of development, ML models can help

identify the key factors influencing vaccine performance and

provide more reliable predictions. However, it is essential to ensure

that the data used for training these models is of high quality and that

the models are validated using appropriate methods to avoid learning

from noise. In this context, feature selection techniques can identify

the most informative variables, reducing the dimensionality of the

problem. By selecting relevant features, ML models can reduce the

dimensionality of the problem and focus on the key factors influencing

vaccine performance1.

Uncertainty propagation algorithms, such as Bayesian inference

and Monte Carlo simulations, can quantify uncertainties associated

with each component of the model (91). Surrogate modeling can

approximate the behavior of vaccine models, allowing for efficient

exploration of the parameter space (92). By training ML algorithms

on a balanced dataset that includes both positive and negative

examples, the models can learn to distinguish between successful

and failed candidates more effectively (93).
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3.2.2 Data model frameworks for representing
correlates of protection

The discovery of CoPs is critical for accelerating vaccine

development, however, the challenges associated with their

validation are significant. A multidisciplinary approach that

leverages computational tools, standardized frameworks, and

integrated data is required to address these challenges and advance

our understanding of vaccine-induced immunity. Here, we present a

prospective datamodel for correlates of protection outlining common

data collection information elements typically required indetermining

correlates of protection from statistical outcomes (Figure 4).

Correlates of protection are semi-structured and provided mainly

in literary sources (94) and reference textbooks (68), but are discussed

inconsistently across sources and stem from different statistical

analyses. Information reporting on immune signatures and CoPs are

often spread across multiple sections of a single publication or across

different publications. The data model for immune signatures (see

Figure 4) and CoP may vary depending on the specific research

questions being addressed. This lack of a universal data model

makes it difficult to compare and integrate data from different

studies, limiting the ability to draw comprehensive conclusions

about vaccine efficacy and safety (95). Moreover, the development of

advanced textmining systems that can effectively extract and integrate

information frommultiple sources is crucial.We discuss the challenge

of scaling a common language around correlates of protection for

vaccine development in the next section.

Nomenclaturepresents several additional challenges. For example,

different types of CoPs are described using different and sometimes

overlapping nomenclature such as “surrogates of protection” and

“correlates of risk”, and there currently exists no taxonomical

resource for CoP-related terms. Further, several different kinds of

vocabularies are required to identify entities that appear as part of

CoPs. The Vaccine Ontology (VO) (96) is an existing ontology that

aims to represent vaccine-related information, including immune
FIGURE 4

Generalized correlate of protection schema resulting from clinical trial results data and information for evaluating correlate of protection analyses.
The schema integrates data from various sources such as clinical trials, including immunological assays, host factors, and clinical endpoints, to
identify the key immune parameters that correlate with protection. Understanding the CoPs are essential for evaluating vaccine efficacy, optimizing
vaccine design, and predicting the durability of vaccine-induced immunity. Created using BioRender.com.
frontiersin.org
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responses. However, the current VO lacks comprehensive coverage of

immune response terms and relationships. Extending the VO to

include a more detailed representation of immune cell types,

cytokines, and signaling pathways involved in vaccine-induced

immunity would greatly enhance its utility for computational

modeling. Additionally, aligning immune response terms with

existing ontologies, such as the Gene Ontology (GO) (97) and the

Cell Ontology (CL) (98), would facilitate data integration and

knowledge discovery. For example, the Infection Disease Ontology

forMalaria (IDOMAL) (99) demonstrates how ontologies can be used

to integrate and analyze heterogeneous data related to a specific

infectious disease.

Similarly, the confluence of data and knowledge supports the

development of bespoke machine learning workflows as well as the

application of generic workflows. Classical machine learning and

computational modeling approaches have shown initial promise in

predicting vaccine effectiveness and discovering novel CoPs by

leveraging immune response data (76). For example, machine

learning approaches have been used to predict the immunogenicity

of influenza vaccines based on the analysis of gene expression profiles

and antibody titers (100).

In summary, computational approaches to modeling and

predicting CoPs are essential for accelerating vaccine development

and improving public health outcomes. By using clinical study results,

uncertainty quantification methods, data model frameworks, and

machine learning techniques, researchers can identify reliable CoPs,

optimize vaccine design, and predict vaccine efficacy.
3.3 Data harmonization and knowledge
integration challenges

Data and relevant information describing vaccine development

and immunization is distributed across dozens of distinct resources
Frontiers in Immunology 07
(Figure 5). Computational methods would generally benefit from

drawing on many if not all available resources. Here we provide an

overview of existing resources ranging from controlled vocabularies

and ontologies to databases on vaccine characteristic and immune

responses. We also point out important gaps and limitations

associated with the current state of these resources.

3.3.1 Resources for identifying critical vaccine
relationship information

The storage and management of scientific data involves

identifying concepts in an unambiguous way. Concepts relevant

for vaccine development include, for instance, organisms (hosts or

pathogens), vaccine products and technologies, cell types, genes,

proteins, biological processes, and several other entity types.

Concept identification is typically achieved by using unique

identifiers that remain distinct from colloquial names and

synonyms. Identifiers are assigned to concepts by controlled

vocabularies, taxonomies and ontologies (101). In addition to

standardizing the identification of relevant concepts, resolver

resources construct links to web pages that describe each concept

(102, 103). For example, the NCBI Taxonomy database (https://

www.ncbi.nlm.nih.gov/taxonomy) has assigned an identification

number 28450 to Burkholderia pseudomallei. This identifier can

be resolved using the compact URI (CURIE) identifier schema

standard (104, 105) as ncbitaxon:28450. Unique namespace

prefixes, such as ncbitaxon assigned by the local data provider,

can be persistently mapped from literature references to

HTML webpage locations being described by this taxon

identifier using CURIE resolver services by Identifiers.org (https://

identifiers.org/taxonomy:28450) or the Bioregistry (https://

bioregistry.io/ncbitaxon:28450).

Below, we summarize the landscape of such identifier and

terminology resources for several concept types relevant to

vaccine development.
FIGURE 5

A conceptual diagram of key concepts and relationships surrounding vaccines. Red arrows indicate comprehensive methods are required for
extraction and integration of these resources. Accurate curation and mapping of these vaccine products across knowledge resources is a critical
step in the experimental data and knowledge harmonization for downstream query. Created using BioRender.com.
frontiersin.org
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3.3.1.1 Vaccine naming and persistent identification

There exist several ontologies and related resources that catalogue

and assign identifiers to vaccines. These resources provide a detailed

hierarchical classification of vaccines, such as by their platform design,

the pathogen against which they immunize, and the disease against

which they inoculate. The most detailed of such is the Vaccine

Ontology (96). Several more general resources also include vaccines

such as Medial Subject Headings (MeSH) (106), the National Cancer

Institute Thesaurus (NCIT) (107), the Unified Medical Language

System (UMLS) (108), the Computer Retrieval of Information on

Science Projects (CRISP) Thesaurus (109), Medical Dictionary for

Regulatory Activities (MedDRA) (110), Logical Observation

Identifiers Names and Codes (LOINC) (111), and Systematized

Nomenclature of Medicine - Clinical Terms (SNOMED-CT) (112).

Additionally, several organizations maintain their own unique

identification systems for vaccines, such as the United States Food and

Drug Administration’s Submission Tracking Number (identifier

prefix: STN), the United States Center for Disease Control and

Prevention’s vaccine administered) code set (identifier prefix: CVX),

the AmericanMedical Association’s Current Procedural Terminology

(identifier prefix: CPT), the European Medicines Evaluation Agency

(identifier prefix: EMA) product number, and the World Health

Organization Anatomical Therapeutic Chemical Classification

(identifier prefix: ATC) codes (113–120). These resources are

typically used to identify vaccines in reference to primary study

metadata, such as clinical trials protocols and statistical plans,

sponsor authorization and licensing identifiers, and product tracking

numbers. Despite the existence of these resources, ensuring the

persistence of identifiers and harmonized naming, standards pose a

large challenge in this area (121, 122).

The broad array of agency-specific product information systems

and coded identifiers make it difficult to verify and integrate

identification elements across resources by country. One specific

challenge is that not all data sources employ similar guidelines or

best practices for assignment of resolvable identifiers and

naming conventions.

3.3.1.2 Vaccine ingredients and common components

The Vaccine Ontology curates terms representing components

of vaccines, such as adjuvants, antigens, emulsifiers, preservatives,

solvents, and stabilizers. Many of these terms are linked to

chemicals in the Chemical Entities of Biological Interest (ChEBI)

Ontology (123) and other related chemical identification resources.

The Vaccine Adjuvant Compendium (https://vac.niaid.nih.gov)

curates similar terms (124, 125), and provides additional context

linking to immune signatures, pre-clinical, and clinical information.

Unstructured text information exists in various ad-hoc formats that

do not use identifiers, such as the FDA vaccine insert packets and

CDC CVX code labels describing excipients. Better standardization

across these sources would enable principled analysis of the role

vaccine components might play in efficacy and safety.

3.3.1.3 Vaccine host-pathogen taxonomy

The NCBI Taxonomy repository provides a comprehensive and

detailed hierarchical classification of organism-specific lineages
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across all clades of life (126). It is particularly useful for

annotating host and pathogen organisms as well as vaccine

targeted organisms based on genomic sequence identification.

However, genomic database collections do not always track and

assign persistent identifiers to pathogenic variants of interest. This

can create critical gaps for assembling vaccine-pathogen

relationships connected to variant-specific sequence identities

during outbreaks and pandemics (127).

Variant tracking, depending on the mutation rate of the

pathogen of interest, often requires full descriptive reporting

standards when publishing experiments or observations for

correctly identifying variant protection. New ontologies, such as

the Coronavirus Infectious Disease Ontology (CIDO) (128), have

begun to incorporate agency-specific terminology for well-known

SARS-CoV-2 pathogenic variants. For example, CIDO has included

new terms for common SARS-CoV-2 variant names based on the

GISAID (129, 130), PANGO (131–133), and WHO classification

systems (134), facilitating keeping track of circulating pathogen

lineage metadata information. Accurate and up-to-date tracking of

emerging pathogen variants of interest (VOI) and variants of

concern (VOC) is crucial for future vaccine development success

and characterization of linked protective outcomes such as vaccine

efficacy and protective durability (135).

Other relevant ontologies include the Infectious Disease

Ontology (IDO) collection which is connected to widely used

more general disease ontologies (136). Though, currently

incomplete, IDO has established a roadmap for providing curated

terms for resolving pathogenic strain information in the future.

3.3.1.4 Vaccine antigen selection

Vaccines can contain portions of nucleotide or peptide sequences

bearing a variety of roles such as being an antigen, conjugate, or vector.

Biologically-relevant genomic sequence variance and antigen coded

sequence mutations are known to heavily influence vaccine design

efficacy (28, 137). Explicit vaccine sequence information is valuable for

downstream analysis but is also often not defined nor referenced

explicitly from publications, clinical trials, or other documents

describing experimental approaches to new vaccine development.

Antigens often correspond to a well-defined gene sequence, either

identified through gene nomenclature resources such as Entrez Gene

Database, protein nomenclature resources such as UniProt, or when

available complete genome reference databases such as GenBank and

related sequence-based database extensions (138–141). Other lookup

resources specific to antigen search and discovery include the Immune

Epitope Database and the VDJdb curated database of T-cell receptors

with known antigen specificity (142, 143).

3.3.1.5 Vaccine adverse events and discourse

Structured information on vaccine adverse events is key to

assessing vaccine safety. Several related resources curate identifiers

and names for adverse events, such as the Ontology of Adverse

Events (OAE), Ontology for Vaccine Adverse Events (OVAE),

Common Terminology Criteria for Adverse Events (CTCAE), and

the Adverse Outcome Pathway (AOP) framework (144–147).

Similarly, the Symptom Ontology and the Human Phenotype
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(HP) Ontology cover partially overlapping concepts that appear in

adverse event resources and can be linked in many cases (148–150).

Finally, there are resources dedicated to standardizing public

discourse on vaccine effects such as the Vaccine Misinformation

Ontology (VAXMO) (151).

It is important to note that extracting useful information from

social media posts about vaccines is challenging due to the

prevalence of misinformation and disinformation. Distinguishing

genuine adverse event reports from false or misleading information

remains a significant hurdle, even with the inclusion of image

evidence or the use of advanced AI systems. Researchers and

public health officials must exercise caution when relying on

social media data for vaccine safety monitoring and develop

robust methods to validate the information obtained.

3.3.1.6 Vaccine-related ontology integration and gaps

The proliferation and heterogeneity of vaccine resources

presents several challenges during data integration. We have

given an overview of a number of resources relevant to vaccine

data, still, multiple further ontologies can be found in databases that

catalogue biomedical identifier resources including the Bioregistry

and BioPortal (152, 153). The usage and integration of these

resources, however, remains challenging. First, retrieval presents a

major issue as resources appear in a variety of formats. For example,

most organization-specific identification systems require web-

scraping and are difficult to process. Further, several resources

have licenses that are restrictive in terms of usage allowed (e.g.,

UMLS) or are proprietary (e.g., CPT) which makes their reuse

difficult (154). Second, reconciliation is challenging, as

nomenclature is not always consistent nor detailed enough to

resolve ambiguities. Precise and comprehensive semantic

mappings are required to reconcile ontologies and related

resources at scale, which also poses several problems with respect

to the availability and completeness of mappings as well as the

methods necessary to accomplish this. Finally, completeness is an

important issue, as even the combination of all resources does not

cover all vaccines, vaccine candidates, and vaccine platforms. This

can be addressed in some cases by contributing or suggesting to the

maintainers of the resource to include new terms. For example, the

Vaccine Ontology is a part of the Open Biological and Biomedical

Ontologies (OBO) Foundry, a set of community-maintained

ontologies with shared curation and community guidelines (155).

In other cases, it may be required to develop new ontologies or

nomenclature resources.

3.3.2 Data integration methods to support
machine learning

Modern life science knowledge discovery requires the

integration of data and knowledge from heterogeneous, multi-

modal data sources (156, 157). Data integration is becoming

increasingly important to support AI/ML which leverage such

heterogeneous, multi-modal data. Integration, however, is limited

by variations in both structured and unstructured data formats

where common data models and standards would be needed (158–

160). In this section, we review current methods and best practices
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vaccinology, and highlight upcoming challenges and

opportunities for the domain. Specifically, we cover existing

standards, the landscape of existing knowledge sources, and

opportunities for applying natural language processing (NLP) and

large language models.

Knowledge, often in the form of relationships between entities

described in the previous section, are often scattered across many

structured, semi-structured, and unstructured information

resources. Fragmentation of structured data contained in specific

vaccine related knowledgebases such as the U.S Centers for Disease

Control and Prevention (CDC), Federal Drug Administration

(FDA), WHO International Clinical Trials Registry Platform

(ICTRP), ClinicalTrials.gov, Vaccine Adverse Event Reporting

System (VAERS), etc. (113, 115, 161, 162), along with reported

outcomes sparingly shared in resulting journal articles, are a

challenge to track down and connect outcome and study phase

progress. More specifically, there are a variety of disparate data

formats and standards across published experimental studies on

pathogens and vaccine platforms. Structured biomedical data and

clinical study knowledge can appear in several formats. Simple

relationships between concepts can be encoded as semantic triples

consisting of a subject, a predicate and an object, possibly further

augmented by additional properties (163). Representing complex

knowledge such as correlates of protection requires a more detailed

data model for accurately capturing the necessary biological entities

and the relationships they represent.

A handful of databases contain host-pathogen data aggregated

from literature in a structured form. Efforts from the Human

Immunology Project Consortium (HIPC) database (https://

immunespace.org/), the Host-Pathogen Interaction Prediction

(HPIP) analysis framework, and the COVID-19 Prevention

Network (CoVPN) consortium network website (https://

preventcovid.org/) (164–167) collect and curate relevant

information, but there is currently no comprehensive resource

containing detailed immune signature identifications and CoP

statistical results.

The NIH 2023 data sharing policy (https://grants.nih.gov/

grants/guide/notice-files/NOT-OD-21-013.html) is expected to

have a significant impact on the availability of raw data in public

repositories. This increased access to data will facilitate the

development and validation of computational tools and data

integration methods for vaccine research. The policy mandates

that all NIH-funded research generate publicly accessible data,

which will enable researchers to more easily combine and analyze

data from multiple sources. This, in turn, will accelerate the

identification of novel vaccine targets, the optimization of vaccine

formulations, and the assessment of vaccine safety and efficacy.

3.3.2.1 Host-pathogen infection, disease, and clinical
outcome data

Relationships of vaccines to pathogens, host organisms, and

diseases constitute the backbone of vaccine-related knowledge.

However, this information is highly fragmented, sparse, and

available at varying levels of granularity. For example,
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connections between vaccines and the organisms they immunize

against can be found in a combination of structured sources like

VO, VIOLIN (168), and the Cov19VaxKB (169) combined with

unstructured sources published by organizations like the CDC,

FDA, and EMA. The VO and VIOLIN database provide explicit

annotations on vaccines’ host organism(s), which are typically

implicit in other resources. Connections between vaccines and

diseases can also be extracted from a combination of direct

structured annotations in VO and VIOLIN, through inference on

clinical trial resources, inferred through the Disease Ontology’s has

material basis in annotations, and from unstructured sources from

the CDC, FDA, and EMA.

Vaccine side effects and adverse outcomes are available from

multiple resources. VAERS accumulates adverse event reports,

which requires statistical interpretation and only covers a small

number of vaccines. Further, it does not use controlled vocabularies

and therefore needs preprocessing (grounding). Additional

processing has been done to match VAERS to the Adverse Event

Ontology (AEO) (170). VAERS has also been analyzed with other

natural language processing systems for text classification to

medical officer review (171). VIOLIN contains side effect

information in unstructured text that can be extracted with NLP.

Side effects can also be extracted from the FDA’s label inserts for

vaccines (172). NLP has been shown to be an effective method

approach for vaccine event extraction (173, 174), while MLmethods

have been shown to be an effective approach for side effect

prediction-based methods using electronic health records (175).

Despite the availability of these sources and inference methods,

it’s necessary to do additional manual curation to achieve full

coverage of the vaccine landscape. Methods that measure entity

co-occurrence, such as those based on NLP, could provide an initial

assessment of the landscape accelerating manual curation.

3.3.2.2 Clinical trials data

Clinical trials data is distributed across a large number of

country- and region-specific registries (176). The principal clinical

trial registry used in the United States, ClinicalTrials.gov, contains

the most granular information on study results (177). The World

Health Organization (WHO) aggregates multiple clinical trial

registries into a unified data store and provides cross-references

when the same trial is registered in multiple primary registries

(178). However, there exist several challenges in using the collection

of these registries due to differing data availability, data standards,

and curation practices used in each of the constituent clinical trial

registries. For example, some registries contain a dedicated field for

the phase of a clinical trial, some contain it within free text

describing the trial, and some do not include it at all. Further, to

connect information between trials and other resources, concepts

need to be standardized to controlled vocabularies or ontologies.

ClinicalTrials.gov uses MeSH to accomplish this for its trials’

conditions and interventions, but there remain significant gaps in

standardizing these and other fields.

Examples of successful data harmonization efforts and their

benefits more generally include population, intervention,

comparison, and outcome (PICO) framework (179). The
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Clinical Data Interchange Standards Consortium (CDISC) (https://

www.cdisc.org) and BRIDG (https://bridgmodel.nci.nih.gov) is one

avenue towards standardizing data before it enters registries.

Alternatively, several complementary approaches have

demonstrated progress towards establishing data models and

information extraction pipelines covering several aspects of

clinical trial registries, including for outcomes (180), for funding

sources (181), for endpoints (179), and for related regulatory

documentation (182). Similar efforts to support precision

medicine have resulted in clinically-enriched knowledge graphs

(183, 184). Because many fields within clinical trial registries are

stored as free text, there remain several opportunities for developing

further data models and extraction pipeline for additional aspects,

such as cohort recruitment and exclusion, intervention

administration, reasons for stopping trials, and other fields.

3.3.2.3 Vaccine licensing data

Vaccine regulatory information is crucial for informing the

development of new vaccines. However, the vaccine regulatory

landscape is complex due to the process of approval (e.g.,

standard vs. emergency use authorization), the variety of license

statuses (active, inactive, withdrawn, etc.), and the number of

regional- and country-specific agencies that review and grant

authorization. These complexities create challenges in data

harmonization efforts across license tracking statuses and

reporting resources.

The FDA includes detailed documentation about the review of

each vaccine including its clinical review memo, approval letters,

and other supporting documents. For example, the approved

BioNTech COVID-19 vaccine COMIRNATY is described by the

FDA in https://www.fda.gov/vaccines-blood-biologics/comirnaty

(185). Similarly, the emergency use authorized Novavax vaccine is

described by the FDA in https://www.fda.gov/vaccines-blood-

biologics/coronavirus-covid-19-cber-regulated-biologics/novavax-

covid-19-vaccine-adjuvanted (186). Despite providing detailed

vaccine insert documentation for individual vaccines, the FDA

does not provide a single source for aggregating versioned

documentat ion of current approvals , emergency use

authorizations, or withdrawals in a stable user-friendly location.

The CDC’s CVX code resource provides an aggregated overview of

active, inactive, and never active vaccines in the USA, but does not

link to FDA approval identifiers for harmonizing release versioning.

The EMA provides a single aggregated document on all reviewed

medicines, including vaccines, but varies in the language used to

describe these statuses.

Additionally, several third-party resources exist that aggregate

or curate vaccine licensing information. For example, the Vaccine

Ontology contains annotations for USA-licensed vaccines. VIOLIN

stores licenses in a semi-structured way. Finally, the COVID-19

Vaccine Tracker (https://covid19.trackvaccines.org) contains

detailed licensing information for SARS-CoV-2 vaccines, covering

the entire complexity of the licensing landscape, but it is limited by

pathogen, requires web scraping and data standardization, and its

maintenance has been discontinued as of December 2022.
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There remain several ongoing challenges in leveraging vaccine

licensing information. First, there is the limited availability of vaccine

information by distributor, which is currently scattered across

unstructured sources and agencies in many regions, stored in

proprietary resources inaccessible to the general research community.

Second, is the variability and inconsistency of the terminology used in

referencing, naming, or describing of vaccine information. Controlled

vocabularies, such as the NCI Thesaurus (NCIT) collection (http://

purl.obolibrary.org/obo/ncit.owl) have an incomplete classification of

licensing that could serve as a basis for extension to a vocabulary

that could help standardize across agencies and regions (see https://

bioregistry.io/ncit:C118405). Further, common terms such as

emergency use authorization (EUA) have different context- and

agency-dependent meaning. Finally, capturing license information

is confounded by the dynamical nature of licenses which can change

over time, motivating the development of a more sophisticated data

model for capturing the lifecycle of a given vaccine.

3.3.2.4 Vaccine platform complexity

Vaccine design is a complex process that involves the selection of

appropriate platforms, adjuvants, and antigens. Vaccine platforms are

thebackboneof vaccinedevelopment, providing the foundation for the

delivery of antigens and the stimulation of the immune system.

However, the complexity and diversity of vaccine platforms make

ontologizing a challenging task. Many vaccines build on aspects of

multipleplatforms, and the lack of standardizedways to annotate these

platforms hinders data integration and analysis. Adjuvants are

essential components of many vaccines, enhancing the immune

response and improving vaccine efficacy (47, 187). Antigens are the

key components of vaccines that trigger the immune response and

confer protection against pathogens. The lack of standardized

ontologies and annotation systems for vaccine platforms, adjuvants,

and antigens presents significant challenges in vaccine design and data

integration. Collaborative efforts to develop and implement

standardized ontologies, along with the integration of vaccine data

frommultiple sources, are essential for advancing vaccine research and

development. By leveraging the power of ontologies, unique and

persistent identifiers, with results data for integration we can

accelerate the design of safe and effective vaccines and improve

public health outcomes.

3.3.3 Vaccine platform data curation
knowledge gaps

As discussed above, significant knowledge gaps exist in the

curation of data on vaccine platforms, stemming from language and

reporting inconsistencies, the lack of standardized datasets, and

variable data reporting requirements. These gaps hinder the ability

to rapidly develop and adapt vaccines tonewpathogens, as exemplified

by the challenges faced during the COVID-19 pandemic. The use of

human-readable formats, such as unstructured text in scientific

articles, makes it difficult to extract and integrate data across

different studies. Additionally, the inconsistent use of terminology

between experimental and computational domains creates barriers to

data harmonization and analysis (188). Publicly available datasets on

vaccine efficacy and safety often suffer from incompleteness and lack of
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standardization. Relevant information, such as adjuvant formulations

and dosing schedules, is often reported in an ad-hoc manner and

scattered across different sources, including clinical trial registries,

journal articles, and regulatory documents (189).

Efforts to promote the use of machine-readable formats, such as

standardized data tables and structured metadata, can improve the

efficiency and accuracy of data curation. The development of tools

and platforms for automated data extraction and integration,

leveraging natural language processing and machine learning

techniques, can help overcome the challenges posed by

unstructured and heterogeneous data sources.
3.3.4 Community standards, data sharing,
and reporting

There exists a confluence of community data standards, model

formats, and reporting guidelines that support the curation and

organization of knowledge from primary sources (190). Many such

curated resources are adopting external data standards to improve

their reusability. For example, the molecular interaction and

pathway modeling community have several standard data

exchange language formats for encoding curated artifacts,

including BEL, BioPAX, and SBML standards (191–193). The

clinical data modeling community has also produced several

standards for encoding clinical data, including the CDISC, the

Observational Medical Outcomes Partnership Common Data

Model (OMOP-CDM), and the HL7/FHIR (194–196).

Concurrently, several generalprinciples, guidelines, andcommunity

standards resources have emerged to support curators (197). Popular

implementations include the FAIR (findable, accessible, interoperable,

reusable) data principles, TRUST (transparency, responsibility, user

focus, sustainability and technology) principles, CARE principles

(CARE Principles for Indigenous Data Governance), FAIR for

Research Software (FAIR4RS), O3 (open data, open code, open

infrastructure) guidelines, the Research Data Alliance COVID-19

working Group (RDA COVID-19) standards collection, and

structured data extaction APIs such as Google Colab (https://

ai.google.dev/gemini-api/tutorials/extract_structured_data) (198–203).

Frameworks that automate the assembly of biomedical knowledge

can support building new databases and knowledge graphs that can be

queried from a combination of programing languages, dialog systems,

andmore recently, through the interfaceof large languagemodels.This

includes schemas such as the Biolink Model, BioCypher, Phenotype

Knowledge Translator (PheKnowLator), GA4GH Phenopackets, and

ISA-FHIR (204–208). Other approaches towards knowledge assembly

based on the semantic web (209, 210) and linked open data (211, 212)

allow for information to be federated from many distinct sources

following shareddatamodelingpractices.Awell-knownexample is the

UniProt RDF platform and SIB linked data (213–215).
3.4 Automated tools for knowledge
extraction from literature

A key challenge of data integration in this space (and life sciences

more broadly) is that most data is fragmented across scientific
frontiersin.org

http://purl.obolibrary.org/obo/ncit.owl
http://purl.obolibrary.org/obo/ncit.owl
https://bioregistry.io/ncit:C118405
https://bioregistry.io/ncit:C118405
https://ai.google.dev/gemini-api/tutorials/extract_structured_data
https://ai.google.dev/gemini-api/tutorials/extract_structured_data
https://doi.org/10.3389/fimmu.2025.1502484
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Anderson et al. 10.3389/fimmu.2025.1502484
publications in an unstructured form such as text, figures, and tables.

Peer-reviewed publications relevant to vaccine mechanisms are

accessible via PubMed and PubMed Central, as well as publisher-

specific repositories, however, most content is not available in a full-

text form. Some targeted projects such as LitCovid provide SARS-

CoV-specific publications but are limited to only a subset of all

relevant literature (216). Given access to literature content, natural

language processing techniques can extract data from text in a

structured form. Natural language processing systems typically

approach extraction from scientific publications by first recognizing

key concepts in text, a process called named entity recognition (NER),

then extracting relationships between concepts (called relation

extraction) (217). Traditionally, NLP systems have used rule-based

extraction approaches whereby patterns corresponding to relations of

interest are matched to trigger extraction logic from text (218). More

recently, machine learned, transformer-based algorithms have

become prevalent. These models (including PubmedBERT (219)

and BioBERT (220)) are generic to processing biomedical text and

can be fine-tuned for specific extraction tasks. Finally, the latest

generation of large language models – both proprietary (e.g.,

ChatGPT, https://chatgpt.com) and open source (e.g., Bloom

(221)) – can be used for interpreting and extracting data from

publications without fine tuning, rather, using custom prompts with

instructions and examples, sometimes called in-context learning

(222). We highlight prior work on NLP applied in the domain of

vaccine mechanisms in Table 1.

Recent advancements in LLMs, such as ChatGPT, have shown

promising results in various scientific domains, including single-cell

RNA-seq analysis (252). In addition to using LLMs for data

extraction tasks, as outlined above, LLMs may be used directly as

a source of integrated vaccine knowledge. However, due to the

nature of LLMs capturing relationships in text implicitly through

learned weights, it is challenging to connect responses generated by

LLMs to primary evidence from literature or other sources.

Therefore, further investigation is needed to assess the extent to

which these models can provide accurate and reliable information

in this context.

Correctly identifying and extracting data information from

semi-structured tables, graphs, and figures has proven to be

challenging for NLP and other automated approaches. NLP

methods present generic- and domain-specific challenges. Some

are a result of the complexity of language itself, for example,

anaphora (references to previously mentioned concepts via

pronouns) and synonyms both impact the ability for rule-based

systems to recognize concepts correctly. Similarly, imprecise

language (e.g., varying specificity of vaccine terms) and ambiguity

(e.g., “NLP vaccine” nomenclature) are difficult for even newer

systems to overcome. As LLMs and other machine-learned

techniques become more prevalent, the need for reproducible and

reliable workflows becomes important as the same inputs are no

longer guaranteed to give the same outputs, and the issue of

hallucination can affect the accuracy of results. Hallucination, in

the context of LLMs refers to the generation of false or misleading

information that is not grounded in the input data or the model’s

training. This can lead to inaccurate or unreliable outputs, which is

a significant concern when applying these models to scientific
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research. Finally, a practical issue for all NLP methodologies is

the limited availability of full-text content since important data or

tables often do not appear in the abstract (253).

We identify several opportunities for the application of NLP in

the future. First, it can be used to generate more detailed indexes of

vaccines and other concepts of interest in the literature to make it

easier to query, enable preliminary analyses such as the assessment

of relative entropy (254), and provides a foundation for further

extraction and curation activities. Accordingly, there is an

opportunity for using NLP to assist in automated or semi-

automated relation extraction, for example, between vaccines and

their target pathogens, diseases, and other features mentioned

above. This presents an opportunity both in the biomedical

literature as well as semi-structured datasets that contain free text

fields such as those appearing in clinical trial registries and adverse

event databases. Finally, we see an opportunity to use LLM-based

workflows such as SPIRES (255) or Kor (256).
4 Conclusion

The development of safe and effective vaccines is a critical

public health priority, and the integration of diverse data and

knowledge and the application of AI and ML techniques hold

immense promise for accelerating this process. The process of

developing safe and effective vaccines is fraught with challenges,

ranging from the rapid mutation of pathogens to the lack of

standardized data integration and curation practices. By

leveraging data from various sources, including platform data,

pathogen data, and published knowledge, we can gain a more

comprehensive understanding of the factors that influence

vaccine efficacy and safety as shown in Figure 1.

This review highlights the current landscape of vaccine

development, and the opportunities associated with integrating

diverse data types to enable AI and ML techniques. We have
TABLE 1 Prior applications of natural language processing in the
domain of vaccine mechanisms.

Natural Language Processing Task Reference(s)

Recognizing adverse events (171, 223–228)

Processing social media content on vaccine response
and sentiment

(229–234)

Identifying immune signatures and underlying
biological processes

(235–238)

Identification and prioritization of relevant literature (239–241)

Processing of clinical trial registries (242)

Identifying relevant dataset sequence links (243)

Topic clustering and analysis (244, 245)

Identification of named entities (246, 247)

Constructing knowledge graphs (248, 249)

Human-machine health interactions (250)

PICO extraction (251)
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discussed the role of semantic integration, causal inference and

natural language processing, in extracting valuable insights from

published literature and unstructured data sources. Furthermore,

we have emphasized the importance of establishing standardized

data formats and ontologies to facilitate seamless integration and

analysis of heterogeneous data. However, to fully harness the

potential of AI/ML and computational tools in vaccine

development, it is crucial to address the lack of data and

knowledge interoperability across various domains. This lack of

integration hinders the development of comprehensive models and

limits the ability to derive meaningful insights from the available

data. To overcome the challenges associated with data and

knowledge integration in vaccine development, we propose the

following future directions and implementation strategies:
Fron
• Establishing standardized ontologies/data formats.

Developing standardized ontologies and data formats

specific to vaccine development can facilitate the

integration of data from various sources, such as host-

pathogen interactions, clinical trials, and vaccine design.

This will enable more efficient data sharing and analysis

across different research institutions.

• Promoting data sharing and collaboration. Encouraging a

culture of data sharing and collaboration among researchers,

industry partners, and public health organizations can help

break down silos and facilitate the integration of knowledge

across different domains. This can be achieved through the

creation of open-access databases, data-sharing platforms,

and collaborative research networks.

• Advancing AI/ML algorithms for data integration. Investing

in the development of advanced AI/ML algorithms

specifically designed for integrating heterogeneous data

from disparate sources can help overcome the challenges

associated with data harmonization. These algorithms should

be able to handle the complexity and variability of vaccine

and platform related data and provide meaningful insights to

guide vaccine development.

• Integrating real-world evidence. Integrating real-world

evidence, such as post-marketing surveillance data and

electronic health records, with traditional vaccine

development data can provide a more comprehensive

understanding of vaccine safety and effectiveness. Such

efforts require the development of robust data

infrastructure and the application of AI/ML techniques to

analyze and derive insights from these diverse data sources.

• Fostering interdisciplinary collaboration. Encouraging

collaboration among experts from various fields, such as

immunology, virology, data science, and computer science,

can help bridge the gaps in knowledge and facilitate the

development of innovative solutions to address the

challenges in vaccine development.
In conclusion, realizing the full potential of AI/ML and

computational tools in vaccine development will require a

concerted effort from all stakeholders, including researchers,

funding agencies, industry partners, government organizations,
tiers in Immunology 13
and academic institutions. By investing in the development of

standardized ontologies and data formats, promoting data sharing

and collaboration, advancing AI/ML algorithms for data

integration, integrating real-world evidence, and fostering

interdisciplinary collaboration, we can accelerate the development

of safe and effective vaccines and improve global public

health outcomes.
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