
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Immunol.
Sec. Systems Immunology
Volume 16 - 2025 | doi: 10.3389/fimmu.2025.1500997
This article is part of the Research Topic Systems Immunology and Translational Research in Infectious Diseases View all 3 articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Background: The mechanisms underlying persistent symptoms after non-severe COVID-19 remain unclear. This study aimed to investigate transcriptomic changes in peripheral blood cells of patients with post-COVID-19 condition (PCC) and assess if distinct clinical subtypes with specific gene signatures could be identified. Methods: The cohort included 111 PCC patients from the SARS-CoV-2 Omicron variant era, with 57 recovered (Recov) and 54 having prolonged symptoms indicative of PCC. The results were compared to 63 healthy controls (Ctrl) without known SARS-CoV-2 infection. Clinical data included patient assessments, laboratory results, comorbidities, and questionnaires on quality of life and functioning. Transcriptomic analysis and cellular deconvolution methods were used on total RNA from peripheral blood mononuclear cells (PBMCs). Results: PCC patients had more comorbidities (mean 1.3) and more frequently (59%) at least one comorbidity than recovered patients (31%) and controls (24%). Overall, past COVID-19 illness or current PCC symptoms caused minimal changes in the blood cell transcriptome, with only 3-6 differentially expressed genes (DEGs) identified across comparisons. However, a subset of male PCC patients exhibited an increased fraction of deconvoluted erythroblasts and significant genome-wide gene expression changes, with 399 DEGs compared to recovered and control males. These genes were enriched in pathways related to heme metabolism and gas exchange in erythrocytes. Conclusions: Persistent symptoms in PCC are multifactorial and not directly linked to peripheral blood cell gene expression changes. However, a subgroup of male PCC patients shows distinct erythrocyte responses that may contribute to long-term symptoms.
Keywords: Post-COVID-19 Condition, SARS-CoV-2, Transcriptomics, bioinfomatics, Erythrocyte (human)
Received: 24 Sep 2024; Accepted: 03 Mar 2025.
Copyright: © 2025 Karisola, Kanerva, Vuokko, Liira, Wang, Kvarnström, Varonen, Suojalehto and Alenius. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Harri Alenius, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Uusimaa, Finland
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.