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Degradation of IL-4Ralpha by
Immunoproteasome: implication
in airway type 2 inflammation
and hyperresponsiveness
Niccolette Schaunaman1, Diana Cervantes1,
Deborah A. Ferrington2 and Hong Wei Chu1*

1Department of Medicine, National Jewish Health, Denver, CO, United States, 2Doheny Eye Institute,
Pasadena, CA and University of California, Los Angeles, Los Angeles, CA, United States
Introduction: Immunoproteasome (IP) is induced by pro-inflammatory stimuli

such as interferon gamma to regulate inflammation and immunity. Asthma

patients with airway type 2 high inflammation (e.g., IL-13) demonstrate more

eosinophils and airway hyperresponsiveness (AHR) with less interferon gamma.

The role of IP in regulating airway eosinophilic inflammation and AHR has not

been investigated.

Methods: This study was aimed to determine how IP regulates type 2

inflammation and AHR using LMP7 (a subunit of IP) deficient mouse lungs,

precision-cut lung slices (PCLS), and cultured human airway epithelial cells

treated with IL-13 in the absence or presence of an IP inhibitor ONX-0914 or

exogenous IP.

Results: LMP7 KO mouse lungs had significantly more IL-4Ra protein expression

than the wildtype (WT) mice. Following IL-13 treatment in PCLS, LMP7 KO mice

had significantly more airway contraction than WTmice, which was coupled with

increased eotaxin-2 levels. IP inhibition by ONX-0914 in IL-13 treated human

airway epithelial cells resulted in significantly more IL-4Ra protein expression and

eotaxin-3 release. IP inhibition in human PCLS significantly increased AHR.

Conclusion: Collectively, these data demonstrated that IP promotes degradation

of IL-4Ra, while inhibits type 2 inflammation and AHR. Enhancement of IP

expression or activity may serve as an alternative approach to reduce the

severity of type 2 inflammation and AHR.
KEYWORDS

immunoproteasome, IL-4RA, type 2 inflammation, precision-cut lung slices,
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1 Introduction

Asthma is a chronic respiratory disease affecting approximately

25 million people, or 7.7% of all Americans (1). Of those suffering

from asthma, allergic asthma is the most prevalent phenotype (2, 3).

Allergic asthma is associated with wheezing, bronchoconstriction,

and type 2 or allergic inflammation characterized by the presence of

type 2 cytokines, such as IL-13 and IL-4 (4, 5), which induce the

production of chemokines involved in the recruitment and

activation of inflammatory cells such as eosinophils (6–9).

Increased levels of eosinophils have been associated with

increased asthma morbidity such as worsened asthma

exacerbations and airways hyperresponsiveness (10–15).

The immunoproteasome (IP) is proteolytic machinery derived

from the constitutive proteasome (16, 17). In the presence of pro-

inflammatory stimuli such as interferon gamma (IFN-g), IP subunits

LMP2, MECL-1, and LMP7 are induced to replace b1, b2, and b5
subunits in the constitutive proteasome (16). Interestingly, in type 2

inflammation-high asthmatics, IFN-g levels are low compared to type-

2 low asthmatics (18–21), suggesting a potential deficiency of IP. IP is

known for its ability to cleave peptides for antigen presentation on

major histocompatibility complex (MHC) class I molecules in T cells

(22, 23). In addition, IP has been shown to regulate inflammatory

responses to viral infection and NF-kB signaling (22–24). The role of

IP in regulating allergic inflammation remains unknown. We have

recently found that IP deficient mice challenged with house dust mite

and then infected with rhinovirus showed significantly more

eosinophilic inflammation than their wild-type counterparts (25).

The mechanism of how IP inhibits type 2 inflammation was not

determined. Chen et. al., demonstrated that LMP7 deficiency

enhances M2 macrophage polarization through the regulation of the

IL-4 signaling pathway (26). In this study, they showed that LMP7

deficient alveolar macrophages increased STAT6 activation and IRF4

expression, which was associated with an increase in IL-4Ra, a
receptor shared by both IL-4 and IL-13 (27–30). However, the

authors did not address how IP regulated IL-4Ra expression.

In the present study, we hypothesize that IP reduces lung IL-

4Ra levels, leading to reduction in type 2 inflammation, a key

contributor to airway hyperresponsiveness. To test this hypothesis,

we utilized LMP7 deficient mouse lungs or human donor lungs to

generate precision-cut lung slices (PCLS), which allows us to

maintain the three-dimensional structure of the lung and measure

airway contraction induced by stimuli such as IL-13. Additionally,

we performed cell culture experiments to examine the role of IP in

human airway epithelial IL-4Ra expression and eosinophils

chemokine production with or without IL-13 treatment.
2 Materials and methods

2.1 Mice

Wild-type (WT) C57BL/6 mice were purchased from the Jackson

Laboratories. LMP7 knockout (KO) mice on a C57BL/6 background

were kindly provided by Dr. Deborah A. Ferrington at the Doheny
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Eye Institute, CA. All mice were bred at the National Jewish Health

(NJH) biological resource center (BRC) under pathogen-free housing

condition. All animal studies were reviewed and approved by the

Institutional Animal Care and use Committee at NJH.
2.2 Mouse model of house dust
mite challenge

To induce mouse allergic airway inflammation, WT and LMP7

KO mice (8 – 12 weeks of age, gender matched) were intranasally

sensitized with 10µg/mouse of HDM (Greer laboratories, Lenoir,

NC) or 50µl of phosphate-buffered saline (PBS) on day 0 and 7.

Mice were then challenged once a day for three consecutive days

(day 14-16) with 10µg of HDM or 50µl PBS (25, 31, 32)). 72 hours

after the last HDM challenged mice were sacrificed. The left lung

was used for IL-4Ra protein quantification via western blot as well

as for cytokine mRNA expression. One lobe of the right lung was

fixed in 10% formalin for immunofluorescent staining.
2.3 Preparation of precision-cut lung slices

2.3.1 Mouse PCLS
NaïveWT and LMP7 KOmice were euthanized by intraperitoneal

injection of pentobarbital sodium (Fatal-Plus) in sodium chloride.

Lungs were inflated with 1.5% low-melting agarose and sliced into

consecutive 250µm thickness sections using a Compresstome®VF-300

vibratome (Precisionary Instruments, Natick, MA).

2.3.2 Human PCLS
The upper lobes of the right lung from eight healthy, non-

smoking donors were obtained from the International Institute for

the Advancement of Medicine (IIAM, Philadelphia, PA), and

Donor Alliance of Colorado (Denver, CO). All donor lungs were

selected based on non-smoking status and no history of lung

disease/infection. The detailed donor demographic information is

given in Table 1. Lungs were inflated as previously published (33)

and sliced into consecutive 300µm thickness sections. The

Institutional Review Board (IRB) at NJH approved our studies as

meeting requirements of exempt human subject research.

2.3.3 Culturing of PCLS
Both human and mouse slices were transferred to 24-well plates

containing Dulbecco’s Modified Eagle’s Medium (DMEM,

ThermoFisher Scientific, Waltham, MA) with antifungal agents

and antibiotics and incubated in a humidified incubator at 37°C

supplemented with 5% CO2.
2.4 Treatment of PCLS

2.4.1 Mouse PCLS
24 hours after slicing, mouse PCLS were washed with 1X PBS

(Fisher Scientific, Hampton, NH), and then treated with 25ng/ml of
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recombinant murine IL-13 (PeproTech, Cranbury, NJ).

Supernatant was harvested 72 hours after IL-13 treatment, and

s l ices underwent methachol ine chal lenge for a irway

hyperresponsiveness measurement.

2.4.2 Human PCLS
24 hours after slicing, human PCLS were washed with 1X PBS

(Fisher Scientific, Hampton, NH), and then pre-treated with 100nM

ONX-0914, an immunoproteasome inhibitor (APExBio, Houston,

TX), for two hours followed by treatment with 25ng/ml of

recombinant human IL-13. Supernatant was harvested 72 hours

after IL-13 treatment, and slices underwent methacholine challenge

for airway hyperresponsiveness measurement.
2.5 Airway hyperresponsiveness
measurement

AHR measurement was performed as we previously published

(34). After removing the supernatant, 500µl of warmed DMEM

with antifungal agents and antibiotics was added back to PCLS. For

both mouse PCLS and human PCLS, baseline images of the airways

were taken, followed by adding increasing doses of methacholine

(McH) for a final concentration of 1, 10, 100, and 1,000µM to each

well. After 30 seconds of each dose of McH, images of airways were

taken. The area (relative pixel number) within the lumen was traced

using the image J freehand tool, and the percent airway constriction

was calculated as (1 – post McH area/baseline area) x 100. The

number of airways measured for AHR was between 3-6 per

condition for each donor/mouse.
2.6 Culture of human tracheobronchial
epithelial cells

HTBE cells were processed as previously described (35) from

deidentified donor lungs that were not suitable for transplantation

under a protocol approved by the IRB at NJH. The selected donor

lungs were obtained through the IIAM and Donor Alliance of
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Colorado, and all were non-smokers. The HTBE cells were isolated

by enzymatic digestion from the distal region of the trachea and

proximal regions of the main bronchi. Freshly isolated HTBE cells

were cultured up to one week on 100mm dishes in BronchiaLife

culture medium (Lifeline Cell Technology, Frederick, MD). HTBE

cells were trypsinized and frozen in liquid nitrogen for future use in

BronchiaLife medium supplemented with 30% Fetal Bovine Serum

(FBS, SeraPrime, Fort Collins, CO), and 10% dimethyl sulfoxide.
2.7 Treatment of HTBE lysate with
exogenous IP

HTBE cells from seven healthy donors were expanded on

100mm culture dishes in BronchiaLife media. Once 100%

confluent, cells were trypsinized and lysed in 100µl of

radioimmunoprecipitation assay buffer (RIPA). 50µg of lysed

protein was incubated with either 0nM, 5nM, or 20nM of whole

IP isolated from human spleens (South Bay Bio, San Jose, CA) in

100mM BTP (pH 7.5), 100mM KCL, 10mM EGTA, and 0.035%

sodium dodecyl sulfate (SDS) for 5 hours at 37°C. After 5 hours of

IP treatment, the mixture of cell lysate and IP was frozen

immediately at -80°C for western blotting later.
2.8 Treatment of HTBE cells with an IP
inhibitor and IL-13

HTBE cells from six healthy donors were expanded and

cultured on 24-well plates in BronchiaLife media. Once 80%

confluent, cells were pre-treated with 100nM ONX-0914 for two

hours. After two hours, cells were treated with 2.5µg/ml of an anti-

IL4Ra antibody (R&D Systems, Minneapolis, MN) or IgG control

for 30 minutes. After 30 minutes, cells were treated with 10ng/ml of

recombinant human IL-13 (PeptroTech, Cranbury, NJ). Cells and

supernatants were harvested both 5 hours after ONX-0914

treatment and 72 hours after IL-13 treatment. 5 hours was chosen

to match the incubation time of exogenous IP with airway epithelial

cell lysates done above.
TABLE 1 Demographic information of human donors for the PCLS experiment.

Subject Number Age (years) Sex Smoking History Cause of death

1 60 Male Nonsmoker Stroke

2 32 Female Nonsmoker Overdose

3 27 Female Nonsmoker Head injury

4 56 Female Nonsmoker Brain aneurysm

5 20 Male Nonsmoker Stroke

6 62 Female Nonsmoker Head injury

7 65 Male Nonsmoker Head injury

8 58 Male Nonsmoker Overdose
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1501898
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Schaunaman et al. 10.3389/fimmu.2025.1501898
The doses of ONX-0914 and IL-13 were selected based on our

previous publications (36–39). We chose the dose of the anti-IL4Ra
antibody from our dose-response optimization study that showed

the maximal reduction of eotaxin-3 levels at 2.5µg/ml in IL-13-

stimulated human airway epithelial cells (data not shown).
2.9 Western blotting

Cells were lysed in RIPA buffer with Halt protease and

phosphatase inhibitor cocktail 100x (ThermoFisher, Waltham,

MA). Equal amounts of proteins were loaded and separated by

SDS-PAGE, transferred onto PVDF membranes, blocked with

blocking buffer, and incubated with the following primary

antibodies overnight at 4°C: IL4R Polyclonal antibody (Anti-

human, Proteintech Group, Inc., Rosemont, IL), LMP2 (Abcam,

Cambridge, United Kingdom), LMP7 (Proteintech Group Inc.

Rosemont, IL), IL-4Ra Antibody (Anti-mouse, Santa Cruz

Biotechnology, Dallas, TX), and Beta-Actin antibody (Santa Cruz

Biotechnology, Dallas, TX). After washes in PBS with 0.1% Tween-

20, membranes were incubated with the appropriate horseradish

peroxidase (HRP)-linked secondary antibodies and developed using

a Fotodyne imaging system (Fotodyne Inc., Harland, WI).
2.10 Immunofluorescent staining of IL-4R
in the lung

Immunofluorescent (IF) staining was performed on formalin-fixed

and paraffin-embedded lung tissue sections from WT and LMP7 KO

mice treated with either PBS or challenged with HDM. Sections cut at

5µm were deparaffinized and immersed in pre-heated (95°C) 10mM

sodium citrate buffer with 0.05% Tween 20 (pH 6.0) for 20 minutes for

antigen retrieval. Slides were incubated with an anti-IL4Ra antibody

(ThermoFisher Scientific, Waltham, MA) at 1:100 dilution in 0.1%

Triton X-100 in PBS overnight at 4°C, and then incubated with a

secondary anti-rabbit antibody conjugated with AF594 at a 1:500

dilution at room temperature for one hour. Slides were then mounted

with anti-fade mounting solution with 4’,6-diamidino-2-phenylindole

(DAPI) (ThermoFisher). IF staining was imaged using the Revolve

microscope (Echo, San Diego, CA). Images were taken at 200x using

the same overlay settings for each tissue section.
2.11 Reverse transcription and quantitiative
real-time PCR

RNA was extracted from homogenized lung tissue as decribed

previously (25, 31, 39, 40). Briefly, RNA was isolated using the

TRIzol reagent method, and then reversely transcribed to cDNA.

Taqman Gene Expression Assay (ThermoFisher, Waltham,

MA) was used to determine mRNA relative levels of IL-13 and

IL-4. Target gene expression was normalized to the housekeeping

gene 18S rRNA. The comparative threshold cycle method (DDCt)
was applied to determine the relative levels of target genes.
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2.12 Statistical analysis

GraphPad PRISM version 10.0 software was used for all

statistical analysis. Nonparametric data were analyzed using the

Kruskal-Wallis test for multiple comparisons, and the Mann-

Whitney test for two-group comparisons. A p-value <0.05 was

considered statistically significant.
3 Results

3.1 Immunoproteasome deficiency
increases IL-4Ra protein levels in
mouse lungs

We have previously shown that allergen challenged IP deficient

mice had significantly more eosinophils and eotaxin-2 compared to

WT mice (25). To determine the possible mechanisms by which IP

regulates type 2 inflammation, we measured IL-4Ra in lungs of WT

and LMP7 KO mice treated with either PBS or house dust mite

(HDM). HDM has not been found to regulate IL-4Ra levels (41).

Similarly in our model, HDM challenge did not increase IL-4Ra
levels in either strain of mice. However, LMP7 KO mice had

significantly more IL-4Ra protein expression in homogenized

lung tissue compared to WT mice (Figure 1A), both at baseline as

well as after HDM challenge. This data supports our previous

findings that LMP7 KO mice are more susceptible to type 2

inflammatory responses (e.g., eosinophil recruitment) during

al lergen chal lenges . To local ize IL-4Ra in the lung,

immunofluorescent staining was performed. IL-4Ra signal

(Figure 1B) was observed in airway epithelium as well as in the

alveolar areas which may include immune cells and structural cells.

LMP7 KOmice treated with either PBS or HDM seem to have more

positive IL-4Ra staining in airway epithelial cells.

To determine if the increased lung eosinophil recruitment in

LMP7 KO mice may be induced by heightened type 2 cytokine

production, we measured mRNA expression of IL-13 and IL-4. As

expected, HDM challenge significantly increased IL-13 levels in WT

and LMP7 KO mice (Figure 1C) (42, 43). However, there was no

significant difference in IL-13 mRNA levels between WT and LMP7

KO mice. A similar trend was seen with IL-4 mRNA expression

(Figure 1D). Our data suggests that excessive eosinophilic

inflammation seen in LMP7 KO mice may be attributed to the up-

regulation of IL-4Ra and subsequent type 2 inflammatory response.
3.2 IP deficiency enhances airway
hyperresponsiveness in mouse precision-
cut lung slices

To determine if IP deficiency enhances AHR, a common feature

associated with type 2 inflammation, WT and LMP7 KO mouse

PCLS were treated with IL-13 for 72 hours after which airway

lumen area was measured following methacholine challenges.
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FIGURE 2

LMP7 deficiency enhances airway hyperresponsiveness in mouse precision-cut lung slices (PCLS) exposed to IL-13. WT and LMP7 KO mouse lungs
were inflated, sliced at 250µm, and treated with or without 25ng/ml of IL-13 for 72 hours. Airway contraction with increasing doses of methacholine
was measured with each symbol representing the average airway contraction of all experiments (A). LMP7 KO mice had significantly more airway
contraction compared to WT mice, which was further increased by IL-13 (B). Eotaxin-2 levels were increased in PCLS by IL-13, with LMP7 KO vs. WT
lung tissue having significantly higher eotaxin-2 levels (C). The symbols represent individual experiment with 3 – 8 technical replicates
per experiment.
FIGURE 1

LMP7 deficient mice have significantly more IL-4Ra in homogenized lung tissue. (A) LMP7 KO mice treated with PBS or house dust mite (HDM) had
significantly more IL-4Ra protein present in the lung tissue compred to WT mice. (B) IL-4Ra immunofluorescent staining of WT and LMP7 KO lung
tissue treated with or without HDM; white arrows represent IL-4Ra staining (red color) on airway epithelial cells. HDM challenge significantly
increased IL-13 (C) and IL-4 (D) mRNA levels in both WT and LMP7 KO mice, however there was not statistical difference between WT and LMP7 KO.
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Figure 2A shows a dose-dependent increase in airway contraction

with each increasing dose of methacholine. As previously reported

(44–48), IL-13 treatment in WT mouse PCLS significantly

increased AHR compared to control treated slices (Figure 2B).

LMP7 KO PCLS had significantly more airway contraction

compared to WT slices at baseline, which was further enhanced

after IL-13 treatment as AHR in IL-13 treated LMP7 KO PCLS was

significantly greater than WT PCLS. Eotaxin-2, an eosinophil

chemokine, was upregulated by IL-13 in WT and LMP7 KO

PCLS compared to controls (Figure 2C). IL-13 treated LMP7 KO

PCLS also had more eotaxin-2 compared to IL-13 treated WT slices.
3.3 IP inhibition increases IL-4Ra and
eotaxin-3 in IL-13-stimulated human
airway epithelial cells

To further establish a role for IP during type 2 inflammation in

human airway epithelial cells, IL-4Ra protein levels were

measured five hours after HTBE cells were exposed to IL-13

with and without ONX-0914. ONX-0914 in IL-13 treated cells

significantly increased IL-4Ra levels compared to IL-13 treatment

alone (Figure 3A). Eotaxin-3, and eosinophil chemokine

upregulated by IL-13, was increased by IL-13 at 72 hours

(Figure 3B). ONX-0914 in IL-13-stimulated cells significantly

enhanced eotaxin-3 production. Importantly, when cells were

treated with an anti-IL4Ra antibody in the presence of ONX-

0914 and IL-13, eotaxin-3 levels were completely inhibited. Our

data suggests that IP inhibition increases IL-4Ra protein

expression, which is critical to eotaxin production.
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3.4 IP directly reduces IL-4Ra levels in
cultured human airway epithelial cells

To determine the direct effect of IP on IL-4Ra protein content,

IP isolated from human spleen was incubated with naïve HTBE cells

from seven healthy donors for five hours at 37°C. Accordingly,

LMP2 and LMP7 (subunits of IP) protein levels increased in a dose-

dependent manner following incubation with exogenous IP at 5nM

and 20nM (Figures 4A, B). While 5nM IP trended to decrease IL-

4Ra protein levels, 20nM IP significantly decreased IL-4Ra levels

compared to control and the 5nM IP concentration (Figure 4C).

Representative western blot images for IL-4Ra, LMP2, and LMP7

protein expression can be seen in Figure 4D.
3.5 IP inhibition increases AHR in
human PCLS

As we observed the enhanced AHR in IP deficient mouse PCLS

even without IL-13 treatment, we tested if IP deficiency in human

distal lungs increases AHR. PCLS from eight healthy donors were

treated with or without ONX-0914 for 72 hours before measuring

AHR. IP inhibition by ONX-0914 significantly increased airway

contraction as compared to control slices (Figures 5A, B).
4 Discussion

This is the first report studying the mechanism of regulation of

type 2 inflammation by IP, and the impact of IP deficiency on
FIGURE 3

Inhibition of immunoproteasome (IP) increases IL-4Ra and eotaxin-3 in IL-13-stimulated human airway epithelial cells. Tracheobronchial epithelial
cells from n=6 healthy donors were pre-treated with immunoproteasome LMP7 inhibitor ONX-0914, then given anti-IL4Ra antibody followed by IL-
13 treatment. IP inhibition in IL-13 treated cells significantly upregulated IL-4Ra protein levels five hours after ONX-0914 treatment (A), as well as
significantly increased eotaxin-3 levels after 72 hours (B). Anti-IL4Ra antibody significantly inhibited IL-13-induced eotaxin-3.
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FIGURE 5

IP inhibition in human PCLS significantly increases airway hyperresponsiveness. Lung from n=8 healthy human lung donors were inflated with low
melting agarose, cored, sliced to 300µM, and treated with or without ONX-0914. (A) Airway contraction data. (B) Representative images of airway
contraction in PCLS.
FIGURE 4

The immunoproteasome (IP) degrades IL-4Ra in human airway epithelial cell lysates. Tracheobronchial epithelial cells from n=7 healthy donors were
incubated with 5nM and 20nM of exogenous IP for 5 hours at 37°C. IP it increased LMP2 (A) and LMP7 (B) protein expression, while it decreased IL-
4Ra protein expression in a dose-dependent manner (C). Representative western image of IP degrading IL-4Ra and increasing IP subunits (D).
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airway hyperresponsiveness. Our results suggest that degradation of

IL-4Ra and reduced IL-13-induced eosinophil chemokine

production. In addition, IP deficiency, specifically LMP7

deficiency, contributed to airway contraction in the absence or

presence of IL-13 stimulation.

The role of IP in allergic or type 2 inflammation remains

controversial. Several research groups have reported differing

roles of IP on eosinophilic inflammation depending on types of

allergens given. Oliveri et. al., found that mice challenged with

ovalbumin and an IP inhibitor had less eosinophils present than

vehicle control mice. However, when challenged with house dust

mite (HDM) and an IP inhibitor, eosinophil levels were not

different from vehicle control mice (49). Another group found

similar results when using LMP7 deficient mice and a high dose of

HDM (50). Lack of mechanistic studies into how IP directly

regulates allergic, or type 2 inflammation may in part explain the

above controversial or inconsistent findings. In this study, we

clearly demonstrated that IP regulates IL-4Ra protein expression

in human airway epithelial cells as IP inhibitor treatment in IL-13-

stimulated human airway epithelial cells increased IL-4Ra and

eotaxin-3 levels. Moreover, this was evident in our LMP7

deficient mouse model where IL-4Ra levels were increased in

LMP7 deficient lung tissue. This increase was not coupled with

an increase in type 2 cytokines IL-13 or IL-4 in mice, suggesting that

IP does not appear to up-regulate the expression or production of

typical type 2 cytokines (e.g., IL-4 and IL-13). Instead, IP may

inhibit the signaling of type 2 cytokines through IL-4Ra, such as

eotaxin-2 production as we previously reported. Eotaxin-2

production is highly dependent on IL-4/IL-13 and IL-4Ra
signaling and is critical to lung eosinophil recruitment and

inflammation (51, 52).

Many biologics have been developed to combat type 2

inflammation and allergic asthma, with IL-4Ra being one of the

main targets, since both IL-13 and IL-4 utilize it as a receptor (27–

30). Our data shows that IP inhibition in human epithelial cells

treated with an anti-IL-4Ra neutralizing antibody abolished IL-13-

induced eotaxin-3 levels. While little is known about IL-4Ra
regulation by IP or proteasome, Wei et. al., found that

ubiquitination-mediated proteasomal degradation of IL-4Ra is

important in controlling airway inflammation (53). The IP is

proteolytic machinery that has been classically considered to play a

role in antigen presentation (22, 23) by cleaving different peptides to

initiate adaptive immune responses (24, 54). However, multiple

studies support a more general role for IP in responding to stress

(55–59). Here, we have improved our understanding of how IP may

regulate type 2 inflammation by showing the inhibitory role of IP in

regulating IL-4Ra content. Increased IL-4Ra expression in airway

epithelium has been reported in asthma, particularly atopic/allergic

asthma (60). Although genetics and other factors may contribute to

increased IL-4Ra in asthma, investigating the role of IP is critical for

enhancing our understanding of this important mechanism. Given

that IFN-g induces IP and IFN-g levels are low in type 2

inflammation-high asthmatics (18–21), it is possible that IP
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deficiency may exist in type 2 inflammation-high asthmatics. This

speculation needs to be confirmed in future work, but reduced IP

may offer a new mechanism for type 2 inflammation. Severe chronic

obstructive pulmonary disease (COPD) has been associated with a

decrease in IP levels (61, 62). Interestingly, impaired IFN signaling

has been reported in COPD patients with viral infection (63). Thus,

it appears that IFN supplementation may be appropriate in asthma

or COPD patients with IP deficiency to attenuate type

2 inflammation.

Airway obstruction is a salient feature of asthma, but the role of

IP in airway obstruction or AHR has not been tested. By leveraging

the PCLS model where the three-dimensional structure of the lung

is maintained, we found that LMP7 deficiency enhanced AHR, in

the absence or especially in the presence of IL-13. Even without IL-

13 stimulation or at the baseline, LMP7 KO mouse PCLS had

significantly more airway contraction than WT slices. This was

mirrored in our human PCLS model where IP inhibition by ONX-

0914 resulted in significantly more airway contraction. How IP

contributes to AHR remains to be determined. One explanation

could be related to IL-4Ra-mediated signaling such as smooth

muscle contractility and mucus production in the presence of IL-13

stimulation. We still do not know why IP deficiency alone (no IL-13

stimulation) increases AHR. Whether IP deficiency in the lung

increased the activity (e.g., release of acetylcholine) of

parasympathetic nerves and smooth muscle contraction warrants

further investigation. Calcium signaling is critical to airway smooth

muscle contraction (64). Proteasome inhibitor may contribute to

disruption of intracellular calcium homeostasis (65). Whether IP

deficiency at the baseline affects calcium signaling and subsequently

enhance AHR at the baseline may need to be tested.

One limitation of our study is that while IP reduces airway

epithelial IL-4Ra content, the exact mechanisms (direct vs. indirect)

were not determined. Further studies could investigate the direct

mechanisms by determining if immunoproteasome components

(e.g., LMP7) interact with IL-4Ra and ubiquitinate it, and target IL-

4R1 for ubiquitination-mediated proteasomal degradation.

Regarding indirect mechanisms, we could test if IP deficiency

decreases the expression of other mediators involved in IL-4Ra
degradation, including STIP1 homology and U-Box containing

protein 1 (STUB1), a chaperone-dependent E3 ubiquitin ligase. In

a previous study, STUB1 was shown to promote IL-4Ra
degradation (53). Additionally, our study only examined IP-

mediated IL-4Ra under IL-13. Adding IL-4, another type 2

cytokine that shares IL-4Ra as a receptor, would further our

understanding of IP in the regulation of type 2 inflammatory

responses. Another limitation is that we did not use a mouse

asthma model to determine the role of IP in AHR. Nonetheless,

the PCLS model allowed us to accurately measure airway

contraction. Finally, future studies are needed to determine if IP

expression and/or activity exist in asthmatics with type 2

inflammation, but not with type 1 inflammation.

By utilizing IP deficient mouse lungs and PCLS models, we have

demonstrated that immunoproteasome is a negative regulator of IL-
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4Ra expression and type 2 inflammation, as well as airway

hyperresponsiveness. Enhancement of IP expression or function

may be therapeutically beneficial to reduce the severity of asthma in

a subset of patients who present with high levels of type 2

inflammation in the airways.
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